MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

download MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

of 33

Transcript of MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    1/33

    MSE 3300 / 5300 UTA Spring 2015 Lecture 10 -

    Lecture 10. Mechanical Properties

    of Metals (2)Learning Objectives

     After this lecture, you should be able to do the following:

    1. Understand elastic and plastic deformation.

    2. Given an engineering stress–strain diagram, determine (a) the

    modulus of elasticity, (b) the yield stress, and (c) the tensile strength and

    (d) estimate the percentage elongation (ductility).

    3. Understand (a) measures of energy capacity of materials (resilience

    and toughness) and (b) hardness.

    Reading

    • Chapter 6: Mechanical Properties of Metals (6.6–6.12)

    Multimedia• Tensile tests: https://www.youtube.com/watch?v=ZwTF_-JZgt8;

    https://www.youtube.com/watch?v=67fSwIjYJ-E;

    https://www.youtube.com/watch?v=K28WiL21Sgs

    1

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    2/33

    MSE 3300 / 5300 UTA Spring 2015 Lecture 10 -

    1. Elastic Deformation

    • Elastic deformation is nonpermanent: when the applied load is released, the

    piece returns to its original shape (not breaking atomic bonds).

    • Hooke’s Law

    E [Pa]: Modulus of elasticity, or Young’s modulus

    2

    Linear elastic deformation Nonlinear elastic deformation

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    3/33

    MSE 3300 / 5300 UTA Spring 2015 Lecture 10 -

    2. Plastic Deformation

    • Plastic deformation is irreversible.

    • Elastic deformation of metals: up to strain of about 0.005

    • Beyond this point, the stress is no longer proportional to strain, and plastic

    deformation occurs.

    • Breaking of bonds with original atom neighbors and reformation of bonds with

    new neighbors.

    3

    Mechanisms

    • Crystalline solids: slip

    (Section 7.2)

    • Noncrystalline solids:

    viscous flow mechanism

    (Section 12.10)

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    4/33

    MSE 3300 / 5300 UTA Spring 2015 Lecture 10 - 4

    Elastic means reversible!

    Elastic Deformation

    2. Small load

    F

    δ  

    bondsstretch 

    1. Initial 3. Unload

    return to

    initial 

    F

    δ  

    Linear-

    elastic 

    Non-Linear- elastic 

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    5/33

    MSE 3300 / 5300 UTA Spring 2015 Lecture 10 - 5

    Plastic means permanent!

    Plastic Deformation (Metals) 

    F

    δ  linearelastic 

    linearelastic 

    δ  plastic 

    1. Initial 2. Small load 3. Unload

    planesstillsheared

    F

    δ  elastic + plastic

    bondsstretch& planesshear  

    δ  plastic 

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    6/33

    MSE 3300 / 5300 UTA Spring 2015 Lecture 10 - 6

    (at lower temperatures, i.e. T  < T melt /3)

    Plastic (Permanent) Deformation

    • Simple tension test: 

    engineering stress,σ  

    engineering strain, e

    Elastic+Plasticat larger stress 

    e p 

    plastic strain 

    Elasticinitially 

     Adapted from Fig. 6.10 (a),

    Callister & Rethwisch 9e. 

    permanent (plastic)after load is removed 

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    7/33MSE 3300 / 5300 UTA Spring 2015 Lecture 10 -

     Yield Strength, σ y 

    7

    • Yield strength: The stress level at which plastic deformation begins, or

    yielding occurs.

    P: Proportional limit

    (onset of plastic

    deformation at the

    microscopic level

    Strain offset of 0.002

     Yield Strength, σ y 

    Yield point phenomenon

    * Yield stress for nonlinear elastic deformation

    (Figurer 6.6): stress required to produce

    some amount of strain (e.g., ε=0.005)

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    8/33MSE 3300 / 5300 UTA Spring 2015 Lecture 10 - 8

    • Stress at which noticeable plastic deformation has

    occurred.when e p  = 0.002

     Yield Strength, σ y

    σ   y = yield strength

    Note: for 2 inch sample

    e = 0.002 = ∆z /z

    ∴ ∆z  = 0.004 in

     Adapted from Fig. 6.10 (a),

    Callister & Rethwisch 9e. 

    tensile stress,σ  

    engineering strain, e

    σ y  

    e  p = 0.002 

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    9/33MSE 3300 / 5300 UTA Spring 2015 Lecture 10 - 9

    Room temperaturevalues

    Based on data in Table B.4,

    Callister & Rethwisch 9e. 

    a = annealed

    hr = hot rolledag = aged

    cd = cold drawn

    cw = cold worked

    qt = quenched & tempered

     Yield Strength : ComparisonGraphite/Ceramics/Semicond 

    Metals/ Alloys 

    Composites/fibers 

    Polymers 

       Y   i  e   l   d  s

       t  r  e  n  g

       t   h ,

         σ  y

       (   M   P  a

       )

    PVC 

       H  a  r   d

       t  o  m  e  a  s  u  r  e

     ,

      s   i  n  c  e

       i  n   t  e  n  s

       i  o  n ,

       f  r  a  c

       t  u  r  e  u  s  u  a

       l   l  y  o  c  c  u  r  s

       b

      e   f  o  r  e  y

       i  e   l   d

     .

    Nylon 6,6 

    LDPE 

    70

    20

    40

    6050

    100

    10

    30

    200

    300

    400

    500600700

    1000

    2000

    Tin (pure) 

     Al (6061) a 

     Al (6061) ag 

    Cu (71500) hr  Ta  (pure) Ti (pure) a Steel  (1020) hr  

    Steel  (1020) cd Steel  (4140) a 

    Steel  (4140) qt 

    Ti (5Al-2.5Sn) a W (pure) 

    Mo (pure) Cu (71500) cw 

       H  a  r   d

       t  o  m  e  a  s  u  r  e ,

       i  n  c  e  r  a  m

       i  c  m  a

       t  r   i  x  a  n

       d  e  p  o  x  y  m  a

       t  r   i  x  c  o  m  p  o  s

       i   t  e  s ,

      s   i  n  c  e

       i  n   t  e  n  s

       i  o  n ,   f  r

      a  c

       t  u  r  e  u  s  u  a

       l   l  y  o  c  c  u  r  s

       b  e

       f  o  r  e  y

       i  e   l   d

     .

    H DPE PP 

    humid 

    dry 

    PC 

    PET 

    ¨ 

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    10/33MSE 3300 / 5300 UTA Spring 2015 Lecture 10 -

    VMSE: Virtual Tensile Testing

    10

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    11/33MSE 3300 / 5300 UTA Spring 2015 Lecture 10 - 11

    Tensile Strength, TS

    • Metals: occurs when noticeable necking starts.

    • Polymers: occurs when polymer backbone chains are aligned and about to break.

    • Tensile strength: Maximumstress on engineering

    stress-strain curve;

    maximum stress that can be

    sustained by the structure in

    tension

    • If this stress is applied,fracture will result.

          s       t      r      e      s      s

    strain

    Necking

    TS

    F  = Fracture or ultimate

    strength

    Neck acts as stress

    concentrator; fractureoccurs at the neck.

    M  = Tensile strength (TS )

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    12/33MSE 3300 / 5300 UTA Spring 2015 Lecture 10 - 12

    Tensile Strength: Comparison

    Si crystal  

    Graphite/Ceramics/Semicond 

    Metals/ Alloys 

    Composites/fibers 

    Polymers 

       T  e  n  s

       i   l  e

       s   t

      r  e  n  g

       t   h ,

       T   S

       (   M   P  a

       )

    PVC 

    Nylon 6,6 

    10

    100

    200300

    1000

     Al (6061) a 

     Al (6061) ag 

    Cu (71500) hr  

    Ta  (pure) Ti (pure) a 

    Steel  (1020) 

    Steel  (4140) a 

    Steel  (4140) qt 

    Ti (5Al-2.5Sn) a W (pure) 

    Cu (71500) cw 

    L DPE 

    PP 

    PC  PET 

    20

    3040

    2000

    3000

    5000

    Graphite 

     Al oxide 

    Concrete 

    Diamond 

    Glass-soda 

    Si nitride 

    H DPE 

    wood ( fiber) 

    wood(|| fiber) 

    1

    GFRE (|| fiber) 

    GFRE ( fiber) 

    C FRE (|| fiber) 

    C FRE ( fiber) 

     A FRE (|| fiber) 

     A FRE( fiber) 

    E-glass fib C fibers  Aramid  fib 

    Based on data in Table B4,

    Callister & Rethwisch 9e. 

    a = annealed

    hr = hot rolled

    ag = aged

    cd = cold drawncw = cold worked

    qt = quenched & tempered

     AFRE, GFRE, & CFRE =

    aramid, glass, & carbon

    fiber-reinforced epoxy

    composites, with 60 vol%

    fibers.

    Room temperaturevalues

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    13/33

    MSE 3300 / 5300 UTA Spring 2015 Lecture 10 -

    Example Problem 6.3

    13

    Determine the following:

    (a) Modulus of elasticity

    (b) Yield strength at a strain

    offset of 0.002

    (c) The maximum load that can

    be sustained by a cylindrical

    specimen having a diameterof 12.8 mm (0.05 in)

    (d) The change in length of a

    specimen originally 250 mm

    long that is subjected to a

    tensile stress of 345 MPa

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    14/33

    MSE 3300 / 5300 UTA Spring 2015 Lecture 10 -

    Ductility

    14

       S   t  r  e  s  s

    Strain

    • Ductility: Measure of the degree

    of plastic deformation that hasbeen sustained at fracture

    • Brittle: little or not plastic

    deformation (approximately, a

    fracture strain < 5%)

    • Ductility usually increases with

    temperature.

    • Percent elongation

    • Percent reduction in area

    1. It indicates the degree to which a structure will deform plastically before fracture

    2. It specifies the degree of allowable deformation during fabrication operations

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    15/33

    MSE 3300 / 5300 UTA Spring 2015 Lecture 10 - 15

    • Plastic tensile strain at failure: 

    Ductility 

    • Another ductility measure:  100x A

     A ARA%

    o

    fo-

    =

    x 100L

    LLEL%

    o

    of-

    =

    Lf   Ao   Af  Lo 

    Engineering tensile strain, e 

    E ngineering

    tensile

    stress,σ 

     

    smaller %EL 

    larger %EL 

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    16/33

    MSE 3300 / 5300 UTA Spring 2015 Lecture 10 -

    Table 6.2: Mechanical Properties

    of Several Metals

    16

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    17/33

    MSE 3300 / 5300 UTA Spring 2015 Lecture 10 -

    Stress-strain behavior for iron at

    three temperatures

    17

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    18/33

    MSE 3300 / 5300 UTA Spring 2015 Lecture 10 -

    Measures of Energy Capacity 1:

    Resilience

    18

       S   t  r  e  s  s

    Strain

    • Resilience: Capacity of a material to absorbenergy when it is deformed elastically and

    then, upon, unloading, to have the energy

    recovered.

    • Modulus of resilience [J/m3] Measure of

    the ability of material to store elastic energy;Strain energy per unit volume required to

    stress a material from an unloaded state up

    to the point of yielding 

    ∫=  y

    d U r ε 

    ε σ  0

     

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    19/33

    MSE 3300 / 5300 UTA Spring 2015 Lecture 10 - 19

    Resilience, U r  

    •  Ability of a material to store energy

     – Energy stored best in elastic region

    If we assume a linear

    stress-strain curve this

    simplifies to

    Fig. 6.15, Callister &

    Rethwisch 9e. 

    yyr2

    1U eσ  ≅ 

    ey  

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    20/33

    MSE 3300 / 5300 UTA Spring 2015 Lecture 10 - 20

    • Tensile toughness: Measure of the ability of the material to absorb energy

    without fracture

    • The area under the entire stress-strain curve up to fracture (Unit: J/m3) 

    • Fracture toughness: Material’s resistance to fracture when a crack (or other

    defect) is present

    Measures of Energy Capacity 2:

    Toughness

    Brittle fracture: elastic energy

    Ductile fracture: elastic + plastic energy

    very small toughness(unreinforced polymers)

    Engineering tensile strain, e

    Engineering

    tensile

    stress, σ  

    small toughness (ceramics) 

    large toughness (metals):

    strength + ductility

    ∫=  f  

    d U  f  ε 

    ε σ  0

     

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    21/33

    MSE 3300 / 5300 UTA Spring 2015 Lecture 10 -

    Measures of Energy Capacity:

    Toughness

    21

       S   t  r  e  s  s

    Strain

    ∫=  f  

    d U  f  ε 

    ε σ  0

     

    Large toughness:

    strength + ductility

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    22/33

    MSE 3300 / 5300 UTA Spring 2015 Lecture 10 -

    True Stress and Strain

    22

     Ai   is the instantaneous cross-

    sectional area.

    (Corrected axial

    stress in the neck)

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    23/33

    MSE 3300 / 5300 UTA Spring 2015 Lecture 10 - 23

    Elastic Strain Recovery

    Fig. 6.17, Callister &

    Rethwisch 9e. 

       S   t  r  e

      s  s

    Strain

    3. Reapplyload

    2. Unload

    D

    Elastic strain

    recovery

    1. Load

    σ y o

    σ y i

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    24/33

    MSE 3300 / 5300 UTA Spring 2015 Lecture 10 - 24

    Hardness

    • Resistance to permanently indenting the surface (localized plastic

    deformation).• Large hardness means: 

    -- resistance to plastic deformation or cracking in compression.

    -- better wear properties.

    e.g.,10 mm sphere 

    apply known force

    measure size or depthof indent after removing load

    d  D Smaller indentsmean largerhardness.

    increasing hardness

    mostplastics 

    brasses Al alloys 

    easy to machinesteels  file hard 

    cuttingtools 

    nitridedsteels  diamond 

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    25/33

    MSE 3300 / 5300 UTA Spring 2015 Lecture 10 - 25

    Hardness: MeasurementTable 6.5

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    26/33

    MSE 3300 / 5300 UTA Spring 2015 Lecture 10 - 26

    Hardening

    • Curve fit to the stress-strain response:

    σ  T = K eT( )n

    “true” stress (F / A)  “true” strain: ln(/o) 

    hardening exponent:n = 0.15 (some steels)to n = 0.5 (some coppers)

    • An increase in σ y  due to plastic deformation.

    σ  

    e

    large hardening 

    small hardening σ  y0

    σ  y1

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    27/33

    MSE 3300 / 5300 UTA Spring 2015 Lecture 10 - 27

    • Design uncertainties mean we do not push the limit. 

    • Factor of safety, N   Often N  isbetween

    1.2 and 4

    • Example:  Calculate a diameter, d , to ensure that yield doesnot occur in the 1045 carbon steel rod below. Use a

    factor of safety of 5.

    Design or Safety Factors

    5

    1045 plaincarbon steel:

    σ  y = 310 MPa

    TS = 565 MPa

    F  = 220,000N

    d

    Lo

    d  = 0.067 m = 6.7 cm

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    28/33

    MSE 3300 / 5300 UTA Spring 2015 Lecture 10 -

    Summary of Mechanical

    Properties of Metals

    28

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    29/33

    MSE 3300 / 5300 UTA Spring 2015 Lecture 10 - 29

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    30/33

    MSE 3300 / 5300 UTA Spring 2015 Lecture 10 -

    Summary

    1. Elastic and plastic deformations

    2. Engineering measures of strength: Yield strength,

    tensile strength (TS)

    3. Engineering measures of ductility

    4. Engineering measures of energy capacity:resilience, toughness

    5. Hardness

    30

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    31/33

    MSE 3300 / 5300 UTA Spring 2015 Lecture 10 - 31

    Hardness: Measurement

    • Rockwell – No major sample damage

     – Each scale runs to 130 but only useful in range

    20-100.

     – Minor load 10 kg – Major load 60 (A), 100 (B) & 150 (C) kg

    •  A = diamond, B = 1/16 in. ball, C = diamond

    • HB = Brinell Hardness – TS (psia) = 500 x HB

     – TS (MPa) = 3.45 x HB

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    32/33

    MSE 3300 / 5300 UTA Spring 2015 Lecture 10 - 32

    True Stress & Strain

    Note: S.A. changes when sample stretched

    • True stress

    • True strain

  • 8/18/2019 MSE 3300-Lecture Note 10-Chapter 06 Mechanical Properties of Metals 2

    33/33

    Variability in Material Properties

    • Elastic modulus is material property

    • Critical properties depend largely on sample flaws

    (defects, etc.). Large sample to sample variability.

    • Statistics

     – Mean

     – Standard Deviation

    where n is the number of data points