MTech-presentationFeb19

download MTech-presentationFeb19

of 10

Transcript of MTech-presentationFeb19

  • 8/7/2019 MTech-presentationFeb19

    1/10

    NUMERICAL SIMULATION OF COMBINED CONVECTION

    AND RADIATION HEAT TRANSFER FROM TUBE BANK

    MED812 : Major Project Part 2

    SHARAD PACHPUTESHARAD PACHPUTESHARAD PACHPUTESHARAD PACHPUTE

    (2009MET2431)Mid-semester evaluation

    2nd semester 2010-2011

    20 February 2011

  • 8/7/2019 MTech-presentationFeb19

    2/10

    1.Objectives and Deliverables

    1.1 Objectives

    To carry out numerical study on flow past a single cylinder and tubebanks at different parameters.

    To understand fluid flow and heat transfer characteristics considering

    radiative participating gases

    To obtain heat transfer correlations

    iitd )HE 0DMRU3URMHFW3DUW0LGVHP

    VHP

    1.2 Deliverables at the end of the project Numerical simulation of tube bank at different parameters

    Overall summation of result for cylinder and tube bank

    Developed correlation for single cylinder and tube bank

  • 8/7/2019 MTech-presentationFeb19

    3/10

    2 .Project plan and progress

    Sr.No.

    Work elementsMonth

    Jun July Aug Sept Oct Nov Dec Jan Feb Mar April May

    1 solving CFD tutorial and learning of ICEMCFD

    2 Literature Review

    3Flow past single cylinder considering

    radiative participating media4 Development of grid model for tube bank

    iitd )HE 0DMRU3URMHFW3DUW0LGVHP

    VHP

    5Heat transfer from tube bank considering

    radiative participating media

    6Post processing of simulated models for tube

    bank

    7 Thesis writing

    completed

    work to be done

  • 8/7/2019 MTech-presentationFeb19

    4/10

    3. RESULT

    3.1 Laminar flow- convective heat transfer from single cylinder

    Authors

    Convective Num

    at Re=100

    Convective

    Num at Re=500

    Mc Admas (analytical) 5.23 -

    Kramers (analytical) 5.49 -

    Eskert et.al (experimental) - -

    Zhukaus correlation 5.18 10.778 -

    iitd )HE 0DMRU3URMHFW3DUW0LGVHP

    VHP

    . . . .

    Present value (numerical) 5.1685 12.165

    Case-I: Tw >Tin Case-II: Tin > Tw

  • 8/7/2019 MTech-presentationFeb19

    5/10

    Re T NuconvNucomb

    1=1

    2=10

    3=30

    4=60

    Re=100

    T1 5.1685 12.134 8. - -

    T2 - - - - -

    T3 - - - - -

    Re=300

    T1 9.1386 16.75 12.901 - -

    T2 - - - - -

    T3 - - - - -

    Case-I: (Tw >Tin) Tin=800k Tw=850,900,1000k , T1 =50K , T2=100 K, T3=200K ,

    iitd )HE 0DMRU3URMHFW3DUW0LGVHP

    VHP

    Re=500

    1 . . . . .

    T2 12.205 20.702 17.151 - -

    T3 12.285 22.356 17.675 - -

    Case-II: (Tin > Tw ) Tw =800k Ti=850,900,1000k , T1 =50K , T2=100 K, T3=200K

    Re T NuconvCombined Nusselt number (Nucomb )

    1 =1 2 =10 3 =30 4 =60

    Re=500

    T1 12.180 19.75 16.0157 - -

    T2 12.203 20.47 16.985 - -

    T3 12.287 22.456 17.675 - -

  • 8/7/2019 MTech-presentationFeb19

    6/10

    3.2 Turbulent flow over cylinder: Unsteady SST K- model, Tin=800k Tw =850k,Pr=0.7

    ReTu

    %

    Circumferentially and time averaged Nuconv (Nux,t)% difference

    from

    experiment

    al

    Present

    numerical

    value

    K. Szczepanik

    et. al

    ( numerical)

    Experimental

    value of

    Scholton et.al.

    Zhaukaus

    Correlatio

    n

    7190 1.6 67.22 67.3 (steady K-) 49.5 42.1 35.79%

    21580 0.46 112.97 148 (unsteady k-) 103.4 92.2 9.22 %

    iitd )HE 0DMRU3URMHFW3DUW0LGVHP

    VHP

    50350 0.36 177.5 191.1 (steady K-, T-lim) 155.1 146.165 14.41%

    Fig.3.2.Temprature contours a)Re=7190 b)Re=21580 ,b) Re=50350

    a) b) c)

  • 8/7/2019 MTech-presentationFeb19

    7/10

    3.3 Tube bank flow : convective heat transfer

    iitd )HE 0DMRU3URMHFW3DUW0LGVHP

    VHP

    Zhukauskas correlation for both staggered and aligned arrangement for number of row

    Fig3.3,Temprature contours for tube bank flow Fig3.4,Velocity contours for tube bank flow

    20LN

    0.25

    0.36

    ,maxPrRe Pr Pr

    m

    D D

    s

    Nu C =

    max

    ,maxReV D

    D

    =Where C, m depends on

    2 0L

    N ( )max

    T

    D

    SV V

    S D=

    If

    220 20

    L L

    D DN N

    Nu C Nu

    = Where C2=0.9 for NL=4

  • 8/7/2019 MTech-presentationFeb19

    8/10

    3.5 Comparison between convective and combined Nu for tube bank

    iitd )HE 0DMRU3URMHFW3DUW0LGVHP

    VHP

    Fig.3.5. AW Convective Nu for row-1 Fig.3.6. AW Combined Nu for row-1

    Re T

    Nuconv Combined Nucomb1 =1

    Present

    value

    Zhukauskas

    Correlation

    Re=500 T1 8.96104 9.171 14.547

    Tube bank flow- inline arrangement: Tin >Tw Tw=800k Ti=850 , Pr=0.7

  • 8/7/2019 MTech-presentationFeb19

    9/10

    4.Projections until work completion

    4.1 Major tasks:

    Numerical simulation of tube bank simulation at different geometrical models

    4.2 Major difficulties: Numerical simulation of combined convective and radiative heat transfer take

    more time

    iitd )HE 0DMRU3URMHFW3DUW0LGVHP

    VHP

    4.3 Need for time beyond 15 May 2011:

    No time needed for completion of project beyond 15 May

  • 8/7/2019 MTech-presentationFeb19

    10/10

    iitd )HE 0DMRU3URMHFW3DUW0LGVHP

    VHP