Multi-phase inversion tectonics related to the HendijaneNowroozeKhafji Fault activity, Zagros...

download Multi-phase inversion tectonics related to the HendijaneNowroozeKhafji Fault activity, Zagros Mountains, SW Iran1-s2.0-S1464343X15300480-main

of 10

Transcript of Multi-phase inversion tectonics related to the HendijaneNowroozeKhafji Fault activity, Zagros...

  • 7/25/2019 Multi-phase inversion tectonics related to the HendijaneNowroozeKhafji Fault activity, Zagros Mountains, SW Iran1-

    1/10

    Multi-phase inversion tectonics related to theHendijan e Nowrooz e Khafji Fault activity, Zagros Mountains, SW Iran

    Sadjad Kazem Shiroodi a , Mohammad Ghafoori a , Ali Faghih b , *

    , Mostafa Ghanadian b ,Gholamreza Lashkaripour a , Naser Hafezi Moghadas aa Department of Geology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iranb Departments of Earth Sciences, College of Sciences, Shiraz University, Shiraz, Iran

    a r t i c l e i n f o

    Article history:Received 13 March 2015Received in revised form19 August 2015Accepted 22 August 2015Available online 28 August 2015

    Keywords:Inversion tectonics3D seismic sectionZagrosPersian Gulf Iran

    a b s t r a c t

    Distinctive characteristics of inverted structures make them important criteria for the identi cation of certain structural styles of folded belts. The interpretation of 3D seismic re ection and well data shedsnew light on the structural evolution and age of inverted structures associated to the Hendijan e Nowrooze Khafji Fault within the Persian Gulf Basin and northeastern margin of Afro-Arabian plate. Analysis of thickness variations of growth strata using T-Z plot (thickness versus throw plot) method revealed thekinematics of the fault. Obtained results show that the fault has experienced a multi-phase evolutionaryhistory over six different extension and compression deformation events (i.e. positive and negativeinversion) between 252.2 and 11.62 Ma. This cyclic activity of the growth fault was resulted fromalteration of sedimentary processes during continuous fault slip. The structural development of the studyarea both during positive and negative inversion geometry styles was ultimately controlled by therelative motion between the Afro-Arabian and Central-Iranian plates.

    2015 Elsevier Ltd. All rights reserved.

    1. Introduction

    Inversion tectonics was introduced by several authors (e.g.Glennie and Boegner, 1981; Cooper and Williams,1989 ) to describechanges of tectonic regimefrom extension to compression, and viceversa. After introducing different type of inverted structures (i.e.positive and negative types) by Williams et al. (1989) , several ex-amples of these structures were recognized and described world-wide (e.g. Biji, 2006 and references cited therein). Positive andnegative inverted structures are created in response to change of tectonic regime following the contractional reactivation of inheri-

    ted normal faults or extensional reactivation of inherited reversefaults, respectively ( Fig. 1). Distinctive characteristics of inversion-related structural geometries consist of anomalous variations of fault-throw with depth, thicker strata on the hanging wall of thrusts faults and footwall shortcut thrusts ( Cooper and Williams,1989 ). The recognition of inverted structures is important in theoil industry because inversion can: a) modify the burial history of asedimentary basin, b) uplift sediments above sea level generating

    secondary porosity, c) modify the attitude of the sedimentarypackage, allowing different directions of uid migration with time,d)reactivate older faults, changing their sealing properties and e)form complex structures at depth and care needs to be taken todifferentiate these from single event compressive thin-skinnedthrust structures ( Coward, 1994 ).

    Constraining reactivation processes has practical implicationsfor improving the evaluation of seismic hazards ( Lisle andSrivastava, 2004 ) and assessing the impact of reactivation on faultseal quality and uid migration ( Holdsworth et al., 1997 ). The maingaol of this study is to describe and quantify the style of inversion

    tectonics adjacent to the Hendijan e Nowrooz e Khafji Fault from thePersian Gulf Basin and northeastern margin of the Afro-Arabianplate ( Fig. 2). Due to the occurrence of large oil and gas resourcesof Iran and Saudi Arabia ( Fig. 3) in the vicinity of this fault, it hastremendous geological and industrial importance. The Hendijanhigh and the Burgan e Azadegan high with NE e SW and N e S trendsare the most prominent structural features in the Persian Gulf Ba-sin. The Hendijan and Burgan e Azadegan high are structural trendswere named based on elongated topographical feature in northpart of Persian Gulf (the geological map of National Iranian OilCompany in SW Iran at scale 1:10,00,000). The Hendijan high in SWIran hosts several Iranian and Saudi Arabian oil elds ( Abdollahie

    * Corresponding author.E-mail address: [email protected] (A. Faghih).

    Contents lists available at ScienceDirect

    Journal of African Earth Sciences

    j ou rna l homepage : www.e l sev i e r. com/ loca t e / j a f r ea r sc i

    http://dx.doi.org/10.1016/j.jafrearsci.2015.08.015

    1464-343X/

    2015 Elsevier Ltd. All rights reserved.

    Journal of African Earth Sciences 111 (2015) 399 e 408

    mailto:[email protected]://www.sciencedirect.com/science/journal/1464343Xhttp://www.elsevier.com/locate/jafrearscihttp://dx.doi.org/10.1016/j.jafrearsci.2015.08.015http://dx.doi.org/10.1016/j.jafrearsci.2015.08.015http://dx.doi.org/10.1016/j.jafrearsci.2015.08.015http://dx.doi.org/10.1016/j.jafrearsci.2015.08.015http://dx.doi.org/10.1016/j.jafrearsci.2015.08.015http://dx.doi.org/10.1016/j.jafrearsci.2015.08.015http://www.elsevier.com/locate/jafrearscihttp://www.sciencedirect.com/science/journal/1464343Xhttp://crossmark.crossref.org/dialog/?doi=10.1016/j.jafrearsci.2015.08.015&domain=pdfmailto:[email protected]
  • 7/25/2019 Multi-phase inversion tectonics related to the HendijaneNowroozeKhafji Fault activity, Zagros Mountains, SW Iran1-

    2/10

    Fard et al., 2006 ). The Hendijan Fault is one of the Important Lin-eaments that have Arabian tectonic trend and refer of a synclinestructure in Arabian plate ( Bahroudi and Talbot, 2003 ). Thesestructures extend to the N within the Zagros Mountains ( Fig. 2).Hence, we discuss the kinematic evolution of the Hendijan Faultbased on the quantitative interpretation of 3D seismic re ectionand well data. In this paper, we present new tectono-sedimentarydata based on the geological interpretation of seismic sections tosupport the occurrence of a multi-phase inversion tectonics relatedto the Hendijan e Nowrooz ee Khafji Fault activity within the ZagrosMountains, SW Iran. Based on the interpretation of growth strataand seismic stratigraphy, this paper describes the geometry stylesof inverted structures and reliably approximates the age of thebeginning of the positive and negative inversions in the PersianGulf Basin.

    2. Geological and tectonic settings

    The Zagros Mountains is one of the most active collisional oro-gens within the Alpine e Himalayan orogenic belt. Closure of theNeotethys Ocean which resulted from oblique convergence be-tween the Afro-Arabian plate and Central Iranian plate during theCenozoic led to formation of this belt ( Mouthereau et al., 2012 andreferences cited therein). Both the Zagros Range and its forelandbelong to the northeastern part of the Afro-Arabian Plate. The

    Persian Gulf Basin, a rich region of hydrocarbon resources, is a partof this lithospheric plate. This basin is surrounded by the ArabianShield in the west, Taurus range in the north and the Zagros rangein the east and northeast. The regional geology of the Persian Gulf Basin has been described and analyzed in detail because of the highhydrocarbon potential of this region (e.g. Stern, 1985; Beydoun,1991; Edgell, 1996; Alsharhan and Nairn, 1997; Bahroudi andTalbot, 2003 ). The Persian Gulf Basin was the site of ancient pas-sive margin sedimentation on the margin of Gondwana duringmost of the Phanerozoic, which faced toward the Neotethys in theMesozoic and toward the Paleotethys Ocean in the Paleozoic ( Alavi,1994; Bahroudi and Talbot, 2003; Abdollahie Fard et al., 2006 ).Main faults and folds in the northeast margin of Afro-Arabian platehave different trends such as N e S, NNWe SSE or NNEe SSW

    (Abdollahie Fard et al., 2006 ). Northe

    south-trending faults within

    the Arabian basement have been repeatedly reactivated during thePermo-Triassic opening of the Neo-Tethys and have exerted astrong control over the structure, thickness and facies of the coverrocks ( Zeigler, 2001 ). In the foreland part of the Zagros, north-e south trends are attributed to the reactivation of Pan-Africanbasement faults ( Edgell, 1991, 1996 ) during the Permo-Triassic(Alsharhan and Nairn, 1997 ) till Late Cretaceous ( Abdollahie Fardet al., 2006 and references cited therein). The ductile deep seatedPrecambrian Hormuz salt series, basement rocks movement andthe late Tertiary Zagros orogeny, are main factors that have in u-enced the formation of the structural anomalies in the Persian Gulf (Saadatinejad et al., 2012 ). The study area is located in the PersianGulf Basin along the northeastern margin of the Afro-Arabian plateadjacent to the Hendijan e Nowrooz e Khafji Fault. The names, li-thologies and ages of the stratigraphic formations and groups usedhere ( Fig. 4) are based on the classical stratigraphic chart for thisregion established by James and Wynd (1965) , correspond to thoseemployed by the National Iranian Oil Company in their regularexploration tasks synthesized in unpublished and con dentialannual reports. The ages of the various stratigraphic units wereestablished by determining foraminifera biozones and employingfossils such as sponge spicules, algae, echinoids, rudists, radiolarids,ostracods, gastropods, foraminifers, bryozoans, corals, stromatop-oroids, crinoids, tintinnids, Favreina, annelids and palynomorphscollected in con dential exploration wells. The Hendi- jan e Nowrooz e Khafji Fault with few tens of kilometers is located inthe southeastern-east part of Zagros range in Iran and the west of Persian Gulf ( Fig. 1).

    3. Methods

    In active tectonic settings, growing structures often control thedeposition process at different scales ( Verg es et al., 2002 ). Growthfault activity led to change in the sediment thickness across thefault (i.e. synsedimentary fault). This event causesthe differences inthickness of sediments both on the footwall and hanging wallduring time of fault activity. Fault throws subsequent to the sedi-mentation of each horizon and the fault movement history can bedetermined using these thickness changes. Analysis of these

    thickness changes along a fault is now feasible using high quality

    Fig. 1. Two Schematic diagrams of a classical inversion structure, interaction between pre-tectonic, syn-tectonic and post-tectonic is important. (a) The early normal fault is

    reactivated as reverse (positive inversion structure). (b) The early reverse fault is reactivated as normal (negative inversion structure).

    S. Kazem Shiroodi et al. / Journal of African Earth Sciences 111 (2015) 399 e 408400

  • 7/25/2019 Multi-phase inversion tectonics related to the HendijaneNowroozeKhafji Fault activity, Zagros Mountains, SW Iran1-

    3/10

    3D seismic data ( Childs et al., 2003 ). Displacement and the growthhistory of individual fault surfaces can be determined through thisanalysis. The analysis of syn-tectonic sedimentation is widely usedto determine the kinematics of growth-faults. (e.g. Castelltort et al.,2004a,b ). In order to highlight the activation interval of the Hen-dijan e Nowrooz e Khafji Fault, we used the T-Z plot methodintroduced by Pochat et al. (2004) . Using this method one canconstrain the slip history of growth faults. The application of this

    method is based on the

    ll-to-the-top

    sedimentation assumption

    which is considered that sedimentation always lls-up fault-generated topography. In faulted settings, lithological variationsdue to fault activity can be predicted on seismic pro le using thismethod. ( Castelltort et al., 2004a,b and references cited therein).Among the n stratigraphic horizons across a growth fault, theyounger horizon at i 0 is considered as the rst stratigraphicsurface without fault generated topography while the older i n isthe youngest pre-faulting horizon ( Fig. 5). The obtained data from

    analysis of thickness variations of growth strata may provide

    Fig. 2. Map of basement lineaments and oil- and gas elds in the Zagros Basin (compiled from Beydoun, 1991; Alsharhan and Nairn, 1997 ; Weijermars, 1998 ).

    S. Kazem Shiroodi et al. / Journal of African Earth Sciences 111 (2015) 399 e 408 401

  • 7/25/2019 Multi-phase inversion tectonics related to the HendijaneNowroozeKhafji Fault activity, Zagros Mountains, SW Iran1-

    4/10

    information about fault kinematics even in the absence of palaeo-bathymetry and the age of each horizon.

    Generally, throw variations represent a combination of displacement and topography across the growth fault ( Fig. 6).Therefore, the throw t i on the rst increment of sedimentation(interval [ i; i-1]) after time i ( Fig. 6) is expressed as:

    t i d i ei

    in which the vertical displacement on the fault between i and i-1 isd i, and the topography at time i is e i. It is assumed that faultdisplacement variations can cause thickness variations in thesedimentary layer in two sides of fault. Alteration in this type of plot indicating positive, null and negative slopes re ects variationsof thickening of the sedimentary strata towards the hanging wall(Baudon and Cartwright, 2008 and references cited therein).Thickening of strata towards the hanging wall resulted from faultactivity, whereas during periods of fault quiescence (null slopes)

    associated with non-thickened intervals. Negative slopes the T-Zplots may indicate fault linkage or fault inversion ( Castelltort et al.,2004b and references cited therein). Assuming ll-to-the-topmodel ( Fig. 7), the T-Z plot is useful to constrain the displacementhistory of growth faults ( Pochat et al., 2004 ).

    To construct a T-Z plot, the vertical throw T i related to eachhorizon is plotted against the depth Z i in the hanging-wall(Castelltort et al., 2004a ). The rst step for constructing this typeof plot consists of picking some markers on a seismic section thatare correlatable around a fault. Then, the thickness of intervalsbetween successive markers and the associated vertical throwacross the fault related to each horizon are measured and plotted.Starting from the shallowest unfaulted interval, the throw relatedto each horizon (Y-axis) and their depth (X-axis) down the fault are

    plotted against each other. In this case, evolution of fault growth

    and associated sedimentological patterns can affect quantitativelyslope variations on a T e Z plot. Therefore, this type of analysis be-comes a powerful tool to unravel main lithological alterations onseismic sections in faulted domains. This research carried out basedon the mapping and interpretation of a net of high quality seismicsections acquired in two orthogonal sets: one set strikes NNE e SSW(referred to as N e S below) and the other strikes WNW e ESE(referred to as W e E below). The Schlumberger Petrel software wasused for most of interpretation. Sixteen different horizons werepicked and interpreted in each seismic section. Sixteen differenthorizons were picked and interpreted in each seismic section(Fig. 8).

    4. Results

    4.1. Analysis of throw versus time

    The long-term evolution of the fault displacement rate duringtime was analyzed in order to determine the major factor whichcontrols short-term thickness variations in growth strata (i.e. faultmovement or sedimentation dynamics). This research focuses onthe study of variation of the vertical throw of each timeline duringtime ( Fig. 9). These particular stratigraphic surfaces can beconsidered as representing a nearly instantaneous event at thescale of a sedimentary basin or such km-scale structures ( Mitchumand Van Wagoner, 1991 ). These time lines are also not usuallyrelated to erosive events which may preclude the mapping of thetrue displacement of fault ( Childs et al., 1993 ). Therefore, themeasured vertical throw related to time line associated the footwalland the hanging wall is correlatable with the true faultdisplacement.

    Changing slope of the curve is interpreted as re ecting a change

    Fig. 3. Prominent basement-rooted lineaments in the Arabian continental crust. As can be seen in Map, Hendijan e Nowrooz e Khafji fault has Pan-African trend ( Alavi, 2007 ).

    S. Kazem Shiroodi et al. / Journal of African Earth Sciences 111 (2015) 399 e 408402

  • 7/25/2019 Multi-phase inversion tectonics related to the HendijaneNowroozeKhafji Fault activity, Zagros Mountains, SW Iran1-

    5/10

    of fault mechanism during the time ( Pochat and Van Den Driessche,2007 and references cited therein). Unthickened layers on bothsides of the fault are shown by zero-slope interval, thus the faulthas been inactive and a positive slope corresponds to a thinner

    layer and reverses dip slip mechanism of the fault and

    nally,

    negative slope shows thicker deposits in the footwall and a normaldip slip mechanism.

    The analysis of our data reveals that the vertical throw of thefault encompasses a long-term, progressive diminution with time

    of the fault scarp from 607 m to 30 m, over 240 million years

    Fig. 4. Simpli ed stratigraphy of the area depicting the major lithological successions and main tectonic events in the Persian Gulf. The stratigraphic column is modi ed fromAbdollahie Fard et al. (2006), Alavi (2007) and Soleimany et al. (2011) , based on well data. Mechano-stratigraphy, detachments and in uence on the hydrocarbon system areoutlined.

    Fig. 5. Principle of T e Z plot construction. (A) Example of correlated stratigraphic markers across a normal growth fault. (B) Corresponding T e Z plot (Castelltort et al., 2004a ).

    S. Kazem Shiroodi et al. / Journal of African Earth Sciences 111 (2015) 399 e 408 403

  • 7/25/2019 Multi-phase inversion tectonics related to the HendijaneNowroozeKhafji Fault activity, Zagros Mountains, SW Iran1-

    6/10

  • 7/25/2019 Multi-phase inversion tectonics related to the HendijaneNowroozeKhafji Fault activity, Zagros Mountains, SW Iran1-

    7/10

    (Cooper and Williams, 1989 ). The stresses acting along the platemargins can be transmitted far into the foreland resulting in thereactivation of pre-existing normal faults ( Ziegler et al., 1995 ).

    Moreover, changes from early extension to later contraction in theforeland domains which previously affected by normal faultinghave promoted positive tectonic inversion ( Butler et al., 2006 andreferences cited therein). Resulting changes from early contractionto later extension have promoted negative tectonic inversion(Pasculli et al., 2008 ).

    Sherkati and Letouzey (2004) presented evidence for the effectsof reactivation of N e S basement faults (e.g. the

    Hendijan e Nowrooz e Khafji Fault) on basin architecture and onlateral changes of facies and formation thickness in the Izeh zoneand Dezful embayment. The Hendijan e Nowrooz e Khafji Fault is

    collection of a number of vertical strike-slip faults with dip-slipcomponents that were reactivated under regional tectonic condi-tions during different time periods. Observing seismic cross line of Hendijan e Nowrooz e Khafji Fault in Persian Gulf reveals changes inthickness of syn-tectonic deposition above fault zones and on bothsides of the fault zone. Observation of stratal on-lap and/or off-lappattern in seismic re ector in some strata with different ages in thestudy area reveal that this thickness change is not related to the

    Fig. 9. Signi cance of T-Z plot slope variation according Fill-to-the-top model of Castelltort et al. (2004a,b) . Each slope variation characterizes the ratio between fault displacementrate and sedimentation rate, a zero-slope interval is symptomatic of fault inactivity, a positive-slope or negative once interval are symptomatic of fault activity ( Pochat et al., 2009 ).

    Table 1Different phase of fault activity determined based on quantitative interpretation of seismic data along the Hendijan e Nowrooz e Khafji Fault.

    Phase Start of the phase (Ma) End of the phase (Ma) Duration time (Ma) Rate (M/Ma) Function Thickness(TWT)

    1 st 11.62 15.97 4.35 2.60 Reverse 216.782nd 15.97 20.44 4.47 5.88 Normal 57.083 rd 20.44 145 124.56 2.73 Reverse 1148.224 th 145 152 7 22.24 Normal 77.585 th 152 208.5 56.5 6.97 Reverse 717.226 th 208.5 252.17 43.67 8.12 Normal 707.56

    Fig.10. Results of T-Z plot measurements along the 16 layers. Throw is reported on the Y-axis in milliseconds, thickness of each horizon (Z) is reported on the X-axis in milliseconds.

    Evolution of the vertical throw of timeline surfaces at during time. When the slop of graph change, means that altered in fault mechanism.

    S. Kazem Shiroodi et al. / Journal of African Earth Sciences 111 (2015) 399 e 408 405

  • 7/25/2019 Multi-phase inversion tectonics related to the HendijaneNowroozeKhafji Fault activity, Zagros Mountains, SW Iran1-

    8/10

    primary basin oor roughness. This represents a change in the dip-slip component of fault zone due to a changing tectonic regime inthe study area as follows.

    1- When we carefully scrutinized sedimentary layers depositedduring the Scythian to Tatarian ( Fig. 11 a), Pliensbachian to Kim-meridgian ( Fig. 11 c) and Priabonian to Burdigalian ( Fig. 11 e); wefound that the fault had a normal dip-slip component. The thick-ness of sediment in the west side of the fault is greater than that of east side. On-lap features in the strata explain that the sedimentarybasin developed on the fault zone had subsidence both toward theeast and west resulting in a normal fault component of dip-slipactivity.

    2- From Norian to Pliensbachian ( Fig. 11 b) and Kimmeridgian toPriabonian ( Fig. 11 d) and Burdigalian to Serravallian ( Fig. 11 f), thedeposition level of the fault zone was signi cantly reducedcompared to the east and west sides due to reverse dip-slipmovement along the fault. Therefore, the fault zone was seatedhigher than its sides. This has resulted in a lower rate of sedi-mentation in the fault zone or the sediments have been exposed toerosion as a result of fault uplifting. This is visible on high-resolution seismic images and it can be seen in the large scale of growth strata on both sides of the fault zone. Due to the normalmotion during Scythian to Tatarian and reverse motion duringNorian to Kimmeridgian, negative inversion structures formed onthe fault zone during these times. During orogenic evolution of collided passive continental margins of the Afro-Arabian continent,basement faults are reactivated. The Zagros Mountains resultedfrom the ongoing collision of the Afro-Arabian plate with theCentral Iranian continental blocks (e.g. Stocklin, 1968; Jackson andMckenzie, 1984 ).

    In order to determine the geometric and kinematic evolution of the Zagros basin and the trapping of hydrocarbons, it is necessary todistinguish its pre and post-collisional structures. The ArabianShield displays two sets of Pan-African tectonic fabrics ( Stern,1985;Kusky and Matsah, 2003; Jackson et al., 2013 ) formed between 900Ma and 600 Ma ago ( Stacey et al., 1984 ): one set dips steeply with a

    Ne S trend and the other has a NW e SE trend and shows left-lateralstrike-slip displacement ( Stern,1985 ). The Phanerozoic cover of theArabian Platform is affected by broad anticlines and narrowersynclines ( Beydoun,1991 ) mostly trending N e S. A number of termshave been used for such structures ( Bahroudi and Talbot, 2003 ),including lineaments and blind basement faults ( Berberian, 1995 ).These structures are attributed to the reactivation of one of the twosets of Pan-African basement structures ( Edgell, 1991 ). Most havebeen active since the Late Paleozoic ( Alsharhan and Nairn, 1997 ;http://www.hindawi.com/68351920/ Abdeen et al., 2008 ; Tairouet al., 2012 ). Old Ne S basement faults have been repeatedly reac-tivated since the Permo-Triassic opening of Neo-Tethys which hasexerted a strong control over the thickness and facies of Mesozoicsediment ( Zeigler, 2001; Bahroudi and Talbot, 2003 ). The reac-

    tivation of N e S basement fault (e.g.Hendijan e Nowrooz e KhafjiFault) affected basin architecture and created lateral changes in thefacies and thickness of formations in the Izeh zone and DezfulEmbayment as observed on seismic sections ( Tavakoli Shirazi,2012; Sherkati and Letouzey., 2004; Abdollahie Fard et al., 2006;Soleimany and S abat., 2010 ). According to Fig. 2, the T-Z plot inTatarian to Norian has a positive slope that represents normal dip-slip along the fault at this time. This behavior of the fault isconsistent with the regional tectonic regimes. The opening of theNW e SE trending Neo-Tethys Ocean in the Permo-Trias separatedthe Arabian plate to the southwest from the Iranian plate to thenortheast and the sedimentary cover rocks which were later tobecome part of the Zagros deformation belt ( Berberian and King,1981; Sengor, 1990 ). Thus, when the Neo-Tethys Ocean has being

    opened, the fault acted with a normal dip-slip component.

    In the Norian stage, slopes of graphs in the T e Z plot change topositive and thickness of sediment above the fault zone is less thanits two sides which indicates a reverse component and upliftmovement along the fault. In this time, the Hercynian Ocean was tothe north of Iran and the northward subduction and closure of thethis Ocean happened at about 220 Ma in the Triassic period(Berberian and King, 1981 ). We suggest that as a result of closingthe Hercynian Ocean at this time suddenly the kinematics of theHendijan e Nowrooz e Khafji Fault changed. Prior to the middleTriassic orogenic event(210 Ma), late Paleozoic ophiolite complexeswere emplaced in the north, presumably at the time of the collisionof the continental fragments with Asia ( Shafaii Moghadam et al.,2014; Shafaii Moghadam and Stern, 2015 ). In the Kimmeridgianstage, the fault zone changed in its function, as a result, an exten-sional tectonic regime caused pelagic sedimentation of upper Tri-assic e Jurassic period along the active central Iranian and thepassive Zagros continental margins, providing the rst sedimentaryevidence for the appearance of a true oceanic environment ( ShafaiiMoghadam et al., 2015 ). Therefore, we notice an increase in thethickness of the sediments in the fault zone at this time whichre ects tension function and normal dip-slip component of thefault zone at this time.

    A compressional event occurred in Late Jurassic-Early Creta-ceous (140 Ma). At the middle of the period when the High-ZagrosAlpine Ocean supposed to have been closing ( Alavi, 2007 ) asshownin T-Z plot from Portlandian to Albian curve, the slope is almostuniform and the fault zone had a reverse dip-slip componentconsistent with a contractional tectonic regime in the region duringthat time. In the Turonian, the thickness of sediments was sharplyreduced along the fault zone( Fig. 8). During the latestTuronian (~90Ma) stacked thrust sheets, composed of oceanic crust and uppermantle rocks (ophiolites), were obducted onto the northeasternAfro-Arabian passive continental margin ( Alavi, 2004, 2007 ). Thus,the result of an extremely functional reverse dip-slip of the faultzone was result of Alpine Ocean (Neo-Tethys) ophiolite obductionduring Turonian. The latest Turonian regional unconformity, which

    marks a drastic change from a continental shelf tectono-sedimentary setting to a relatively narrow and elongated profore-land basin, records the initiation of this obduction event ( Alavi,2004 ). So function of the erosion phase and ophiolite obductioncause a sudden change in the slope of T-Z plot in Turonian.

    The Middle Alpine orogenic events ended at about 20 Ma(Berberian and King, 1981; Alavi, 2004, 2007 ). Thus the fault zoneacted with a reverse dip-slip component from Turonian to Pria-bonian ( Fig. 8). After the collision, a relative calm prevailed in theregion as re ectedby normal dip-slip displacements representing aperiod of tectonic relaxation after beginning of collision from theAquitanian to Burdigalian. As a result with opening of the Red Seaand pushing the Arabian plate toward Asia, compressional regimeagain dominated in the region and the fault zone has reverse dip-

    slip in Serravallian( Fig. 8).

    6. Conclusion

    Kinematic Analysis of the Hendijan e Nowrooz_Khafji Faultbased on T-Z plot method provided a long-term evolution charac-terized by altered rate of the fault continuous slip during 240.55millions of years. Based on the detailed interpretation of a highquality 3D seismic re ection sections, the throw versus timesmeasurements reveal six phases of the fault activity with differentrate of throw in each phase. Two distinct mode of reactivation (i.e.positive and negative inversion) are recognized which give insightsinto the mechanism and kinematics of the fault reactivation. Thestructural style of the study area during inversion realm was ulti-

    mately controlled by the motion of the Afro-Arabian plate relative

    S. Kazem Shiroodi et al. / Journal of African Earth Sciences 111 (2015) 399 e 408406

    http://www.hindawi.com/68351920/http://www.hindawi.com/68351920/
  • 7/25/2019 Multi-phase inversion tectonics related to the HendijaneNowroozeKhafji Fault activity, Zagros Mountains, SW Iran1-

    9/10

    Fig. 11. High-resolution record of tectonic and sedimentary processes in growth strata based of Hendijan e Khafji fault activity. In (a), (c) and (e) we can see increase of strata

    thickness in fault zone related to one or both sites its and on lap toward those, in these stages fault had normal dip-slip component and in (b), (d) and (f) we see decrease of stratathickness in fault zone related to one or both sites its and on lap toward fault zone That because of reverse dip-slip component in these stages.

    S. Kazem Shiroodi et al. / Journal of African Earth Sciences 111 (2015) 399 e 408 407

  • 7/25/2019 Multi-phase inversion tectonics related to the HendijaneNowroozeKhafji Fault activity, Zagros Mountains, SW Iran1-

    10/10

    to the Iranian plate.

    Acknowledgments

    The authors would like to thank the editorProfessor Eriksson forhis editorial authority. We gratefully acknowledge constructivereviews by an anonymous reviewer, which helped to considerablyimprove the scienti c content and presentation of the manuscript.Important comments by Professor Timothy Kusky improved thepresentation of the paper. Important supports by the researchcouncil of Ferdowsi University of Mashhad and Shiraz Universityare gratefully acknowledged.

    References

    Abdeen, M.M., Sadek, M.F., Greiling, R.O., 2008. Thrusting and multiple folding inthe neoproterozoic basement of Wadi Hodein area, south Eastern Desert of Egypt. J. Afr. Earth Sci. 52, 21 e 29 .

    Abdollahie Fard, I., Braathen, A., Mokhtari, M., Alavi, S.A., 2006. Interaction of theZagros Fold e Thrust Belt and the Arabian-type, deep-seated folds in the AbadanPlain and the Dezful Embayment, SW Iran. Pet. Geosci. 12, 347 e 362 .

    Alavi, M., 1994. Tectonics of the Zagros orogenic belt of Iran: new data and in-terpretations. Tectonophysics 229, 211 e 238 .

    Alavi, M., 2004. Regional stratigraphy of the Zagros Fold e Thrust Belt of Iran and its

    proforeland evolution. Am. J. Sci. 304, 1 e 20 .Alavi, M., 2007. Structures of the Zagros fold-thrust belt in Iran. Am. J. Sci. 307 (9),1064 e 1095 .

    Alsharhan, A.S., Nairn, A.E.M., 1997. Sedimentary Basins and Petroleum Geology of the Middle East. Elsevier, Amsterdam, p. 394 .

    Bahroudi, A., Talbot, C.J., 2003. The con guration of the basement beneath theZagros basin. J. Pet. Geol. 26, 257 e 282 .

    Baudon, C., Cartwright, J., 2008. The kinematics of reactivation of normal faultsusing high resolution throw mapping. J. Struct. Geol. 30 (8), 1072 e 1084 .

    Berberian, M., 1995. Master blind thrust faults hidden under the Zagros folds: activebasement tectonics and surface morphotectonics. Tectonophysics 241,193 e 224 .

    Berberian, M., King, G.C.P., 1981. Towards a paleogeography and tectonic evolutionof Iran. Can. J. Earth Sci. 18 .

    Beydoun, Z.R., 1991. Arabian plate hydrocarbon geology and potential e a platetectonic approach. Am. Assoc. Pet. Geol. 33, 77 .

    Biji, S., 2006. An example of inversion in brittle a shear zone. J. Struct. Geol. 28,431 e 443 .

    Butler, R.W.H., Tavarnelli, E., Grasso, M., 2006. Structural inheritance in mountainbelts: an Alpine e Apennine perspective. J. Struct. Geol. 28, 1893 e 1908 .

    Castelltort, S., Pochat, S., Van Den Driessche, J., 2004a. How reliable are growthstrata in interpreting short-term (10 s to 100 s ka) growth structures kine-matics? Comptes Rendus Geosci. 336 (2), 151 e 158 .

    Castelltort, S., Pochat, S., Van Den Driessche, J., 2004b. Using T e Z plots as agraphical method to infer lithological variations from growth strata. J. Struct.Geol. 26 (8), 1425 e 1432 .

    Childs, C., Easton, S.J., Vendeville, B.C., Jackson, M.P.A., Lin, S.T., Walsh, J.J.,Watterson, J., 1993. Kinematic analysis of faults in a physical model of growthfaulting above a viscous salt analogue. Tectonophysics 228, 313 e 329 .

    Childs, C., Nicol, A., Walsh, J.J., Watterson, J., 2003. The growth and propagation of synsedimentary faults. J. Struct. Geol. 25 (4), 633 e 648 .

    Cooper, M.A., Williams, G.D., 1989. Inversion structures e recognition and charac-teristics. In: Cooper, M.A., Williams, G.D. (Eds.), Inversion Tectonics, 44.Geological Society of London, Special Publication, pp. 341 e 347 .

    Coward, M.P., 1994. Continental collision. In: Hancock, P.L. (Ed.), Inversion Tectonics.Pergamon Press, New York, pp. 289 e 304 .

    Edgell, H.S., 1991. Proterozoic salt basins of the Persian Gulf area and their role inhydrocarbon generation. Precambrian Res. 54, 1 e 14 .

    Edgell, H.S., 1996. Salt tectonism in the persian gulf. In: Alsop, G.I., Blundell, D.J.,Davison, I. (Eds.), Salt Tectonics. Geological Society of London Special Publica-tion, pp. 129 e 151. No. 100 .

    Glennie, K.W., Boegner, P., 1981. Sole pit inversion tectonics. In: Illing, L.V.,Hobson, G.P. (Eds.), Petroleum Geology of the Continental Shelf of NorthwestEurope. Institute of Petroleum, London, pp. 110 e 120 .

    Holdsworth, R.E., Butler, C.A., Roberts, A.M., 1997. The recognition of reactivationduring continental deformation. J. Geol. Soc. Lond. 154, 73 e 78 .

    Jackson, C.A., Chua, S.T., Bell, R.E., Magee, C., 2013. Structural style and early stagegrowth of inversion structures: 3D seismic insights from the Egersund Basin,offshore Norway. J. Struct. Geol. 46, 167 e 185 .

    Jackson, J.A., Mckenzie, D.P., 1984. Active tectonics of Alpine-Himalayan belt be-tween western Turkey and Pakistan. Geophys.J. Roy. Astr.Soc. 77, 185 e 264 .

    James, G.A., Wynd, J.G., 1965. Stratigraphic nomenclature of Iranian oil consortiumagreement area. AAPG Bull. 49, 2162 e 2245 .

    Kusky, T.M., Matsah, M.I., 2003. Neoproterozoic Dextral Faulting on the Najd FaultSystem, Saudi Arabia, Preceded Sinistral Faulting and Escape Tectonics Relativeto Closure of the Mozambique Ocean. Geological Society of London, SpecialPublication, pp. 327 e 361, 206 .

    Lisle, R.J., Srivastava, D.C., 2004. Test of the frictional reactivation theory for faultsand validity of fault-slip analysis. Geology 32 (7), 569 e 572 .

    Mitchum, R.M., Van Wagoner, J.C., 1991. High-frequency sequences and theirstacking patterns sequence stratigraphic evidence of high-frequency eustatic

    cycles. Sediment. Geol. 70 (2 e 4), 131 e 160 .Mouthereau, F., Lacombe, O., Verg es, J., 2012. Building the Zagros collisional orogen:

    timing, strain distribution and the dynamics of Arabia/Eurasia plate conver-gence. Tectonophysics 532 e 535, 27 e 60 .

    Pasculli, A., Domenica, A.D., Calamita, F., 2008. A FEM numerical modelling of thepolyphase inversion tectonics in Central Apennines (Italy). Rend. Online Soc.Geol. It. 2, 1 e 3.

    Pochat, S., Castelltort, S., Choblet, G., Driessche, J.v., 2009. High-resolution record of tectonic and sedimentary processes in growth strata. Mar. Petrol. Geol. 26,1350 e 1364 .

    Pochat, S., Castelltort, S., Van Den Driessche, J., Besnard, K., Gumiaux, C., 2004.A simple method of determining sand/shale ratios from seismic analysis of growth faults: an example from upper Oligocene to lower Miocene Niger Deltadeposits. Am. Assoc. Pet. Geol. Bull. 88, 1357 e 1367 .

    Pochat, S., Van Den Driessche, J., 2007. Impact of synsedimentary metre-scalenormal fault scarps on sediment gravity ow dynamics: an example from theGresd Annot formation, SE France. Sediment. Geol. 202 (4), 796 e 820 .

    Saadatinejad, M.R., Javaherian, A., Sarkarinejad, K., 2012. Investigation of the variousspectral decomposition methods to detect and explore hidden complex reef reservoir structures and their hydrocarbon potentials in northwestern part of the Persian Gulf. Energy Explor. Exploit. 30 (6), 867 e 888 .

    Sengor, M.A.C., 1990. A new model for the late Paleozoic-Mesozoic tectonic evo-lution of Iran and implications for Oman. In: Robertson, A.H.F., Searle, M.P.,Ries, A.C. (Eds.), The Geology and Tectonics of the Oman Region, 49. SpecialPublications Geological Society of London, pp. 797 e 831 .

    Sherkati, S., Letouzey, J., 2004. Variation of structural style and basin evolution inthe central Zagros (Izeh zone and Dezful Embayment), Iran. Mar. Pet. Geol. 21(5), 535 e 554 .

    Shafaii Moghadam, H., Khademi, M., Hu, Z., Stern, R.J., Santos, J.F., Wu, Y., 2015.Cadomian (Ediacaran e Cambrian) arc magmatism in the Chah Jam Biarjmandmetamorphic complex (Iran): magmatism along the northern active margin of Gondwana. Gondwana Res. 27, 439 e 452 .

    Shafaii Moghadam, H., Zaki Khedr, M., Chiaradia, M., Stern, R.J., Bakhshizad, F.,Arai, S., Ottley, C.J., Tamura, A., 2014. Supra-subduction zone magmatism of theNeyriz ophiolite, Iran: constraints from geochemistry and Sr e Nd e Pb isotopes.Int. Geol. Rev. 56 (11), 1395 e 1412 .

    Shafaii Moghadam, H., Stern, R.J., 2015. Ophiolites of Iran:Keys to understanding the

    tectonic evolution of SW Asia: (I)Paleozoic ophiolites. J. Asian Earth Sci. 91,19e 38 .Soleimany, B., Poblet, J., Bulnes, M., Sabat, F., 2011. Fold ampli cation history

    unravelled from growth strata: the Dorood anticline, NW Persian Gulf. J. Geol.Soc. 168, 219 e 234 .

    Soleimany, B., S abat, F., 2010. Style and age of deformation in the Northwest PersianGulf. Pet. Geosci. 15, 1 e 10.

    Stern, R.J., 1985. The Najd fault system, Saudi Arabia and Egypt: a late Precambrianrift-related transform system. Tectonics 4, 497 e 511 .

    Stocklin, J., 1968. Structural history and tectonics of Iran: a review. Am. Assoc. Pet.Geol. Bull. 52, 1229 e 1258 .

    Stacey, J.S., Stoesser, D.B., Greenwood, W.R., Fisher, L.B., 1984. U-Pb geochronologyand geological evaluation of the Halaban Amar region of the Eastern ArabianShield, Kingdom of Saudi Arabia. J. Geol. Soc. Lond. 141, 1043 e 1055 .

    Tavakoli Shirazi, S., 2012. The Geology of the High Zagros (Iran): Tectonic andThermal Evolution during the Paleozoic, p. 250. Unpublished PhD thesis .

    Tairou, M.s., Affaton, P., Anum, S., Fleury, T.J., 2012. Pan-African Paleostresses andReactivation of the Eburnean Basement Complex in Southeast Ghana (WestAfrica). J. Geol. Res. http://dx.doi.org/10.1155/2012/938927 .

    Verg es, J., Marzob, M., Mu~

    noz, J.A., 2002. Growth strata in foreland settings. Sedi-ment. Geol. 146, 1 e 9.

    Weijermars, R., 1998. Plio-Quaternary movement of the East Arabian Block. Geo-Arabia 3, 509 e 540 .

    Williams, G.D., Powell, C.M., Cooper, M.A., 1989. Geometry and kinematics of inversion tectonics. In: Cooper, M.A., Williams, G.D. (Eds.), Inversion Tectonics,44. Geological Society of London, Special Publication, pp. 3 e 15 .

    Zeigler, M.A., 2001. Late Permian to Holocene paleofacies evolution of the ArabianPlate and its hydrocarbon occurrences. GeoArabia 6, 445 e 504 .

    Ziegler, P.A., Cloetingh, S., van Wees, J.-D., 1995. Dynamics of intra-plate compres-sional deformation: the alpine foreland and other examples. Tectonophysics252, 7 e 59 .

    S. Kazem Shiroodi et al. / Journal of African Earth Sciences 111 (2015) 399 e 408408

    http://refhub.elsevier.com/S1464-343X(15)30048-0/sref1http://refhub.elsevier.com/S1464-343X(15)30048-0/sref1http://refhub.elsevier.com/S1464-343X(15)30048-0/sref1http://refhub.elsevier.com/S1464-343X(15)30048-0/sref1http://refhub.elsevier.com/S1464-343X(15)30048-0/sref2http://refhub.elsevier.com/S1464-343X(15)30048-0/sref2http://refhub.elsevier.com/S1464-343X(15)30048-0/sref2http://refhub.elsevier.com/S1464-343X(15)30048-0/sref2http://refhub.elsevier.com/S1464-343X(15)30048-0/sref2http://refhub.elsevier.com/S1464-343X(15)30048-0/sref3http://refhub.elsevier.com/S1464-343X(15)30048-0/sref3http://refhub.elsevier.com/S1464-343X(15)30048-0/sref3http://refhub.elsevier.com/S1464-343X(15)30048-0/sref4http://refhub.elsevier.com/S1464-343X(15)30048-0/sref4http://refhub.elsevier.com/S1464-343X(15)30048-0/sref4http://refhub.elsevier.com/S1464-343X(15)30048-0/sref4http://refhub.elsevier.com/S1464-343X(15)30048-0/sref5http://refhub.elsevier.com/S1464-343X(15)30048-0/sref5http://refhub.elsevier.com/S1464-343X(15)30048-0/sref5http://refhub.elsevier.com/S1464-343X(15)30048-0/sref5http://refhub.elsevier.com/S1464-343X(15)30048-0/sref6http://refhub.elsevier.com/S1464-343X(15)30048-0/sref6http://refhub.elsevier.com/S1464-343X(15)30048-0/sref7http://refhub.elsevier.com/S1464-343X(15)30048-0/sref7http://refhub.elsevier.com/S1464-343X(15)30048-0/sref7http://refhub.elsevier.com/S1464-343X(15)30048-0/sref7http://refhub.elsevier.com/S1464-343X(15)30048-0/sref7http://refhub.elsevier.com/S1464-343X(15)30048-0/sref8http://refhub.elsevier.com/S1464-343X(15)30048-0/sref8http://refhub.elsevier.com/S1464-343X(15)30048-0/sref8http://refhub.elsevier.com/S1464-343X(15)30048-0/sref9http://refhub.elsevier.com/S1464-343X(15)30048-0/sref9http://refhub.elsevier.com/S1464-343X(15)30048-0/sref9http://refhub.elsevier.com/S1464-343X(15)30048-0/sref10http://refhub.elsevier.com/S1464-343X(15)30048-0/sref10http://refhub.elsevier.com/S1464-343X(15)30048-0/sref11http://refhub.elsevier.com/S1464-343X(15)30048-0/sref11http://refhub.elsevier.com/S1464-343X(15)30048-0/sref11http://refhub.elsevier.com/S1464-343X(15)30048-0/sref11http://refhub.elsevier.com/S1464-343X(15)30048-0/sref12http://refhub.elsevier.com/S1464-343X(15)30048-0/sref12http://refhub.elsevier.com/S1464-343X(15)30048-0/sref12http://refhub.elsevier.com/S1464-343X(15)30048-0/sref13http://refhub.elsevier.com/S1464-343X(15)30048-0/sref13http://refhub.elsevier.com/S1464-343X(15)30048-0/sref13http://refhub.elsevier.com/S1464-343X(15)30048-0/sref13http://refhub.elsevier.com/S1464-343X(15)30048-0/sref14http://refhub.elsevier.com/S1464-343X(15)30048-0/sref14http://refhub.elsevier.com/S1464-343X(15)30048-0/sref14http://refhub.elsevier.com/S1464-343X(15)30048-0/sref14http://refhub.elsevier.com/S1464-343X(15)30048-0/sref15http://refhub.elsevier.com/S1464-343X(15)30048-0/sref15http://refhub.elsevier.com/S1464-343X(15)30048-0/sref15http://refhub.elsevier.com/S1464-343X(15)30048-0/sref15http://refhub.elsevier.com/S1464-343X(15)30048-0/sref15http://refhub.elsevier.com/S1464-343X(15)30048-0/sref15http://refhub.elsevier.com/S1464-343X(15)30048-0/sref16http://refhub.elsevier.com/S1464-343X(15)30048-0/sref16http://refhub.elsevier.com/S1464-343X(15)30048-0/sref16http://refhub.elsevier.com/S1464-343X(15)30048-0/sref16http://refhub.elsevier.com/S1464-343X(15)30048-0/sref16http://refhub.elsevier.com/S1464-343X(15)30048-0/sref17http://refhub.elsevier.com/S1464-343X(15)30048-0/sref17http://refhub.elsevier.com/S1464-343X(15)30048-0/sref17http://refhub.elsevier.com/S1464-343X(15)30048-0/sref18http://refhub.elsevier.com/S1464-343X(15)30048-0/sref18http://refhub.elsevier.com/S1464-343X(15)30048-0/sref18http://refhub.elsevier.com/S1464-343X(15)30048-0/sref18http://refhub.elsevier.com/S1464-343X(15)30048-0/sref18http://refhub.elsevier.com/S1464-343X(15)30048-0/sref18http://refhub.elsevier.com/S1464-343X(15)30048-0/sref19http://refhub.elsevier.com/S1464-343X(15)30048-0/sref19http://refhub.elsevier.com/S1464-343X(15)30048-0/sref19http://refhub.elsevier.com/S1464-343X(15)30048-0/sref20http://refhub.elsevier.com/S1464-343X(15)30048-0/sref20http://refhub.elsevier.com/S1464-343X(15)30048-0/sref20http://refhub.elsevier.com/S1464-343X(15)30048-0/sref20http://refhub.elsevier.com/S1464-343X(15)30048-0/sref21http://refhub.elsevier.com/S1464-343X(15)30048-0/sref21http://refhub.elsevier.com/S1464-343X(15)30048-0/sref21http://refhub.elsevier.com/S1464-343X(15)30048-0/sref21http://refhub.elsevier.com/S1464-343X(15)30048-0/sref21http://refhub.elsevier.com/S1464-343X(15)30048-0/sref22http://refhub.elsevier.com/S1464-343X(15)30048-0/sref22http://refhub.elsevier.com/S1464-343X(15)30048-0/sref22http://refhub.elsevier.com/S1464-343X(15)30048-0/sref22http://refhub.elsevier.com/S1464-343X(15)30048-0/sref23http://refhub.elsevier.com/S1464-343X(15)30048-0/sref23http://refhub.elsevier.com/S1464-343X(15)30048-0/sref23http://refhub.elsevier.com/S1464-343X(15)30048-0/sref24http://refhub.elsevier.com/S1464-343X(15)30048-0/sref24http://refhub.elsevier.com/S1464-343X(15)30048-0/sref24http://refhub.elsevier.com/S1464-343X(15)30048-0/sref24http://refhub.elsevier.com/S1464-343X(15)30048-0/sref25http://refhub.elsevier.com/S1464-343X(15)30048-0/sref25http://refhub.elsevier.com/S1464-343X(15)30048-0/sref25http://refhub.elsevier.com/S1464-343X(15)30048-0/sref26http://refhub.elsevier.com/S1464-343X(15)30048-0/sref26http://refhub.elsevier.com/S1464-343X(15)30048-0/sref26http://refhub.elsevier.com/S1464-343X(15)30048-0/sref27http://refhub.elsevier.com/S1464-343X(15)30048-0/sref27http://refhub.elsevier.com/S1464-343X(15)30048-0/sref27http://refhub.elsevier.com/S1464-343X(15)30048-0/sref27http://refhub.elsevier.com/S1464-343X(15)30048-0/sref27http://refhub.elsevier.com/S1464-343X(15)30048-0/sref28http://refhub.elsevier.com/S1464-343X(15)30048-0/sref28http://refhub.elsevier.com/S1464-343X(15)30048-0/sref28http://refhub.elsevier.com/S1464-343X(15)30048-0/sref29http://refhub.elsevier.com/S1464-343X(15)30048-0/sref29http://refhub.elsevier.com/S1464-343X(15)30048-0/sref29http://refhub.elsevier.com/S1464-343X(15)30048-0/sref29http://refhub.elsevier.com/S1464-343X(15)30048-0/sref29http://refhub.elsevier.com/S1464-343X(15)30048-0/sref30http://refhub.elsevier.com/S1464-343X(15)30048-0/sref30http://refhub.elsevier.com/S1464-343X(15)30048-0/sref30http://refhub.elsevier.com/S1464-343X(15)30048-0/sref30http://refhub.elsevier.com/S1464-343X(15)30048-0/sref30http://refhub.elsevier.com/S1464-343X(15)30048-0/sref30http://refhub.elsevier.com/S1464-343X(15)30048-0/sref30http://refhub.elsevier.com/S1464-343X(15)30048-0/sref31http://refhub.elsevier.com/S1464-343X(15)30048-0/sref31http://refhub.elsevier.com/S1464-343X(15)30048-0/sref31http://refhub.elsevier.com/S1464-343X(15)30048-0/sref31http://refhub.elsevier.com/S1464-343X(15)30048-0/sref49http://refhub.elsevier.com/S1464-343X(15)30048-0/sref49http://refhub.elsevier.com/S1464-343X(15)30048-0/sref49http://refhub.elsevier.com/S1464-343X(15)30048-0/sref49http://refhub.elsevier.com/S1464-343X(15)30048-0/sref49http://refhub.elsevier.com/S1464-343X(15)30048-0/sref32http://refhub.elsevier.com/S1464-343X(15)30048-0/sref32http://refhub.elsevier.com/S1464-343X(15)30048-0/sref32http://refhub.elsevier.com/S1464-343X(15)30048-0/sref32http://refhub.elsevier.com/S1464-343X(15)30048-0/sref32http://refhub.elsevier.com/S1464-343X(15)30048-0/sref32http://refhub.elsevier.com/S1464-343X(15)30048-0/sref33http://refhub.elsevier.com/S1464-343X(15)30048-0/sref33http://refhub.elsevier.com/S1464-343X(15)30048-0/sref33http://refhub.elsevier.com/S1464-343X(15)30048-0/sref33http://refhub.elsevier.com/S1464-343X(15)30048-0/sref33http://refhub.elsevier.com/S1464-343X(15)30048-0/sref33http://refhub.elsevier.com/S1464-343X(15)30048-0/sref33http://refhub.elsevier.com/S1464-343X(15)30048-0/sref33http://refhub.elsevier.com/S1464-343X(15)30048-0/sref34http://refhub.elsevier.com/S1464-343X(15)30048-0/sref34http://refhub.elsevier.com/S1464-343X(15)30048-0/sref34http://refhub.elsevier.com/S1464-343X(15)30048-0/sref34http://refhub.elsevier.com/S1464-343X(15)30048-0/sref34http://refhub.elsevier.com/S1464-343X(15)30048-0/sref35http://refhub.elsevier.com/S1464-343X(15)30048-0/sref35http://refhub.elsevier.com/S1464-343X(15)30048-0/sref35http://refhub.elsevier.com/S1464-343X(15)30048-0/sref35http://refhub.elsevier.com/S1464-343X(15)30048-0/sref35http://refhub.elsevier.com/S1464-343X(15)30048-0/sref35http://refhub.elsevier.com/S1464-343X(15)30048-0/sref36http://refhub.elsevier.com/S1464-343X(15)30048-0/sref36http://refhub.elsevier.com/S1464-343X(15)30048-0/sref36http://refhub.elsevier.com/S1464-343X(15)30048-0/sref36http://refhub.elsevier.com/S1464-343X(15)30048-0/sref37http://refhub.elsevier.com/S1464-343X(15)30048-0/sref37http://refhub.elsevier.com/S1464-343X(15)30048-0/sref37http://refhub.elsevier.com/S1464-343X(15)30048-0/sref37http://refhub.elsevier.com/S1464-343X(15)30048-0/sref37http://refhub.elsevier.com/S1464-343X(15)30048-0/sref37http://refhub.elsevier.com/S1464-343X(15)30048-0/sref38http://refhub.elsevier.com/S1464-343X(15)30048-0/sref38http://refhub.elsevier.com/S1464-343X(15)30048-0/sref38http://refhub.elsevier.com/S1464-343X(15)30048-0/sref38http://refhub.elsevier.com/S1464-343X(15)30048-0/sref38http://refhub.elsevier.com/S1464-343X(15)30048-0/sref38http://refhub.elsevier.com/S1464-343X(15)30048-0/sref38http://refhub.elsevier.com/S1464-343X(15)30048-0/sref38http://refhub.elsevier.com/S1464-343X(15)30048-0/sref39http://refhub.elsevier.com/S1464-343X(15)30048-0/sref39http://refhub.elsevier.com/S1464-343X(15)30048-0/sref39http://refhub.elsevier.com/S1464-343X(15)30048-0/sref39http://refhub.elsevier.com/S1464-343X(15)30048-0/sref50http://refhub.elsevier.com/S1464-343X(15)30048-0/sref50http://refhub.elsevier.com/S1464-343X(15)30048-0/sref50http://refhub.elsevier.com/S1464-343X(15)30048-0/sref50http://refhub.elsevier.com/S1464-343X(15)30048-0/sref50http://refhub.elsevier.com/S1464-343X(15)30048-0/sref50http://refhub.elsevier.com/S1464-343X(15)30048-0/sref50http://refhub.elsevier.com/S1464-343X(15)30048-0/sref40http://refhub.elsevier.com/S1464-343X(15)30048-0/sref40http://refhub.elsevier.com/S1464-343X(15)30048-0/sref40http://refhub.elsevier.com/S1464-343X(15)30048-0/sref40http://refhub.elsevier.com/S1464-343X(15)30048-0/sref40http://refhub.elsevier.com/S1464-343X(15)30048-0/sref41http://refhub.elsevier.com/S1464-343X(15)30048-0/sref41http://refhub.elsevier.com/S1464-343X(15)30048-0/sref41http://refhub.elsevier.com/S1464-343X(15)30048-0/sref41http://refhub.elsevier.com/S1464-343X(15)30048-0/sref42http://refhub.elsevier.com/S1464-343X(15)30048-0/sref42http://refhub.elsevier.com/S1464-343X(15)30048-0/sref42http://refhub.elsevier.com/S1464-343X(15)30048-0/sref42http://refhub.elsevier.com/S1464-343X(15)30048-0/sref43http://refhub.elsevier.com/S1464-343X(15)30048-0/sref43http://refhub.elsevier.com/S1464-343X(15)30048-0/sref43http://refhub.elsevier.com/S1464-343X(15)30048-0/sref43http://refhub.elsevier.com/S1464-343X(15)30048-0/sref43http://refhub.elsevier.com/S1464-343X(15)30048-0/sref44http://refhub.elsevier.com/S1464-343X(15)30048-0/sref44http://refhub.elsevier.com/S1464-343X(15)30048-0/sref44http://dx.doi.org/10.1155/2012/938927http://dx.doi.org/10.1155/2012/938927http://refhub.elsevier.com/S1464-343X(15)30048-0/sref45http://refhub.elsevier.com/S1464-343X(15)30048-0/sref45http://refhub.elsevier.com/S1464-343X(15)30048-0/sref45http://refhub.elsevier.com/S1464-343X(15)30048-0/sref45http://refhub.elsevier.com/S1464-343X(15)30048-0/sref45http://refhub.elsevier.com/S1464-343X(15)30048-0/sref52http://refhub.elsevier.com/S1464-343X(15)30048-0/sref52http://refhub.elsevier.com/S1464-343X(15)30048-0/sref52http://refhub.elsevier.com/S1464-343X(15)30048-0/sref46http://refhub.elsevier.com/S1464-343X(15)30048-0/sref46http://refhub.elsevier.com/S1464-343X(15)30048-0/sref46http://refhub.elsevier.com/S1464-343X(15)30048-0/sref46http://refhub.elsevier.com/S1464-343X(15)30048-0/sref47http://refhub.elsevier.com/S1464-343X(15)30048-0/sref47http://refhub.elsevier.com/S1464-343X(15)30048-0/sref47http://refhub.elsevier.com/S1464-343X(15)30048-0/sref47http://refhub.elsevier.com/S1464-343X(15)30048-0/sref48http://refhub.elsevier.com/S1464-343X(15)30048-0/sref48http://refhub.elsevier.com/S1464-343X(15)30048-0/sref48http://refhub.elsevier.com/S1464-343X(15)30048-0/sref48http://refhub.elsevier.com/S1464-343X(15)30048-0/sref48http://refhub.elsevier.com/S1464-343X(15)30048-0/sref48http://refhub.elsevier.com/S1464-343X(15)30048-0/sref48http://refhub.elsevier.com/S1464-343X(15)30048-0/sref48http://refhub.elsevier.com/S1464-343X(15)30048-0/sref47http://refhub.elsevier.com/S1464-343X(15)30048-0/sref47http://refhub.elsevier.com/S1464-343X(15)30048-0/sref47http://refhub.elsevier.com/S1464-343X(15)30048-0/sref46http://refhub.elsevier.com/S1464-343X(15)30048-0/sref46http://refhub.elsevier.com/S1464-343X(15)30048-0/sref46http://refhub.elsevier.com/S1464-343X(15)30048-0/sref46http://refhub.elsevier.com/S1464-343X(15)30048-0/sref52http://refhub.elsevier.com/S1464-343X(15)30048-0/sref52http://refhub.elsevier.com/S1464-343X(15)30048-0/sref52http://refhub.elsevier.com/S1464-343X(15)30048-0/sref45http://refhub.elsevier.com/S1464-343X(15)30048-0/sref45http://refhub.elsevier.com/S1464-343X(15)30048-0/sref45http://refhub.elsevier.com/S1464-343X(15)30048-0/sref45http://refhub.elsevier.com/S1464-343X(15)30048-0/sref45http://dx.doi.org/10.1155/2012/938927http://refhub.elsevier.com/S1464-343X(15)30048-0/sref44http://refhub.elsevier.com/S1464-343X(15)30048-0/sref44http://refhub.elsevier.com/S1464-343X(15)30048-0/sref43http://refhub.elsevier.com/S1464-343X(15)30048-0/sref43http://refhub.elsevier.com/S1464-343X(15)30048-0/sref43http://refhub.elsevier.com/S1464-343X(15)30048-0/sref43http://refhub.elsevier.com/S1464-343X(15)30048-0/sref42http://refhub.elsevier.com/S1464-343X(15)30048-0/sref42http://refhub.elsevier.com/S1464-343X(15)30048-0/sref42http://refhub.elsevier.com/S1464-343X(15)30048-0/sref41http://refhub.elsevier.com/S1464-343X(15)30048-0/sref41http://refhub.elsevier.com/S1464-343X(15)30048-0/sref41http://refhub.elsevier.com/S1464-343X(15)30048-0/sref40http://refhub.elsevier.com/S1464-343X(15)30048-0/sref40http://refhub.elsevier.com/S1464-343X(15)30048-0/sref40http://refhub.elsevier.com/S1464-343X(15)30048-0/sref40http://refhub.elsevier.com/S1464-343X(15)30048-0/sref50http://refhub.elsevier.com/S1464-343X(15)30048-0/sref50http://refhub.elsevier.com/S1464-343X(15)30048-0/sref50http://refhub.elsevier.com/S1464-343X(15)30048-0/sref50http://refhub.elsevier.com/S1464-343X(15)30048-0/sref39http://refhub.elsevier.com/S1464-343X(15)30048-0/sref39http://refhub.elsevier.com/S1464-343X(15)30048-0/sref39http://refhub.elsevier.com/S1464-343X(15)30048-0/sref39http://refhub.elsevier.com/S1464-343X(15)30048-0/sref38http://refhub.elsevier.com/S1464-343X(15)30048-0/sref38http://refhub.elsevier.com/S1464-343X(15)30048-0/sref38http://refhub.elsevier.com/S1464-343X(15)30048-0/sref38http://refhub.elsevier.com/S1464-343X(15)30048-0/sref38http://refhub.elsevier.com/S1464-343X(15)30048-0/sref38http://refhub.elsevier.com/S1464-343X(15)30048-0/sref38http://refhub.elsevier.com/S1464-343X(15)30048-0/sref37http://refhub.elsevier.com/S1464-343X(15)30048-0/sref37http://refhub.elsevier.com/S1464-343X(15)30048-0/sref37http://refhub.elsevier.com/S1464-343X(15)30048-0/sref37http://refhub.elsevier.com/S1464-343X(15)30048-0/sref37http://refhub.elsevier.com/S1464-343X(15)30048-0/sref37http://refhub.elsevier.com/S1464-343X(15)30048-0/sref36http://refhub.elsevier.com/S1464-343X(15)30048-0/sref36http://refhub.elsevier.com/S1464-343X(15)30048-0/sref36http://refhub.elsevier.com/S1464-343X(15)30048-0/sref36http://refhub.elsevier.com/S1464-343X(15)30048-0/sref35http://refhub.elsevier.com/S1464-343X(15)30048-0/sref35http://refhub.elsevier.com/S1464-343X(15)30048-0/sref35http://refhub.elsevier.com/S1464-343X(15)30048-0/sref35http://refhub.elsevier.com/S1464-343X(15)30048-0/sref35http://refhub.elsevier.com/S1464-343X(15)30048-0/sref34http://refhub.elsevier.com/S1464-343X(15)30048-0/sref34http://refhub.elsevier.com/S1464-343X(15)30048-0/sref34http://refhub.elsevier.com/S1464-343X(15)30048-0/sref34http://refhub.elsevier.com/S1464-343X(15)30048-0/sref34http://refhub.elsevier.com/S1464-343X(15)30048-0/sref33http://refhub.elsevier.com/S1464-343X(15)30048-0/sref33http://refhub.elsevier.com/S1464-343X(15)30048-0/sref33http://refhub.elsevier.com/S1464-343X(15)30048-0/sref33http://refhub.elsevier.com/S1464-343X(15)30048-0/sref32http://refhub.elsevier.com/S1464-343X(15)30048-0/sref32http://refhub.elsevier.com/S1464-343X(15)30048-0/sref32http://refhub.elsevier.com/S1464-343X(15)30048-0/sref32http://refhub.elsevier.com/S1464-343X(15)30048-0/sref32http://refhub.elsevier.com/S1464-343X(15)30048-0/sref49http://refhub.elsevier.com/S1464-343X(15)30048-0/sref49http://refhub.elsevier.com/S1464-343X(15)30048-0/sref49http://refhub.elsevier.com/S1464-343X(15)30048-0/sref49http://refhub.elsevier.com/S1464-343X(15)30048-0/sref31http://refhub.elsevier.com/S1464-343X(15)30048-0/sref31http://refhub.elsevier.com/S1464-343X(15)30048-0/sref31http://refhub.elsevier.com/S1464-343X(15)30048-0/sref31http://refhub.elsevier.com/S1464-343X(15)30048-0/sref30http://refhub.elsevier.com/S1464-343X(15)30048-0/sref30http://refhub.elsevier.com/S1464-343X(15)30048-0/sref30http://refhub.elsevier.com/S1464-343X(15)30048-0/sref30http://refhub.elsevier.com/S1464-343X(15)30048-0/sref30http://refhub.elsevier.com/S1464-343X(15)30048-0/sref30http://refhub.elsevier.com/S1464-343X(15)30048-0/sref29http://refhub.elsevier.com/S1464-343X(15)30048-0/sref29http://refhub.elsevier.com/S1464-343X(15)30048-0/sref29http://refhub.elsevier.com/S1464-343X(15)30048-0/sref29http://refhub.elsevier.com/S1464-343X(15)30048-0/sref29http://refhub.elsevier.com/S1464-343X(15)30048-0/sref28http://refhub.elsevier.com/S1464-343X(15)30048-0/sref28http://refhub.elsevier.com/S1464-343X(15)30048-0/sref28http://refhub.elsevier.com/S1464-343X(15)30048-0/sref27http://refhub.elsevier.com/S1464-343X(15)30048-0/sref27http://refhub.elsevier.com/S1464-343X(15)30048-0/sref27http://refhub.elsevier.com/S1464-343X(15)30048-0/sref27http://refhub.elsevier.com/S1464-343X(15)30048-0/sref27http://refhub.elsevier.com/S1464-343X(15)30048-0/sref26http://refhub.elsevier.com/S1464-343X(15)30048-0/sref26http://refhub.elsevier.com/S1464-343X(15)30048-0/sref26http://refhub.elsevier.com/S1464-343X(15)30048-0/sref25http://refhub.elsevier.com/S1464-343X(15)30048-0/sref25http://refhub.elsevier.com/S1464-343X(15)30048-0/sref25http://refhub.elsevier.com/S1464-343X(15)30048-0/sref24http://refhub.elsevier.com/S1464-343X(15)30048-0/sref24http://refhub.elsevier.com/S1464-343X(15)30048-0/sref24http://refhub.elsevier.com/S1464-343X(15)30048-0/sref24http://refhub.elsevier.com/S1464-343X(15)30048-0/sref23http://refhub.elsevier.com/S1464-343X(15)30048-0/sref23http://refhub.elsevier.com/S1464-343X(15)30048-0/sref23http://refhub.elsevier.com/S1464-343X(15)30048-0/sref22http://refhub.elsevier.com/S1464-343X(15)30048-0/sref22http://refhub.elsevier.com/S1464-343X(15)30048-0/sref22http://refhub.elsevier.com/S1464-343X(15)30048-0/sref22http://refhub.elsevier.com/S1464-343X(15)30048-0/sref21http://refhub.elsevier.com/S1464-343X(15)30048-0/sref21http://refhub.elsevier.com/S1464-343X(15)30048-0/sref21http://refhub.elsevier.com/S1464-343X(15)30048-0/sref21http://refhub.elsevier.com/S1464-343X(15)30048-0/sref20http://refhub.elsevier.com/S1464-343X(15)30048-0/sref20http://refhub.elsevier.com/S1464-343X(15)30048-0/sref20http://refhub.elsevier.com/S1464-343X(15)30048-0/sref19http://refhub.elsevier.com/S1464-343X(15)30048-0/sref19http://refhub.elsevier.com/S1464-343X(15)30048-0/sref19http://refhub.elsevier.com/S1464-343X(15)30048-0/sref18http://refhub.elsevier.com/S1464-343X(15)30048-0/sref18http://refhub.elsevier.com/S1464-343X(15)30048-0/sref18http://refhub.elsevier.com/S1464-343X(15)30048-0/sref18http://refhub.elsevier.com/S1464-343X(15)30048-0/sref18http://refhub.elsevier.com/S1464-343X(15)30048-0/sref17http://refhub.elsevier.com/S1464-343X(15)30048-0/sref17http://refhub.elsevier.com/S1464-343X(15)30048-0/sref17http://refhub.elsevier.com/S1464-343X(15)30048-0/sref16http://refhub.elsevier.com/S1464-343X(15)30048-0/sref16http://refhub.elsevier.com/S1464-343X(15)30048-0/sref16http://refhub.elsevier.com/S1464-343X(15)30048-0/sref16http://refhub.elsevier.com/S1464-343X(15)30048-0/sref15http://refhub.elsevier.com/S1464-343X(15)30048-0/sref15http://refhub.elsevier.com/S1464-343X(15)30048-0/sref15http://refhub.elsevier.com/S1464-343X(15)30048-0/sref15http://refhub.elsevier.com/S1464-343X(15)30048-0/sref15http://refhub.elsevier.com/S1464-343X(15)30048-0/sref14http://refhub.elsevier.com/S1464-343X(15)30048-0/sref14http://refhub.elsevier.com/S1464-343X(15)30048-0/sref14http://refhub.elsevier.com/S1464-343X(15)30048-0/sref14http://refhub.elsevier.com/S1464-343X(15)30048-0/sref13http://refhub.elsevier.com/S1464-343X(15)30048-0/sref13http://refhub.elsevier.com/S1464-343X(15)30048-0/sref13http://refhub.elsevier.com/S1464-343X(15)30048-0/sref13http://refhub.elsevier.com/S1464-343X(15)30048-0/sref12http://refhub.elsevier.com/S1464-343X(15)30048-0/sref12http://refhub.elsevier.com/S1464-343X(15)30048-0/sref12http://refhub.elsevier.com/S1464-343X(15)30048-0/sref11http://refhub.elsevier.com/S1464-343X(15)30048-0/sref11http://refhub.elsevier.com/S1464-343X(15)30048-0/sref11http://refhub.elsevier.com/S1464-343X(15)30048-0/sref10http://refhub.elsevier.com/S1464-343X(15)30048-0/sref10http://refhub.elsevier.com/S1464-343X(15)30048-0/sref9http://refhub.elsevier.com/S1464-343X(15)30048-0/sref9http://refhub.elsevier.com/S1464-343X(15)30048-0/sref9http://refhub.elsevier.com/S1464-343X(15)30048-0/sref8http://refhub.elsevier.com/S1464-343X(15)30048-0/sref8http://refhub.elsevier.com/S1464-343X(15)30048-0/sref8http://refhub.elsevier.com/S1464-343X(15)30048-0/sref7http://refhub.elsevier.com/S1464-343X(15)30048-0/sref7http://refhub.elsevier.com/S1464-343X(15)30048-0/sref7http://refhub.elsevier.com/S1464-343X(15)30048-0/sref6http://refhub.elsevier.com/S1464-343X(15)30048-0/sref6http://refhub.elsevier.com/S1464-343X(15)30048-0/sref5http://refhub.elsevier.com/S1464-343X(15)30048-0/sref5http://refhub.elsevier.com/S1464-343X(15)30048-0/sref5http://refhub.elsevier.com/S1464-343X(15)30048-0/sref4http://refhub.elsevier.com/S1464-343X(15)30048-0/sref4http://refhub.elsevier.com/S1464-343X(15)30048-0/sref4http://refhub.elsevier.com/S1464-343X(15)30048-0/sref4http://refhub.elsevier.com/S1464-343X(15)30048-0/sref3http://refhub.elsevier.com/S1464-343X(15)30048-0/sref3http://refhub.elsevier.com/S1464-343X(15)30048-0/sref3http://refhub.elsevier.com/S1464-343X(15)30048-0/sref2http://refhub.elsevier.com/S1464-343X(15)30048-0/sref2http://refhub.elsevier.com/S1464-343X(15)30048-0/sref2http://refhub.elsevier.com/S1464-343X(15)30048-0/sref2http://refhub.elsevier.com/S1464-343X(15)30048-0/sref2http://refhub.elsevier.com/S1464-343X(15)30048-0/sref1http://refhub.elsevier.com/S1464-343X(15)30048-0/sref1http://refhub.elsevier.com/S1464-343X(15)30048-0/sref1http://refhub.elsevier.com/S1464-343X(15)30048-0/sref1