Multi-Scale ITG/TEM/ETG Turbulence Simulations with … · Multi-Scale ITG/TEM/ETG Turbulence...

29
S. Maeyama, Y. Idomura, M. Nakata, M. Yagi, N. Miyato Japan Atomic Energy Agency CollaboratorsT.-H. Watanabe (Nagoya Univ.), M. Nunami, A. Ishizawa (NIFS) 25th IAEA FEC, 15 Oct. 2014 This work is supported by HPCI Strategic Program Field No. 4 and MEXT KAKENHI Grant No. 26800283. Multi-Scale ITG/TEM/ETG Turbulence Simulations with Real Mass Ratio and β Value TH/1-1

Transcript of Multi-Scale ITG/TEM/ETG Turbulence Simulations with … · Multi-Scale ITG/TEM/ETG Turbulence...

S. Maeyama, Y. Idomura, M. Nakata, M. Yagi, N. Miyato

Japan Atomic Energy Agency

Collaborators: T.-H. Watanabe (Nagoya Univ.), M. Nunami, A. Ishizawa (NIFS)

25th IAEA FEC, 15 Oct. 2014

This work is supported by HPCI Strategic Program Field No. 4 and MEXT KAKENHI Grant No. 26800283.

Multi-Scale ITG/TEM/ETG Turbulence Simulations with Real Mass Ratio and β Value

TH/1-1

Introduction

2

One of the critical issues in ITER is electron heat transport, which is inherently multi-scale physics. 2000 [Jenko00PoP]

A candidate is electron temperature gradient modes (ETG). 2007 [Candy07PPCF,Waltz08PoP,Görler08PRL]

ETGs give small transport if there are ion temperature gradient and trapped electron modes (ITG/TEM). However, these multi-scale simulations were limited:

• Reduced mass ratio (mi/me=400, 900) • Electrostatic approximation (β=0)

Radial direction

Polo

idal

dir

ection

“Streamers” in ETG turbulence

Motivation & Outline

Linear instabilities from electron to ion scales

Poloidal wave number kyρti

Lin

ear

gro

wth

rate

γR/v

ti

Scale separation with real mass ratio

10

1

0.1

0.1 1 10

Ion-scale stabilization with real β

β=0.04% β=2.0%

3

Following points are not yet clarified: (i) Are there multi-scale interactions even with the real mass ratio and β value?

(ii) If yes, how do the interactions occur?

Motivation & Outline Following points are not yet clarified: (i) Are there multi-scale interactions even with the real mass ratio and β value? Multi-scale simulation

demonstrates cross-scale interactions.

(ii) If yes, how do the interactions occur? Nonlinear interaction

analysis reveals their mechanisms.

Linear instabilities from electron to ion scales

Poloidal wave number kyρti

Lin

ear

gro

wth

rate

γR/v

ti

Scale separation with real mass ratio

10

1

0.1

0.1 1 10

Ion-scale stabilization with real β

β=0.04% β=2.0%

3

5

2.5

0

-2.5

-5

The GKV code [Watanabe06NF,Maeyama13CPC]

• Solve gyrokinetic ions and electrons with electromagnetic fluctuations in a flux-tube geometry.

• Validation with experiments. [Posters:Nakata,Ishizawa,Nunami]

• High scalability allows ITG/TEM/ETG simulations with ~100k CPU cores in ~100 hours. [Maeyama13SC]

ITG/TEM

ETG

Plasma parameters are Cyclone base case parameters [Dimits00PoP]

• R/LTi=R/LTe=6.82, R/Ln=2.2, Te=Ti, r/R=0.18, q=1.4, s=0.786

• Real mass ratio: mi/me=1836

• Real β value: β=2.0% (below NZT [Pueschel13PRL])

4

Multi-scale turbulence simulation(β=2.0%)

Time evolution of the electrostatic potential fluctuations (at mid-plane of the flux tube)

5

Fie

ld e

ne

rgy W

k R

2/(

n0T

iρti2)

Time t vti/R

102

101

1

10-1

10-2

10-3

0 20 40 60 80

Zonal (kyρti=0)

ITG/TEM (kyρti<1)

Med. (1<kyρti<4)

ETG/Streamers

(4<kyρti)

ITG

Spectra

6

Energy spectrum

(β=2.0%)

Poloidal wave number kyρti

Lin

ear

gro

wth

rate

R/v

ti

10

1

0.1

0.1 1 10

ITG/

TEM

ETG/

Strea

mers

Med.

Fie

ld e

ne

rgy W

k R

2/(

n0T

iρti2)

Time t vti/R

102

101

1

10-1

10-2

10-3

0 20 40 60 80

Zonal (kyρti=0)

ITG/TEM (kyρti<1)

Med. (1<kyρti<4)

ETG/Streamers

(4<kyρti)

ITG

Spectra

6

Energy spectrum

(β=2.0%)

Wk

ky

10

10-6

0.1 10

Poloidal wave number kyρti

Lin

ear

gro

wth

rate

R/v

ti

10

1

0.1

0.1 1 10

ITG/

TEM

ETG/

Strea

mers

Med.

Fie

ld e

ne

rgy W

k R

2/(

n0T

iρti2)

Time t vti/R

102

101

1

10-1

10-2

10-3

0 20 40 60 80

Zonal (kyρti=0)

ITG/TEM (kyρti<1)

Med. (1<kyρti<4)

ETG/Streamers

(4<kyρti)

ITG

Spectra

6

Energy spectrum

(β=2.0%)

ky

Wk

10

10-6

0.1 10

Wk

ky

10

10-6

0.1 10

Poloidal wave number kyρti

Lin

ear

gro

wth

rate

R/v

ti

10

1

0.1

0.1 1 10

ITG/

TEM

ETG/

Strea

mers

Med.

Fie

ld e

ne

rgy W

k R

2/(

n0T

iρti2)

Time t vti/R

102

101

1

10-1

10-2

10-3

0 20 40 60 80

Zonal (kyρti=0)

ITG/TEM (kyρti<1)

Med. (1<kyρti<4)

ETG/Streamers

(4<kyρti)

ITG

Spectra

6

Energy spectrum

(β=2.0%)

ky

Wk

10

10-6

0.1 10

Wk

ky

10

10-6

0.1 10

Wk

ky

10

10-6

0.1 10

Poloidal wave number kyρti

Lin

ear

gro

wth

rate

R/v

ti

10

1

0.1

0.1 1 10

ITG/

TEM

ETG/

Strea

mers

Med.

Fie

ld e

ne

rgy W

k R

2/(

n0T

iρti2)

Time t vti/R

102

101

1

10-1

10-2

10-3

0 20 40 60 80

Zonal (kyρti=0)

ITG/TEM (kyρti<1)

Med. (1<kyρti<4)

ETG/Streamers

(4<kyρti)

ITG

Spectra

6

Energy spectrum

(β=2.0%)

ky

Wk

10

10-6

0.1 10

Wk

ky

10

10-6

0.1 10

Wk

ky

10

10-6

0.1 10

Wk

ky

10

10-6

0.1 10

Poloidal wave number kyρti

Lin

ear

gro

wth

rate

R/v

ti

10

1

0.1

0.1 1 10

ITG/

TEM

ETG/

Strea

mers

Med.

Fie

ld e

ne

rgy W

k R

2/(

n0T

iρti2)

Time t vti/R

102

101

1

10-1

10-2

10-3

0 20 40 60 80

Zonal (kyρti=0)

ITG/TEM (kyρti<1)

Med. (1<kyρti<4)

ETG/Streamers

(4<kyρti)

ITG

Spectra

6

Energy spectrum

(β=2.0%)

ky

Wk

10

10-6

0.1 10

Wk

ky

10

10-6

0.1 10

Wk

ky

10

10-6

0.1 10

Wk

ky

10

10-6

0.1 10

Wk

ky

10

10-6

0.1 10

Poloidal wave number kyρti

Lin

ear

gro

wth

rate

R/v

ti

10

1

0.1

0.1 1 10

ITG/

TEM

ETG/

Strea

mers

Med.

Electron energy diffusion spectrum in multi-scale turbulence is NOT a sum of single-scale ones.

7

In zero-β case, due to strong electron-scale suppression, ion-scale simulations give a good estimate.

In finite-β case, electron-scale suppression is weak. Ion-scale transport is enhanced in multi-scale analysis.

0.0001

0.01

1

100

0.1 1 10

(ce/c

gB

i)/(

Dk

yr

ti)

Poloidal wave number kyrti

Ion-scale sim. e=1.2gB

Electron-scale sim. e=5.4gB

Multi-scale sim. e=4.5gB

Poloidal wave number kyρti

0.1 1 10

Finite β case (β=2.0%)

102

1

10-2

10-4

Ele

ctr

on

th

erm

al d

iffu

sio

n

coeffic

ient

ek/

gB

* Ion energy diffusion is similar (see proceedings).

0.0001

0.01

1

100

0.1 1 10

(ce/c

gB

i)/(

Dk

yr

ti)

Poloidal wave number kyrti

Ion-scale sim. e=6.4gB

Electron-scale sim. e=7.2gB

Multi-scale sim. e=6.3gB

102

1

10-2

10-4

Ele

ctr

on

th

erm

al d

iffu

sio

n

co

effic

ien

t

ek/

gB

Zero-β case (β=0.04%)

Poloidal wave number kyρti

0.1 1 10

Analysis of nonlinear interactions Gyrokinetic triad transfer - Mode-to-mode nonlinear transfer of perturbed entropy

𝐼𝑠𝒌 = 𝐽𝑠𝒌𝒑,𝒒

𝒒𝒑

𝐽𝑠𝒌𝒑,𝒒= 𝛿𝒌+𝒑+𝒒,𝟎

𝒃 ⋅ 𝒑 × 𝒒

2𝐵

× Re 𝑑𝑣3 𝜒 𝑠𝒑𝑔𝑠𝒒 − 𝜒 𝑠𝒒𝑔𝑠𝒑𝑇𝑠𝑔𝑠𝒌𝐹𝑠𝑀

(Generalized potential 𝜒 𝑠𝒌 = 𝜙 𝒌 − 𝑣∥𝐴 ∥𝒌 、

Nonadiabatic distribution 𝑔𝑠𝒌 = 𝑓𝑠𝒌 +𝑒𝑠𝐹𝑠𝑀

𝑇𝑠𝜙 𝒌)

8

Radial wave number qxρti

Polo

idal w

ave n

um

ber

qyρ

ti

k

q

p

k+p+q=0

Electron-scale suppression mechanism: • Ion-scale ZF shearing? Or, Another structures? Ion-scale enhancement mechanism: • Inverse cascade to ion-scale turbulence? Or, Damping of ion-scale ZFs?

[Nakata12PoP]

Suppression of electron-scale streamers by high-kx ITG/TEM structures.

9

Radial wave number qxρti

Polo

idal w

ave n

um

be

r q

ti

6

4

2

0

-2

-4

-6 -6 -4 -2 0 2 4 6

[a.u.]

2×10-5

1×10-5

0

-1×10-5

-2×10-5

k (Streamer)

Triad transfer 𝐽𝑠𝒌𝒑,𝒒𝑠 for a streamer

(kxρti,kyρti)=(0,4.4) at t=20-30R/vti

Suppression of electron-scale streamers by high-kx ITG/TEM structures.

9

Radial wave number qxρti

Polo

idal w

ave n

um

be

r q

ti

6

4

2

0

-2

-4

-6 -6 -4 -2 0 2 4 6

[a.u.]

2×10-5

1×10-5

0

-1×10-5

-2×10-5

k (Streamer)

Triad transfer 𝐽𝑠𝒌𝒑,𝒒𝑠 for a streamer

(kxρti,kyρti)=(0,4.4) at t=20-30R/vti

p (~1.6ρti-1)

Kinetic electrons create fine radial structures (kxρti>1). [Dominski12JPCS,

Maeyama14PoP]

Suppression of electron-scale streamers by high-kx ITG/TEM structures.

9

Radial wave number qxρti

Polo

idal w

ave n

um

be

r q

ti

6

4

2

0

-2

-4

-6 -6 -4 -2 0 2 4 6

[a.u.]

2×10-5

1×10-5

0

-1×10-5

-2×10-5

k (Streamer)

Triad transfer 𝐽𝑠𝒌𝒑,𝒒𝑠 for a streamer

(kxρti,kyρti)=(0,4.4) at t=20-30R/vti

p (~1.6ρti-1)

At the reduction phase, these radial structures suppress streamers.

Kinetic electrons create fine radial structures (kxρti>1). [Dominski12JPCS,

Maeyama14PoP]

Suppression of electron-scale streamers by high-kx ITG/TEM structures.

9

Radial wave number qxρti

Polo

idal w

ave n

um

be

r q

ti

6

4

2

0

-2

-4

-6 -6 -4 -2 0 2 4 6

[a.u.]

2×10-5

1×10-5

0

-1×10-5

-2×10-5

k (Streamer)

q (Finer

mode)

Triad transfer 𝐽𝑠𝒌𝒑,𝒒𝑠 for a streamer

(kxρti,kyρti)=(0,4.4) at t=20-30R/vti

p (~1.6ρti-1)

At the reduction phase, these radial structures suppress streamers.

Kinetic electrons create fine radial structures (kxρti>1). [Dominski12JPCS,

Maeyama14PoP]

After suppression of ETG/streamers, normal cascade dominates electron scales.

10

At the steady state, normal cascade dominates via the direct coupling with ion-scale turbulent eddies.

Triad transfer 𝐽𝑠𝒌𝒑,𝒒𝑠 for a streamer

(kxρti,kyρti)=(0,4.4) at t=60-80R/vti

Radial wave number qxρti

-6 -4 -2 0 2 4 6

6

4

2

0

-2

-4

-6

[a.u]

2×10-6

1×10-6

0

-1×10-6

-2×10-6

Po

loid

al w

ave

nu

mb

er

qyρ

ti

k (Streamer)

After suppression of ETG/streamers, normal cascade dominates electron scales.

10

At the steady state, normal cascade dominates via the direct coupling with ion-scale turbulent eddies.

Triad transfer 𝐽𝑠𝒌𝒑,𝒒𝑠 for a streamer

(kxρti,kyρti)=(0,4.4) at t=60-80R/vti

Radial wave number qxρti

-6 -4 -2 0 2 4 6

6

4

2

0

-2

-4

-6

[a.u]

2×10-6

1×10-6

0

-1×10-6

-2×10-6

Po

loid

al w

ave

nu

mb

er

qyρ

ti

p (Ion

scales)

k (Streamer)

After suppression of ETG/streamers, normal cascade dominates electron scales.

10

At the steady state, normal cascade dominates via the direct coupling with ion-scale turbulent eddies.

Triad transfer 𝐽𝑠𝒌𝒑,𝒒𝑠 for a streamer

(kxρti,kyρti)=(0,4.4) at t=60-80R/vti

Radial wave number qxρti

-6 -4 -2 0 2 4 6

6

4

2

0

-2

-4

-6

[a.u]

2×10-6

1×10-6

0

-1×10-6

-2×10-6

Po

loid

al w

ave

nu

mb

er

qyρ

ti

p (Ion

scales)

k (Streamer)

q (Finer

mode)

Inefficient zonal mode generation in multi-scale turbulence.

11

Inverse cascade from electron to ion scales seems not to be responsible.

Comparing multi-scale simulation with single-scale one, Zonal part of field energy is relatively weak. Inefficient zonal mode generation is observed.

Nonlinear entropy

transfer for zonal modes

0 20 40 60 80

Time t vti/R

0.12

0.08

0.04

0

WZ

ona

l /Wn

on

-zona

l

0 20 40 60 80 Time t vti/R

0.4

0.3

0.2

0.1

0

Ion-scale simulation

Multi-scale simulation

Ion-scale simulation

Multi-scale simulation

I kZ

ona

l /Drivin

g t

erm

Ratio of zonal to non-

zonal field energy

Enhancement of ion-scale turbulence is caused by damping of zonal modes.

12

Splitting ion- and electron-scale contributions clarifies Electron-scale turbulence has damping effects on

zonal modes around kxρti~1. → The reduction of ZF shearing enhances transport.

Entropy transfer spectrum

for zonal modes

Drive by ion scales

Damping by electron scales

Total Ion-scale simulation

Multi-scale simulation

Poloidal wave number kyρti

0.1 1 10

102

1

10-2

10-4

Ele

ctr

on

the

rmal diffu

sio

n

co

effic

ient

ek/

gB

Ion-scale sim. filtering ZFs (kxρti>0.8) Elec

tron-scale sim.

Test of reduced ZFs

0 0.5 1 1.5 2 2.5 3

0.003

0.002

0.001

0

-0.001

JkΩ

p,Ω

q(k

y=

0)/

Drivin

g t

erm

Radial wave number kxρti

Summary and discussion

13

We have first analyzed multi-scale ITG/TEM/ETG turbulence with real mass ratio and β value. We have demonstrated the existence of multi-

scale interactions even with real mass ratio. - ETG/Streamers are suppressed by ITG/TEM turbulence.

ITG stabilization by finite-β effects makes

electron-scale contributions non-negligible. - We newly found that electron-scale turbulence can enhance ion-scale turbulent transport.

Summary and discussion

14

In terms of transport level estimation Multi-scale spectrum is NOT a sum of single scales. When ITGs are highly unstable, ion-scale simulations

give a good estimate of transport levels. In high-β regimes, electron scales can be important.

• Effective damping of ion-scale ZFs

ZF damping by Electron-scale turb.

ITG / TEM

ETG / Streamers

Zonal Flows

ETG reduction by ITG/TEM

Normal cascade via coupling with ITG/TEM turbulent eddies dominates electron scales.

Electron-scale turbulence acts as effective damping of ZFs.

In terms of turbulence physics

26