MSE150-Electrical Properties -One Lecture

16
1 Copyright of Prof. Qibing Pei Materials Science & Engineering 1 MSE 150: Introduction to Polymer Electrical Properties of Polymers Professor Qibing Pei Department of Materials Science & Engineering University of California, Los Angeles [email protected] Extension: 310-825-4217 Materials Science & Engineering Copyright of Prof. Qibing Pei Materials Science & Engineering 2 Band Diagrams of Materials

Transcript of MSE150-Electrical Properties -One Lecture

Page 1: MSE150-Electrical Properties -One Lecture

8/2/2019 MSE150-Electrical Properties -One Lecture

http://slidepdf.com/reader/full/mse150-electrical-properties-one-lecture 1/16

Copyright of Prof. Qibing Pei

Materials Science & Engineering 

1

MSE 150: Introduction to Polymer

Electrical Properties of Polymers

Professor Qibing Pei

Department of Materials Science & EngineeringUniversity of California, Los Angeles

[email protected]

Extension: 310-825-4217

Materials Science & Engineering 

Copyright of Prof. Qibing Pei

Materials Science 

& Engineering 

2

Band Diagrams of Materials

Page 2: MSE150-Electrical Properties -One Lecture

8/2/2019 MSE150-Electrical Properties -One Lecture

http://slidepdf.com/reader/full/mse150-electrical-properties-one-lecture 2/16

Copyright of Prof. Qibing Pei

Materials Science & Engineering 

3

Electrical Properties of Common Materials

• Room Temperature s values (W-m)-1

Polystyrene <10-14

Polyethylene 10-15

- 10-17

Silver 6.8 x 107

Copper 6.0 x 107

Iron 1.0 x 107

METALS:

Silicon 4 x 10-4

Germanium 2 x 100

GaAs 10-6

SEMICONDUCTORS:

Soda-lime glass 10-10

Concrete 10-9

Aluminum oxide <10-13

CERAMICS:

POLYMERS:

conductors

semiconductors insulators

Copyright of Prof. Qibing Pei

Materials Science 

& Engineering 

4

A dielectric material is

electrically insulating and exhibitsor may be made to exhibit an

electric dipole structure.

Application: capacitors that

store charges.O

HH

..

:

A parallel-plate capacitor (a)whena

vacuumis present and (b)whena dielectric

material is present.

Q AC 

V l 

e : permittivity of the dielectrice0 : permittivity of vacuum

=8.85x10-12 F/m

e r : relative permittivity or

dielectric constant 

0 r   

Dielectric Properties

Page 3: MSE150-Electrical Properties -One Lecture

8/2/2019 MSE150-Electrical Properties -One Lecture

http://slidepdf.com/reader/full/mse150-electrical-properties-one-lecture 3/16

Copyright of Prof. Qibing Pei

Materials Science & Engineering 

5

Dielectric Constant and Dielectric Strength

Copyright of Prof. Qibing Pei

Materials Science 

& Engineering 

6

Dipole moment:

Density of charge (dielectric displacement):

 p qd 

Q D E 

 A 

(a) Imposed forces (torque) acting ona dipole by an electric field.

(b ) Final dipole alignment with thefield.

An electric dipole generated bytwo electric charges (ofmagnitude q) separated by thedistance d; the associatedpolarization vector p

Dipole and Charge Density

Page 4: MSE150-Electrical Properties -One Lecture

8/2/2019 MSE150-Electrical Properties -One Lecture

http://slidepdf.com/reader/full/mse150-electrical-properties-one-lecture 4/16

Copyright of Prof. Qibing Pei

Materials Science & Engineering 

7

 p = pe + pi + p o

Totalpolarization:

Origin of Polarization

Copyright of Prof. Qibing Pei

Materials Science 

& Engineering 

8

Dipole orientations for one

polarity of an alternating

electric field and for thereversed polarity.

Variation of dielectric

constant with frequency of 

an AC field.

Relaxation of Polarization

Page 5: MSE150-Electrical Properties -One Lecture

8/2/2019 MSE150-Electrical Properties -One Lecture

http://slidepdf.com/reader/full/mse150-electrical-properties-one-lecture 5/16

Copyright of Prof. Qibing Pei

Materials Science & Engineering 

9Ferroelectric and Piezoelectric Polymers

Ferroelectric: The polar crystallites are aligned (poled) by high electricfield. Relaxation is very sluggish due to large crystallite size

       P

b-phase

Polyvinylidene difluoride (PVDF)

Copyright of Prof. Qibing Pei

Materials Science 

& Engineering 

10

Electromechanical transduction in dielectric elastomers

Pressure generated by field: p =  e e o  E 2 = e e o  (V  / z)2

Small longitudinal strain: s z  = - p  / Y = - e e o  E 2 / Y 

Small biaxial transverse strain: s x  = s y  = -  0.5 e e o  E 2 / Y 

Energy density (/volume): e v  = 0.5 p (- s z ) = 0.5 (e e o  )2 E 4  /Y 

Polymer

filmVoltage off

Compliant electrodes(on top and bottom

surfaces)V

Voltage on

- - - - - - - - - - -+ + + + + + + + + + +

Dielectric Elastomers

Page 6: MSE150-Electrical Properties -One Lecture

8/2/2019 MSE150-Electrical Properties -One Lecture

http://slidepdf.com/reader/full/mse150-electrical-properties-one-lecture 6/16

Copyright of Prof. Qibing Pei

Materials Science & Engineering 

11Dielectric Elastomer Actuators and Robots

Electromechanical transduction in dielectric elastomers

Artificial Muscles

Copyright of Prof. Qibing Pei

Materials Science 

& Engineering 

12

Polyphenylene

Poly(phenylene vinylene)

S

S

SPolythiophene

Polyacetylene

N

N

NPolypyrrole

H

H

H

Conjugated Polymers

Page 7: MSE150-Electrical Properties -One Lecture

8/2/2019 MSE150-Electrical Properties -One Lecture

http://slidepdf.com/reader/full/mse150-electrical-properties-one-lecture 7/16

Copyright of Prof. Qibing Pei

Materials Science & Engineering 

13

C

C

C

C

C

C

H

H

H

H

H

H

p

p*

2p 4p 8p np

LUMO

HOMOEg

p-electron delocalization in conjugated polymers

p-Conjugation

Copyright of Prof. Qibing Pei

Materials Science 

& Engineering 

14

Electronic and optical properties of conjugated polymers

LUMO

HOMOEg

+

p-doping

(Electro)chemical doping:conductive polymers

-

+

Optical absorption,photoluminescence,

and photovoltaics

-

+

electroninjection

holeinjection

Charge injection andelectroluminescence

-

n-doping

Charges and Doping in Conjugated Polymers

Page 8: MSE150-Electrical Properties -One Lecture

8/2/2019 MSE150-Electrical Properties -One Lecture

http://slidepdf.com/reader/full/mse150-electrical-properties-one-lecture 8/16

Copyright of Prof. Qibing Pei

Materials Science & Engineering 

15Conductivity of doped conjugated polymers

Doped polyacetylene, 1x105

S/cm

Doped oriented polyphenylenevinylene, 1x104

Stretch-oriented dopedpolypyrrole: 1x103

Doped polythiopehen: 100-1000

Electrical conductivity, s = ne m

Conjugated polymers are doped tointroduce large number of charge

carriers, one charge per 2-4monomer units

n = 1021 ~ 10 22 /cm3

m  = 10 -3 ~ 102 cm2 /Vs

Copyright of Prof. Qibing Pei

Materials Science 

& Engineering 

16Undoped Conjugated Polymers as Semiconductor

1. Polymer Field Effect Transistor

2. Polymer Light Emitting Diodes

3. Polymers Solar Cells

Page 9: MSE150-Electrical Properties -One Lecture

8/2/2019 MSE150-Electrical Properties -One Lecture

http://slidepdf.com/reader/full/mse150-electrical-properties-one-lecture 9/16

Copyright of Prof. Qibing Pei

Materials Science & Engineering 

17Field Effect Transistor (FET)

Source, Drain, Gate electrodes: Au, Al, PEDOT, doped silicon, etc.

Dielecrtric layer: SiO2, SiNx, polyvinyl alcohol, etc., 100-400 nm thick

Semiconductor: 30-100 nm thickness solution cast polymers

Source-drain channel length, L: 10~100 m m

Channel widths, W : 100 m m.

Copyright of Prof. Qibing Pei

Materials Science 

& Engineering 

18FET modulates source-drain current

Channel length L

Charge mobility m

Drain current I d

Source/drain voltage VD

Source/gate voltage VG

Channel width W

Insulator capacitance COX

Threshold voltage VT

Drain current in linear region:

Drain current in saturated region:

Page 10: MSE150-Electrical Properties -One Lecture

8/2/2019 MSE150-Electrical Properties -One Lecture

http://slidepdf.com/reader/full/mse150-electrical-properties-one-lecture 10/16

Copyright of Prof. Qibing Pei

Materials Science & Engineering 

19Ordering polymer chains for high carrier mobility

Regioregular Poly(3-hexylthiophene)

Liquid crystalline

polyfluorene copolymer

Copyright of Prof. Qibing Pei

Materials Science 

& Engineering 

Flexible active-matrix displaycombines Philips' ultra-thin

polymer TFT backplane with E-Ink's electronic ink frontplane.

20Polymer FETs for thin film transistor array

Page 11: MSE150-Electrical Properties -One Lecture

8/2/2019 MSE150-Electrical Properties -One Lecture

http://slidepdf.com/reader/full/mse150-electrical-properties-one-lecture 11/16

Copyright of Prof. Qibing Pei

Materials Science & Engineering 

21Polymer Light Emitting Diodes

electrons

holes

● ●

○○○

Al/Ca

Light Emitting Polymer

Conducting Polymer

Indium-tin oxide (ITO)

Copyright of Prof. Qibing Pei

Materials Science 

& Engineering 

22Charge Injections in a polymer LED

2.8 eV 2.9 eV

4.7 eV

ITO

Ca

MEH-PPV

4.9 eV

MEH-PPV

ITO Ca

e-

h+

Reverse bias

ITO

Ca

Al

Au

e-

h+

Forward bias

Energy levels

relative to vacuum

O

On

MEH-PPV

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0

10

20

30

40

50

60

70

-6 -4 -2 0 2 4 6

Current [mA]

Light Intensity

     C   u   r   r    e   n    t     [   m     A     ]

Bias[V]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0

10

20

30

40

50

60

70

-6 -4 -2 0 2 4 6

Current [mA]

Light Intensity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0

10

20

30

40

50

60

70

0

10

20

30

40

50

60

70

-6 -4 -2 0 2 4 6-6 -4 -2 0 2 4 6

Current [mA]Current [mA]

Light IntensityLight Intensity

     C   u   r   r    e   n    t     [   m     A     ]

Bias[V]

Page 12: MSE150-Electrical Properties -One Lecture

8/2/2019 MSE150-Electrical Properties -One Lecture

http://slidepdf.com/reader/full/mse150-electrical-properties-one-lecture 12/16

Copyright of Prof. Qibing Pei

Materials Science & Engineering 

23Light Emitting Polymers

0.0

0.2

0.4

0.6

0.8

1.0

1.2

400 500 600 700 800

     L     i    g     h    t     I   n    t    e   n   s     i    t   y     (    a .   u .     )

Wavelength (nm)

OO

Copyright of Prof. Qibing Pei

Materials Science 

& Engineering 

24Colors

Page 13: MSE150-Electrical Properties -One Lecture

8/2/2019 MSE150-Electrical Properties -One Lecture

http://slidepdf.com/reader/full/mse150-electrical-properties-one-lecture 13/16

Copyright of Prof. Qibing Pei

Materials Science & Engineering 

25OLED Displays

LG 55” OLED TV

Samsung Galaxy S2

Copyright of Prof. Qibing Pei

Materials Science 

& Engineering 

26OLED Lighting

Page 14: MSE150-Electrical Properties -One Lecture

8/2/2019 MSE150-Electrical Properties -One Lecture

http://slidepdf.com/reader/full/mse150-electrical-properties-one-lecture 14/16

Copyright of Prof. Qibing Pei

Materials Science & Engineering 

27Polymer Solar Cells

Al/Ca

Polymer

ConductingPolymer

ITO

Power conversion efficiency

SC OC   I V FF 

PCE   IncidentSolarPower 

Copyright of Prof. Qibing Pei

Materials Science 

& Engineering 

28Photocurrent and Photovoltage

Page 15: MSE150-Electrical Properties -One Lecture

8/2/2019 MSE150-Electrical Properties -One Lecture

http://slidepdf.com/reader/full/mse150-electrical-properties-one-lecture 15/16

Copyright of Prof. Qibing Pei

Materials Science & Engineering 

29Bulk Heterojunction

Bulk heterojunction in p- and n- semiconductor blend

Copyright of Prof. Qibing Pei

Materials Science 

& Engineering 

30Materials in polymer solar cells

Page 16: MSE150-Electrical Properties -One Lecture

8/2/2019 MSE150-Electrical Properties -One Lecture

http://slidepdf.com/reader/full/mse150-electrical-properties-one-lecture 16/16

Copyright of Prof. Qibing Pei

Materials Science & Engineering 

31Summary of Polymer Semiconductors

1. Processable semiconductor

2. Low mobility

3. FET

4. LEDs and displays

5. Solar cells

6. Large-area, thin-film, low-cost fabrication

7. Further materials R&D may overcome theremaining hurdles to flexible electronics

Copyright of Prof. Qibing Pei

Materials Science 

& Engineering 

32Electrical Properties: Summary

1. Polymers are mostly insulators

2. Dielectric polarization

3. Dielectric constant (relative permeability)

4. Dielectric elastomers

5. Conductive polymers comprised ofconductive fillers

6. Ionically conductive polymers

7. Dope conjugated polymers

8. Change of properties of conjugatedpolymers as a function of doping