Mse 110l Fall 15 - Lab 4

25
Lab 4 Crystal Structure and Diffraction Geometry Objectives Investigate the relationship between the geometry of diffraction and the orientation of crystallographic planes in single crystals Plot crystallographic planes and diffraction experiments in reciprocal space Experiment Diffraction of Si powder Diffraction of single crystal Si (001) Locate diffraction peaks from single crystal wafer Copper X - ray source (Cu kα 1 ) 40 KV, 30 mA for powder scan 40 KV, 30 mA for Si (001)

description

Set up for lab comparing x ray diffraction of single plane silicon vs powdered silicon

Transcript of Mse 110l Fall 15 - Lab 4

Page 1: Mse 110l Fall 15 - Lab 4

Lab 4 – Crystal Structure and

Diffraction Geometry

• Objectives Investigate the relationship between the geometry of

diffraction and the orientation of crystallographic planes in single crystals

Plot crystallographic planes and diffraction experiments in reciprocal space

• Experiment Diffraction of Si powder

Diffraction of single crystal Si (001)

Locate diffraction peaks from single crystal wafer

Copper X - ray source (Cu kα1)

40 KV, 30 mA for powder scan

40 KV, 30 mA for Si (001)

Page 2: Mse 110l Fall 15 - Lab 4

Powder Diffraction

The orientation of the powder is random

on the glass surface. Just by this random

distribution, any planes can end up such

that they are parallel to the surface. Thus

all possible reflections will show up in a

2θ-ω scan.

(110)

(200) (211)

Page 3: Mse 110l Fall 15 - Lab 4

Equations we already know

n λ = 2 dhkl sinθ

Bragg’s Law

D-Spacing Calculations

Page 4: Mse 110l Fall 15 - Lab 4

Si PDF

Page 5: Mse 110l Fall 15 - Lab 4

Single Crystal Diffraction

(004)

The orientation of the single crystal is

fixed on the surface. Thus only the

surface symmetric planes that are

possible reflections will show up in a

normal 2θ-ω scan.

Page 6: Mse 110l Fall 15 - Lab 4

10 20 30 40 50 60 70 80 90 100 11010

-2

10-1

100

101

102

103

104

105

106

107

Single Crystal Si

Powdered Si

Inte

nsity

(cp

s)

2 (degrees)

(004)

(220)

Powdered vs Single Crystal

Diffraction

Question: How can we

access other diffraction

peaks in a single

crystal?

Page 7: Mse 110l Fall 15 - Lab 4

(hkl) d (Å) φ G.E./G.I. 2Theta Omega Phi Intensity

111

111

220

202

202

113

113

004

331

331

224

224

115

115

333

333

404

404

???

Page 8: Mse 110l Fall 15 - Lab 4

What is the surface to plane angle for (110)?

(hkl) d (Å) φ G.E./G.I. 2Theta Omega Phi Intensity

111

111

220

202

202

113

113

004

331

331

224

224

115

115

333

333

404

404

Page 9: Mse 110l Fall 15 - Lab 4

Interplanar Angles

• Cubic

cos ϕ = (h1h2 + k1k2 + l1l2) / sqrt ((h12 + k1

2 + l12)(h2

2 + k22 + l2

2))

(004) and (110)

cos ϕ = ((0)(1)+(0)(1)+(4)(0))/ sqrt ((16)(2))

cos ϕ = 0

Φ = 90°

Page 10: Mse 110l Fall 15 - Lab 4

(hkl) d (Å) φ G.E./G.I. 2Theta Omega Phi Intensity

111

111

220

202

202

113

113

004

331

331

224

224

115

115

333

333

404

404

Is there a relationship between these three columns?

What is GI and GE?

Page 11: Mse 110l Fall 15 - Lab 4

Glancing Incidence

ω = θb - ϕ

Incident Diffracted

Page 12: Mse 110l Fall 15 - Lab 4

Glancing Exit

ω = θb + ϕ

Incident Diffracted

Page 13: Mse 110l Fall 15 - Lab 4

What difference can we expect

from G.E. and G.I.?

Sampling area

Outgoing intensity

Resolution

Page 14: Mse 110l Fall 15 - Lab 4

Reciprocal Space

• An easier way to represent diffraction

geometries, easier to visualize than real

space

Real space Reciprocal space

Page 15: Mse 110l Fall 15 - Lab 4

Reciprocal Space

• Interplanar spacing reciprocal value

• Angles preserved

• Crystal structure preserved

(001)

(110)

[001]

[110]

(000)

(001)

(002)

(003)

1 / d001

1 / d002

What is larger d001 or d002 ?

Page 16: Mse 110l Fall 15 - Lab 4

Reciprocal Space

[001]

[110]

What is larger d001 or d110 ?

Remember reciprocal space

is a 3d space, not all

reflections will be shown

here.

(220) (111) d111

d110

ϕ

Page 17: Mse 110l Fall 15 - Lab 4
Page 18: Mse 110l Fall 15 - Lab 4
Page 19: Mse 110l Fall 15 - Lab 4
Page 20: Mse 110l Fall 15 - Lab 4
Page 21: Mse 110l Fall 15 - Lab 4
Page 22: Mse 110l Fall 15 - Lab 4
Page 23: Mse 110l Fall 15 - Lab 4

Lab preparation

Si lattice parameter: 5.4309 Å

X-ray wavelength: 1.54056 Å

Single crystal Si wafer surface: (001)

Fill in blanks of the table on the handout.

Available diffraction spot:

h, k, l are all odd.

h, k, l are all even and h+k+l can be divided by 4.

Page 24: Mse 110l Fall 15 - Lab 4

(hkl) d (Å) φ G.E./G.I. 2Theta Omega Phi Intensity

111

111

220 1.92011 90 G.E. 47.302 113.651

202 1.92011 45 G.E. 47.302 68.651

202 1.92011 45 G.I. 47.302 -21.349

113

113

004 1.35773 0 Symmetric 69.129 34.564 Arbitrary

331

331

224

224

115

115

333

333

404

404

Page 25: Mse 110l Fall 15 - Lab 4

(hkl) d (Å) φ G.E./G.I. 2Theta Omega Phi Intensity

111 3.13553 54.736 G.E. 28.442 68.957 N/A

111 3.13553 54.736 G.I. 28.442 -40.515 N/A

220 1.92011 90.000 G.E. 47.302 113.651 N/A

202 1.92011 45.000 G.E. 47.302 68.651 N/A

202 1.92011 45.000 G.I. 47.302 -21.349 N/A

113 1.63748 25.239 G.E. 56.121 53.300 0

113 1.63748 25.239 G.I. 56.121 2.821 0

004 1.35773 0 Symmetric 69.129 34.564 Arbitrary

331 1.24593 76.737 G.E. 76.375 114.925 N/A

331 1.24593 76.737 G.I. 76.375 -38.550 N/A

224 1.10858 35.264 G.E. 88.028 79.279 0

224 1.10858 35.264 G.I. 88.028 8.750 0

115 1.04518 15.793 G.E 94.950 63.268 0

115 1.04518 15.793 G.I 94.950 31.682 0

333 1.04518 54.736 G.E. 94.950 102.211 N/A

333 1.04518 54.736 G.I 94.950 -7.260 N/A

404 0.95988 45.000 G.E. 106.706 98.353 45

404 0.95988 45.000 G.I. 106.706 8.353 45