Msdo 2015 Lecture 8 Pso

155
7/23/2019 Msdo 2015 Lecture 8 Pso http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 1/155 IN THE NAME OF A THE MOST BENEF THE MOST MER

Transcript of Msdo 2015 Lecture 8 Pso

Page 1: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 1/155

IN THE NAME OF A

THE MOST BENEFTHE MOST MER

Page 2: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 2/155

[email protected] ; 0321-9

 _________________PhD, FLIGHT VEHICLE DESIGNBEIJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS, BUAA, P.R.CHINA, 2009

MS, FLIGHT VEHICLE DESIGNBEIJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS, BUAA, P.R.CHINA, 2006

BE, MECHANICAL ENGINEERINGNATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY, NUST, PAKISTAN, 2000

EMAIL: [email protected] 

[email protected] 

TEL: +92-320-9595510

WEB: 

www.ist.edu.pk/qasim-zeeshan LINKEDIN: pk.linkedin.com/pub/qasim-zeeshan/67/554/ba7 

Dr Qasim Zeeshan

Page 3: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 3/155

MULTIDISCIPLI

SY

DOPTIMIZA

LECTURE # 8

Page 4: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 4/155

PARTICLE SWARM

OPTIMIZATION

Dr. Qasim Zeeshan

Page 5: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 5/155

STATUS

PHASE-I

Introduction to Multidisciplinary System Design Optimizatio

Terminology and Problem Statement

Introduction to Optimization

Classification of Optimization Problems

Numerical/ Classical Optimization

MSDO Architectures

Practical Applications: Structure, Aero etc

Page 6: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 6/155

STATUS

PHASE-II WEEK 8: Genetic Algorithm

WEEK 9: Particle Swarm Optimization

WEEK 10: Simulated Annealing

WEEK 11: MID TERM

WEEK 12:

Ant Colony Optimization, Tabu Search, Pattern Search

WEEK 13:

LAB, Practical Applications [PLATFORMS]

00

20

40

60

-0.5

0

0.5

1

Page 7: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 7/155

STATUS

PHASE-III WEEK 14: Design of Experiments, Meta-modeling, and Ro

WEEK 15: Multi-objective Optimization

Hybrid Optimization & Hyper Heuristic Optimiz

WEEK 16: Post Optimality Analysis/ Revision & Discussion

WEEK 17: END TERM/ Paper Presentations ?

Page 8: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 8/155

In this LECTURE

PARTICLE SWARM OPTIMIZATION SWARM INTELLIGENCE

INTRO

HISTORY

ALGORITHM SWARM TOPOLOGY

PARAMETER SELECTION

VARIANTS, ATTRIBUTES AND EXAMPLES

APPLICATION IN MATLAB

Page 9: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 9/155

PARTICLE SWARM OPTIMIZA _______________________

SWARM INTELL

Page 10: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 10/155

SWARM INTELLIGENCE

Page 11: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 11/155

SWARM INTELLIGENCE Swarm intelligence (SI) is an artificial intelligence technique bas

study of collective behavior in decentralized, self-organized systems

SI systems are typically made up of a population of simple age

locally with one another and with their environment.

Although there is normally no centralized control structure dictating

agents should behave, local interactions between such agents oftemergence of global behavior.

Examples of systems like this can be found in nature, including an

flocking, animal herding, bacteria molding and fish schooling (from W

Page 12: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 12/155

SWARM INTELLIGENCE

Inspired by simulation social behavior.

To model human intelligence, we should model individuals in a social con

with one another.

Page 13: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 13/155

SWARM INTELLIGENCE - APPLICA

Swarm-bots, an EU project led by Marco Dorigo, aimed to study ne

to the design and implementation of self-organizing and self-assem

(http://www.swarm-bots.org/).

A 1992 paper by M. Anthony Lewis and George A. Bekey discusseof using swarm intelligence to control nanobots within the body for

killing cancer tumors.

Page 14: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 14/155

SWARM INTELLIGENCE - APPLICA

Artists are using swarm technology as ameans of creating complex interactive

environments.

Disney's The Lion King was the first movie to

make use of swarm technology (the stampede

of the bisons scene).

The movie "Lord of the Rings” has also made

use of similar technology during battle scenes.

Page 15: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 15/155

SWARM INTELLIGENCE - APPLICA

U.S. Military is applying SI techniques to control of unmanned vehicl

NASA is applying SI techniques for planetary mapping.

Medical Research is trying SI based controls for nanobots to fight ca

SI techniques are applied to load balancing in telecommunication ne

Entertainment industry is applying SI techniques for battle and crowd

Page 16: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 16/155

PARTICLE SWARM OPTIMIZA _______________________

PSO - INTRODU

Page 17: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 17/155

INTRODUCTION Inspired by simulation social behavior.

Related to bird flocking, fish schooling and swarming theory Steer toward the center

Match neighbors’ velocity

Avoid collisions

Suppose

A group of birds are randomly searching food in an area. There is only one piece of food in the area being searched.

All the birds do not know where the food is. But they know how far the food is in

So what's the best strategy to find the food? The effective one is to follow the bito the food.

Page 18: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 18/155

INTRODUCTION

In PSO, each single solution is a "bird" in the search space. Call it "particle".

All of particles have fitness values

Which are evaluated by the fitness function to be optimized, and

have velocities Which direct the flying of the particles.

The particles fly through the problem space by followingoptimum particles.

Page 19: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 19/155

INTRODUCTION

In computer science, particle swarm optimization (PSO)is “a  computational method that optimizes a problem by

iteratively trying to improve a candidate solution with

regard to a given measure of quality” .

PSO  optimizes a problem by having a population ofcandidate solutions, here dubbed particles, and movingthese particles around in the search-space according tosimple mathematical formulae over the particle'sposition and velocity.

Page 20: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 20/155

INTRODUCTION

Each particle's movement is influenced by its local bestknown position  and it's also guided toward the best

known positions in the search-space, which are updated

as better positions are found by other particles.

This is expected to move the swarm toward the best

solutions.

PSO is a metaheuristic as it makes few or no

assumptions about the problem being optimized and

can search very large spaces of candidate solutions.

Page 21: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 21/155

INTRODUCTION

Each particle keeps track of its coordinates in the solution spaassociated with the best solution (fitness) that has achieved sparticle. This value is called personal best, pbest.

Another best value that is tracked by the PSO is the best valu

far by any particle in the neighborhood of that particle. This vglobal best, gbest.

The basic concept of PSO lies in accelerating each particle towand the gbest locations, with a random weighted accelerationstep.

Page 22: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 22/155

INTRODUCTION

PSO  does not use the gradient of the problem beingoptimized, which means PSO does not require that the

optimization problem be differentiable as is required

by classic optimization methods such as gradient descent

and quasi-newton methods.

PSO  can therefore also be used on optimization

problems that are partially irregular, noisy, change over

time, etc.

Page 23: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 23/155

INTRODUCTION

Particle swarm optimization (PSO) is a global optimization dealing with problems in which a best solution can be rep

point or surface in an n-dimensional space.

Hypotheses are plotted in this space and seeded with an init

well as a communication channel between the particles.

Particles then move through the solution space, and a

according to some fitness criterion after each time step.

Page 24: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 24/155

INTRODUCTION

Over time, particles are accelerated towards thoseparticles within their communication grouping which have

better fitness values.

The main advantage of such an approach over other

global minimization strategies such as simulated

annealing is that the large number of members that

make up the particle swarm make the technique

impressively resilient to the problem of local minima.

Page 25: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 25/155

INTRODUCTION

PSO was aimed to treat nonlinear optimization problems wvariables originally.

PSO has been expanded to handle combinatorial optimizaand both discrete and continuous variables as well.

One of PSO’s advantages:

Efficient treatment of mixed-integer nonlinear optimization problems (Ma small program.

Page 26: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 26/155

INTRODUCTION

“Swarm intelligence”

 refers to the more general set of algorithms. Application of swarm principles to robots is called “swarm robotics”.

“Swarm prediction” has been used in the context of forecasting problem

The typical swarm intelligence system has the following properties:

It is composed of many individuals;

The individuals are relatively homogeneous (i.e., they are either all identical or thtypologies);

The interactions among individuals are based on simple behavioral rules that exploit othat the individuals exchange directly or via the environment (stigmergy);

The overall behavior of the system results from the interactions of individuals with each

environment, that is, the group behavior self-organizes.

Page 27: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 27/155

INTRODUCTION

Page 28: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 28/155

PARTICLE SWARM OPTIMIZA _______________________

HISTORICAL PERSP

Page 29: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 29/155

PSO PRECURSORS

Reynolds (1987)’s  simulation Boids  –   a simple flocking modthree simple local rules:

Collision avoidance: pull away before they crash into one anothe

Velocity matching:  try to go about the same speed as their n

flock;

Flock centering: try to move toward the center of the flock as the

Heppner (1990) interests in rules that enabled large numbe

flock synchronously.

Page 30: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 30/155

PSO’S LINK TO EVOLUTIONARY COMPU

Both PSO and EC are population based.

PSO also uses the fitness concept, but, less-fit particles do not die. Nthe fittest”.

No evolutionary operators such as crossover and mutation.

Each particle (candidate solution) is varied according to its past erelationship with other particles in the population.

Having said the above, there are hybrid PSOs, where some ECadopted, such as selection, mutation, etc.

Page 31: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 31/155

HISTORICAL PERSPECTIVE

James Kennedy  (Nov 5, 1950) is an Americansocial psychologist, best known as an originator

and researcher of particle swarm optimization.

Russell C. Eberhart , an American electricalengineer, best known as the co-developer of

particle swarm optimization concept.

Page 32: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 32/155

HISTORICAL PERSPECTIVE

The particle swarm paradigm draws on social-psychological simuin which Kennedy  had participated at the University of Nintegrated with evolutionary computation methods that Eberh

working with in the 1990s.

The result was a problem-solving or optimization algorithm

principles of human social interaction. Individuals begin the program with random guesses at the problem solutio

As the program runs, the "particles" share their successes with their topoleach particle is both teacher and learner.

Over time, the population converges reliably on optimal vectors.

Page 33: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 33/155

HISTORICAL PERSPECTIVE

The first papers on the topic, by Kennedy and Russell were presented in 1995; since then more than a thous

have been published on particle swarms.

The Academic Press / Morgan Kaufmann book, Swarmby Kennedy and Eberhart with Yuhui Shi, was published

Page 34: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 34/155

PARTICLE SWARM OPTIMIZA _______________________

THE ALGO

Page 35: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 35/155

PSO –  ALGORITHM

Particle Swarm Optimization is a relatively recent evolutionarpopulation-based computer algorithm for problem solving.

Mechanics of PSO took inspiration from the swarming or collabo

of biological populations (flock of birds, schools of fish, and herds

Social-psychological principles form the basis of PSO, and it provi

social behavior, as well as contributing to engineering applications

Page 36: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 36/155

PSO –  ALGORITHM

PSO  was originally aimed at treating nonlinear optimization continuous variables.

Moreover, PSO  has been expanded to handle combinatori

problems and both discrete and continuous variables.

Unlike other optimization techniques, PSO  can be realized wit

program and it requires only primitive mathematical ope

computationally inexpensive in terms of both memory requirements

Page 37: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 37/155

PSO –  ALGORITHM

Working of PSO algorithm is summarized as under: Define the problem to search and develop solution criteri

Initialize population via random initial positions and

velocities.

Determine global best position. Determine personal best position.

Update velocity and position equations.

Page 38: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 38/155

PSO –  ALGORITHM

Searching procedure by PSO can be described as follo A flock of agents optimizes an objective function.

Each agent knows its personal best value, while the bes

group, global best is also known.

New position and velocity of each agent are calculacurrent position and best values as below:

)]([)]([ 2211)1(ik 

 g k i

ik 

ii

ik 

ik 

  x pa x pavv  

     

Page 39: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 39/155

PSO –  ALGORITHM

Where,

i is the particle index,

k is discrete time index,

v is the velocity of the ith particle,

 x is the position of the ith particle,

pi is the best position found by the ith particle (personal best),

  γ  1,2 are random numbers on the interval applied to the ith particle,

  Ф is the inertia function

a1,2 are acceleration constants. 

)]([)]([ 2211)1(

i

 g 

k i

i

i

i

i

i

k    x pa x pavv        

No 

Page 40: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 40/155

PSO –  ALGORITHM

The right side of equation consists of three terms (vectors)

The first term is the previous velocity of the agent.

The second and third terms are utilized to change the velocity o

Without the second and third terms, the agent will keep on "

same direction until it hits the boundary.

Try to explore new areas and, therefore, the first term cor

diversification in the search procedure.

)]([)]([ 2211)1(

i

 g 

k i

i

i

i

i

i

k    x pa x pavv        

Page 41: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 41/155

PSO –  ALGORITHM

Without the first term, the velocity of the "flying" agent is only

using its current position and its best positions in history.

Try to converge to the their pbests  and/or gbest   and, there

correspond with intensification in the search procedure. For example, set Фmax =0.9 and Фmin =0.4.

At the beginning of the search procedure, diversification is heavily

intensification is heavily weighted at the end of the search procedu

)]([)]([ 2211)1(

i

 g 

k i

i

i

i

i

i

k    x pa x pavv        

Page 42: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 42/155

PSO –  ALGORITHM 

Concept of modification of a searching point by PSO

X k : current searching point, X k+ 1 : modified searching point

v k : current velocity, v k +1: modified velocity

v pbest: velocity based on pbest, v gbest: velocity based on gbest

Page 43: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 43/155

PSO –  ALGORITHM

Position update is the last step in each iteration. The poparticle is updated using its velocity vector.

ik  p

i pk 

ik  p

  v x x)1()1(  

  Swarm

Particl

Influen

Current Motion Inf

  p

i

k v1

i

k  x

 g k 

 p

Page 44: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 44/155

PSO –  ALGORITHM

In PSO, a set of randomly generated solutions (initial swarmin the design space towards the optimal solution over

iterations (moves) based on a large amount of informat

design space that is assimilated and shared by all members

Particles evolve in the search space motivated by three facto

Inertia,

Memory,

Cooperation.

Page 45: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 45/155

PSO –  ALGORITHM

 Inertia implies a particle keeps moving in the direction it had previ

 Memory factor  influences the particle to remember the best positio

space it has ever visited.

Cooperation factor  induces the particles to move closer to the bes

found by all particles.

Each particle is a candidate solution to the optimization problem

own position and velocity.

Page 46: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 46/155

PSO –  ALGORITHM (FLOW CHD

PSO O

Pop

Gene

Evalu

Modifica

No 

Generation of initial condition of each agent

Initial searching points (X i0) and velocities (vi

0) of each

agent are usually generated randomly within the

allowable range.

The current searching point is set to pbest  for each agent.

The best-evaluated value of pbest  is set to gbest.

The agent number with the best value is stored.

Page 47: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 47/155

PSO –  ALGORITHM (FLOW CHD

PSO O

Pop

Gene

Evalu

Modifica

No 

Evaluation of search point.

The objective function value is calculated for each agent.

If the value is better than the current pbest   of the agent,

the pbest  value is replaced by the current value.

If the best value of pbest  is better than the current gbest ,

gbest  is replaced by the best value and the agent number

with the best value is stored.

PSO ALGORITHM (FLOW CH

Page 48: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 48/155

PSO –  ALGORITHM (FLOW CHD

PSO O

Pop

Gene

Evalu

Modifica

No 

Modification of each search point

The current searching point of each agent is changed using

PSO equations.

Stopping Criteria

The current iteration number reaches the predeterminedmaximum iteration number, then exits.

Otherwise, the process proceeds to step 2.

PSO ALGORITHM (PSEUDOC

Page 49: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 49/155

PSO –  ALGORITHM (PSEUDOCFor each particle

Initialize particle

END

DoFor each particle

Calculate fitness valueIf the fitness value is better than its peronal bestset current value as the new pBest 

End

Choose the particle with the best fitness value of all as gBFor each particle

Calculate particle velocity according equation (a)Update particle position according equation (b)

End

While maximum iterations or minimum error criteria is not at

Page 50: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 50/155

PARTICLE SWARM OPTIMIZA _______________________

PARTICLE MOVE STR

PARTICLE MOVE STRATEGY

Page 51: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 51/155

PARTICLE MOVE STRATEGY

Key issue:  For each individual, how does iwhich direction to move along?

PARTICLE MOVE STRATEGY

Page 52: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 52/155

PARTICLE MOVE STRATEGY

Because the group has a common goal, so the following

reasonable:

The position and the corresponding objective function of each indiv

completely open to the public.

A particle can get two messages: The current known best position found by the entire group

The best position a particle has reached so far

PARTICLE MOVE STRATEGY

Page 53: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 53/155

PARTICLE MOVE STRATEGY

Based on the “benchmark”  psychology and “ego”  psy

each particle has two options:

Move closer to the global best position (gbest)

Maintain its own best position (pbest)

i

gbest Global best position s

pbest Personal best positi

? 

? 

PARTICLE MOVE STRATEGY

Page 54: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 54/155

PARTICLE MOVE STRATEGY

How to determine the weights of the two options?

Determine by God (according to probability)

Generate two random numbers as weights

r1 ∈ [0, 1], r

2 ∈ [0, 1]

r1 indicates the extent to which a particle expects to maintain its own b

r2  indicates the extent to which a particle expects to move closer to

position.

Page 55: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 55/155

PARTICLE SWARM OPTIMIZA _______________________

SWARM TOP

SWARM TOPOLOGY

Page 56: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 56/155

SWARM TOPOLOGY

There have been two basic topologies used in the literatu

Ring Topology Star Topology

I4

I0

I1

I2I3

I4

I0

II3

SWARM TOPOLOGY

Page 57: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 57/155

SWARM TOPOLOGY RING TOPOLOGY

Also known as circle topology. In the Circle topology, parts of the population that are

distant from one another are also independent of oneanother, but neighbors are closely connected.

Thus one segment of the population might converge on alocal optimum, while another segment converges on a

different optimum or keeps searching. Influence spreads from neighbor to neighbor in this

topology, until, if an optimum really is the best found byany part of the population, it will eventually pull all theparticles in.

Circles were defined with k = 2.

I4

I3

SWARM TOPOLOGY

Page 58: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 58/155

SWARM TOPOLOGY

STAR TOPOLOGY

Also known as wheel topology. This topology effectively isolates individuals from one

another, as all information has to be communicated

through the focal individual.

This focal individual compares performances of all

individuals in the population and adjusts its trajectorytoward the very best of them.

If adjustments result in improvement in the focal

individual’s  performance, then that performance is

eventually communicated to the rest of the population.

I4

I3

SWARM TOPOLOGY

Page 59: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 59/155

SWARM TOPOLOGY

STAR TOPOLOGY

Thus the focal individual serves as a kind of buffer orfilter, slowing the speed of transmission of good solutions

through the population.

It should be noted that the highly centralized STAR is acommon configuration for many business and government

organizations.

The buffering effect of the focal particle should prevent

overly rapid convergence on local optima.

It is a way to preserve diversity of potential problem

solutions, though it was expected that it might entirely

destroy the ability of the population to collaborate.

I4

I3

Page 60: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 60/155

PARTICLE SWARM OPTIMIZA _______________________

PARAMETER SEL

PARAMETER SELECTION

Page 61: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 61/155

PARAMETER SELECTION

PARAMETER SELECTION

Page 62: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 62/155

PARAMETER SELECTION

The choice of PSO parameters though simple but can have a

on optimization performance.

Selecting PSO parameters that yield good performance been the subject of much research.

The PSO parameters can also be tuned by using anothoptimizer, a concept known as meta-optimization.

Parameters have also been tuned for various optimization sc

PARAMETER SELECTION

Page 63: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 63/155

PARAMETER SELECTION

The parameter selection for PSO is relatively simple (so

involving two categories: Inertia coefficient

Accelerating coefficients

Eberhart et al. tried to examine the parameter selecAccording to their examination, the following parameters arand the values do not depend on problems:

a1 = a2= 2.0, Фmax = 0.9, Фmin = 0.4

PARAMETER SELECTION

Page 64: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 64/155

PARAMETER SELECTION

Parameter selection: different opinion

Inertia coefficient can be set to decrease linearly to 0 in the ite

Itermax is the predefined maximum iteration number,

  η   1 is a positive real number (the value of η depends on spec

iter is the current iteration number.

max

max.iter 

iter iter       

PARAMETER SELECTION

Page 65: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 65/155

PARAMETER SELECTION

The control parameter “acceleration constant,”  turns out to be ve

determining the type of trajectory the particle travels.

If a = 0.0, it is obvious that v = v + 0, and as x = x + v it s

linearly.

If a is set to a very small value, the trajectory of x rises and falls s

The accelerating coefficients a1 and a2  satisfy

a1 + a2 = 4.0

a1 = a2= 2.0

PARAMETER SELECTION

Page 66: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 66/155

PARAMETER SELECTION

INERTIA WEIGHT:

Large inertia weight facilitates global exploration, while smal

facilitates local exploration.

Inertia weight must be selected carefully and/or decreased ov

By linearly decreasing the inertia weight from a relatively la

small value through the course of the PSO run gives the best PScompared with fixed inertia weight settings.

Inertia weight seems to have attributes of temperature in simula

PARAMETER SELECTION

Page 67: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 67/155

PARAMETER SELECTION

MAX VELOCITY:

An important parameter in PSO; typically the only one ad

Clamps particles velocities on each dimension.

Determines “fineness” with which regions are searched

If too high, can fly past optimal solutions.

If too low, can get stuck in local minima.

PARAMETER SELECTION (LITERAT

Page 68: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 68/155

PARAMETER SELECTION (LITERAT

Eberhart R., Kennedy J. A New Optimizer Using Particle Swa

Proceedings of the Sixth International Symposium on MicroHuman Science[C], 1995, 10: 39-43

Eberhart R. , Simpson P., Dobbins R. Computational Intellig[M]. Boston, MA: Academic. 1996: 212-226

Van Den Bergh F., Engelbrecht A.P. A Cooperative ApproaSwarm Optimization [J]. IEEE Transactions on Evolutionary2004, 8(3): 225 –  239

AN ILLUSTRATIVE EXAMPLE

Page 69: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 69/155

AN ILLUSTRATIVE EXAMPLE

Problem: min f (x )=x 2

Assume there are four individuals in the group: x 1, x 2,

Set

a 1 = a 2 = 2

iter max = 10

Ф 

= (iter max  - iter )/ iter max  = (10- iter ) / 10

v 10 = v 2

0 = v 30 = v 4

0 = 0

AN ILLUSTRATIVE EXAMPLE 

Page 70: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 70/155

AN ILLUSTRATIVE EXAMPLE

Iteration 0: generate four initial agents (solutions)

iteration  

x 1  f (x 1)  8 

64 

pbest 1 f (pbest 1)

x 2  f (x 2)  3  9 

pbest 2 f (pbest 2)

x 3 

f (x 3) 

pbest 3 f (pbest 3)

x 4  f (x 4)  6  36 

pbest 4 f (pbest 4)

gbest   f (gbest )

AN ILLUSTRATIVE EXAMPLE 

Page 71: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 71/155

The best solutions for individuals and group can b

iteration  

x 1  f (x 1)  8 

64 

pbest 1 f (pbest 1) 8 

64 

x 2  f (x 2)  3  9 

pbest 1 f (pbest 1) 3 

x 3 

f (x 3) 

pbest 1 f (pbest 1) 2 

x 4  f (x 4)  6  36 

pbest 1 f (pbest 1) 6 

36 

gbest   f (gbest ) 2 

AN ILLUSTRATIVE EXAMPLE 

Page 72: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 72/155

Iteration 1: assume r 1 = 0.2, r 2 = 0.8

Inertia coefficient Ф = (10-1)/10 = 0.9

v 11 = Ф·v 1

0+a 1·r 1·(pbest1-x 10)+a 2·r 2·(gbest-x 1

0)

= 0.9*0 + 2*0.2*(8-8) + 2*0.8*(2-8)

= -9.6

x 11= x 1

0+v 11 = 8-9.6 = -1.6

v 21 = 

Ф·v 20+a 1·r 1·(pbest2-x 20)+a 2·r 2·(gbest-x 20) 

= 0.9*0 + 2*0.2*(3-3) + 2*0.8*(2-3)

= -1.6

x 21= x 2

0+v 21 = 3-1.6= 1.4

AN ILLUSTRATIVE EXAMPLE 

Page 73: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 73/155

v 31 = Ф·v 3

0 + a 1·r 1·(pbest3-x 30) + a 2·r 2·(gbest-x 3

0)

= 0.9*0 + 2*0.2*(2-2) + 2*0.8*(2-2)= 0

x 31 = x 3

0+v 31 = 2+0 = 2

v 41= Ф·v 4

0+ a 1·r 1·(pbest4-x 40) + a 2·r 2·(gbest-x 4

0) 

=0.9*0 + 2*0.2*(6-6) + 2*0.8*(2-6)

= -6.4

x 41= x 4

0+v 41 = 6 - 6.4 = -0.4

AN ILLUSTRATIVE EXAMPLE 

Page 74: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 74/155

The solutions corresponding to individuals at itera

iteration  

x 1  f (x 1)  8 

64 

-1.6 2.56

pbest 1 f (pbest 1) 8 

64 

x 2  f (x 2)  3 

1.4 1.96

pbest 1 f (pbest 1) 3  9 

x 3 

f (x 3) 

2 4

pbest 1 f (pbest 1) 2 

x 4  f (x 4)  6 

36 

-0.4 0.16

pbest 1 f (pbest 1) 6 

36 

gbest   f (gbest ) 2 

AN ILLUSTRATIVE EXAMPLE 

Page 75: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 75/155

The best solutions for individuals and group are u

iteration  

x 1  f (x 1)  8 

64 

-1.6 2.56

pbest 1 f (pbest 1) 8 

64 

-1.6 2.56

x 2  f (x 2)  3 

1.4 1.96

pbest 1 f (pbest 1) 3  9  1.4 1.96

x 3  f 

(x 

3) 

2 4

pbest 1 f (pbest 1) 2 

2 4

x 4  f (x 4)  6 

36 

-0.4 0.16

pbest 1 f (pbest 1) 6 

36 

-0.4 0.16

gbest   f (gbest ) 2 

-0.4 0.16

AN ILLUSTRATIVE EXAMPLE 

Page 76: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 76/155

Iteration 2: assume r 1= 0.3, r 2 = 0.5

Inertia coefficient Ф = (10-2) / 10 = 0.8

v 12= Ф·v 1

1 + a 1·r 1·(pbest1-x 11) + a 2·r 2·(gbest-x 1

1)

= 0.8*(-9.6) + 2*0.3*(-1.6-(-1.6)) + 2*0.5*(-0.4-(-1.6))

= -6.48 

x 12= x 1

1+v 12 = -1.6 - 6.48 = -8.08

v 22=Ф·v 21+a 1·r 1·(pbest2-x 21)+a 2·r 2·(gbest-x 21) 

=0.8*(-1.6) + 2*0.3*(1.4-1.4) + 2*0.5*(-0.4-1.4)

= -3.08

x 22= x 2

1+v 22 = 1.4 - 3.08 = -1.68

AN ILLUSTRATIVE EXAMPLE 

Page 77: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 77/155

v 32= Ф·v 3

1 + a 1·r 1·(pbest3-x 31) + a 2·r 2·(gbest-x 3

1)

= 0.8*0 + 2*0.3*(2-2) + 2*0.5*(-0.4-2)

= -2.4

x 32= x 3

1+v 32 = 2 - 2.4 = -0.4

v 42= Ф·v 4

1 + a 1·r 1·(pbest4-x 41) + a 2·r 2·(gbest-x 4

1)

= 0.8*(-6.4) + 2*0.3*(-0.4-(-0.4)) + 2*0.5*(-0.4-(-0.4))

= -5.12

x 42= x 4

1+v 42 = -0.4 - 5.12 = -5.52

AN ILLUSTRATIVE EXAMPLE 

Page 78: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 78/155

The best solutions for individuals and group are u

iteration  

x 1  f (x 1)  8 

64 

-1.6 2.56 -8.08 65.29

pbest 1 f (pbest 1) 8 

64 

-1.6 2.56 -1.6 2.56

x 2  f (x 2)  3  9  1.4 1.96 -1.68 2.82

pbest 1 f (pbest 1) 3 

1.4 1.96 1.4 1.96

x 3 

f (x 3) 

2 4 -0.4 0.16

pbest 1 f (pbest 1) 2 

2 4 -0.4 0.16

x 4  f (x 4)  6  36  -0.4 0.16 -5.52 30.47

pbest 1 f (pbest 1) 6 

36 

-0.4 0.16 -0.4 0.16

gbest   f (gbest ) 2 

-0.4 0.16 -0.4 0.16

AN ILLUSTRATIVE EXAMPLE 

Page 79: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 79/155

v 33= Ф·v 3

2 + a 1·r 1·(pbest3-x 32) + a 2·r 2·(gbest-x 3

2)

= 0.7*(-2.4) + 2*0.5*(-0.4-(-0.4)) + 2*0.6*(-0.4-(-0.4))

= -1.68

x 33= x 3

2+v 33 = -0.4 - 1.68 = -2.08

v 43= Ф·v 4

2 + a 1·r 1·(pbest4-x 42) + a 2·r 2·(gbest-x 4

2)

= 0.7*(-5.12) + 2*0.5*(-0.4-(-5.52)) + 2*0.6*(-0.4-(-5.52

= 7.68

x 43= x 4

2+v 43 = -5.52 + 7.68 = 2.16

AN ILLUSTRATIVE EXAMPLE 

Page 80: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 80/155

The best solutions for individuals and group are u

iteration  

x 1  f (x 1)  8 

64 

-1.6 2.56 -8.08 65.29

pbest 1 f (pbest 1) 8 

64 

-1.6 2.56 -1.6 2.56

x 2  f (x 2)  3 

1.4 1.96 -1.68 2.82

pbest 1 f (pbest 1) 3 

1.4 1.96 1.4 1.96

x 3 

f (x 3) 

2 4 -0.4 0.16

pbest 1 f (pbest 1) 2 

2 4 -0.4 0.16

x 4  f (x 4)  6 

36 

-0.4 0.16 -5.52 30.47

pbest 1 f (pbest 1) 6  36  -0.4 0.16 -0.4 0.16

gbest   f (gbest ) 2 

-0.4 0.16 -0.4 0.16

AN ILLUSTRATIVE EXAMPLE 

Page 81: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 81/155

Iteration process

0

5

10

15

20

25

30

1 2 3 4 5

Average

Best

PSO –  SIMULATION

Page 82: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 82/155

x

y

PSO –  SIMULATION

Page 83: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 83/155

x

y

PSO –  SIMULATION

Page 84: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 84/155

x

y

PSO –  SIMULATION

Page 85: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 85/155

x

y

PSO –  SIMULATION

Page 86: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 86/155

x

y

PSO –  SIMULATION

Page 87: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 87/155

x

y

PSO –  SIMULATION

Page 88: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 88/155

x

y

PSO –  SIMULATION

Page 89: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 89/155

x

y

SCHWEFEL'S FUNCTION

Page 90: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 90/155

420.9= 

4=)( 

minimumglobal

500 

where

)()(1

i

i

n

i

i

 x

n x  f  

 x

 x x  f  

EVOLUTION INITIALIZATION

Page 91: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 91/155

EVOLUTION 5 ITERATION

Page 92: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 92/155

EVOLUTION 10 ITERATION

Page 93: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 93/155

EVOLUTION 15 ITERATION

Page 94: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 94/155

EVOLUTION 20 ITERATION

Page 95: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 95/155

EVOLUTION 25 ITERATION

Page 96: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 96/155

EVOLUTION 100 ITERATION

Page 97: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 97/155

EVOLUTION 500 ITERATION

Page 98: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 98/155

Page 99: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 99/155

PARTICLE SWARM OPTIMIZA _______________________

VARIANTS OF PSO –  DISCRE

VARIANTS OF PSO

Page 100: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 100/155

Discrete PSO ………………  can handle discrete

binary variables

MINLP PSO…………  can handle both discrete

binary and continuous variables.

Hybrid PSO…………. Utilizes basic mechanism of

PSO and the natural selection mechanism, which is

usually utilized by EC methods such as GAs.

DISCRETE PSO

Page 101: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 101/155

The original PSO treats nonlinear optimization pro

continuous variables.

Practical management and engineering problems

formulated as combinatorial optimization problems.

Kennedy and Eberhart developed a discrete version o

combinatorial optimization problems.

DISCRETE PSO 

Page 102: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 102/155

Kennedy and Eberhart proposed a model wherein the probability of an a

yes or no, true or false, or making some other decision is a function of

social factors as follows:

The parameter v, an agent’s tendency to make one or the other choice, wil

probability threshold.

If v is higher, the agent is more likely to choose 1, and lower values favor 0

1( 1) ( , , ,k k k 

i i i i p x f x v pbest gbe

DISCRETE PSO 

Page 103: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 103/155

Such a threshold requires staying in the range [0, 1]. One of

accomplishing this feature is the sigmoid function.

The agent’s tendency should be adjusted for success of the agent a

In order to accomplish this, a formula for each vik that will be so

the difference between the agent’s current position and the best p

so far by itself  and by the group should be developed.

1( )

1 exp( )

i   k 

i

 sig vv

DISCRETE PSO 

Page 104: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 104/155

Like the basic continuous version, the formula for the binary versio

be described as follows:

r1 and r2 are positive random numbers with a uniform distribution,

vector of random number of [0, 1].

1

1 1 2 2( ) ( )k k k k

i i i i iv v c r pbest x c r gbest x

1 1 1

1

if ( ) then 1

 else 0

k k k 

i i i

i

 sig v x

 x

    

DISCRETE PSO 

Page 105: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 105/155

These formulas are iterated repeatedly over each dimension of eac

vik can be limited so that sig(vi

k ) does not approach too closely to 0

This ensures that there is always some chance of a bit flipping.

A constant parameterV 

max (limited value ofv

i

k

) can be set at the stIn practice, V max is often set in [-4.0, +4.0].

The entire algorithm of the binary version of PSO is almost the sa

the basic continuous version except for the state equations.

PARTICLE SWARM OPTIMIZA

Page 106: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 106/155

PARTICLE SWARM OPTIMIZA

 _______________________VARIANTS OF PSO –  PS

CONSTRICTION FACTO

PSO WITH CFA 

Page 107: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 107/155

When using PSO, it is possible for the magnitude of the velocities t

large.

Performance can suffer if V max is inappropriately set.

Two methods were developed for controlling the growth of velocitie

A dynamically adjusted inertia factor, and

A constriction coefficient.

PSO WITH CFA

Page 108: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 108/155

The basic system equation of PSO

can be considered as a kind of difference equation.

The system dynamics, that is, the search procedure, can be a

eigenvalues of the difference equation.

1

1 1 2 2( ) (

k k k k

i i i i iv wv c r pbest X c r gbest X  

1 1k k k 

i i i X X v

max minmax

max

w ww w k 

iter 

PSO WITH CFA 

Page 109: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 109/155

Using a simplified state equation of PSO, Clerc and Kennedy devPSO by eigenvalues.

The velocity of the constriction factor approach (simplest constexpressed as

    and K  are coefficients. If  =4.1, then K=0.729.

As   increases above 4.0, K  gets smaller. For example, If  =5.0, then K=0

)]()([ 2211

1   k 

i

ii

i

i   X  gbest r c X  pbest r cv K v  

4 , where,42

221

2

    

   cc K 

PSO WITH CFA 

Page 110: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 110/155

The convergence characteristics of the system can be c

 .

Clerc et al. found that the system behavior can be contr

the system behavior has the following features:

The system does not diverge in a real-valued region and finally

The system can search different regions efficiently by avoi

convergence.

PSO WITH CFA 

Page 111: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 111/155

The whole PSO algorithms by WEIGHTS and CFA are the

that CFA utilizes a different equation for calculation of veloc

PSO with CFA ensures the convergence of the search proc

on mathematical theory.

PSO with CFA can generate higher-quality solutions for so

than PSO with WEIGHTS.

SOME OTHER VARIANTS 

Page 112: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 112/155

Tribes (Clerc, 2006) –  aims to adapt population size, so that it does not have to be

ARPSO (Riget and Vesterstorm, 2002) –  uses a diversity measure to alternate betw

Dissipative PSO (Xie, et al., 2002) –  increasing randomness;

PSO with self-organized criticality (Lovbjerg and Krink, 2002) –  aims to improve

Self-organizing Hierachicl PSO (Ratnaweera, et al. 2004);

FDR-PSO (Veeramachaneni, et al., 2003) –  using nearest neighbour interactions;

PSO with mutation (Higashi and Iba, 2003; Stacey, et al., 2004)

Cooperative PSO (van den Bergh and Engelbrecht, 2005) –  a cooperative approach

DEPSO (Zhang and Xie, 2003) –  aims to combine DE with PSO;

CLPSO (Liang, et al., 2006) –  incorporate learning from more previous best partic

Page 113: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 113/155

PARTICLE SWARM OPTIMIZA _______________________SOME ATTRIBUTES O

ATTRIBUTES OF PSO Like GA PSO is population based stochastic optimization

Page 114: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 114/155

Like GA, PSO is population based stochastic optimization.

Algorithms starts with a group of a randomly generated population

PSO has fitness values to evaluate the population.

Update the population and search for the optimium with random tec

PSO does not have genetic operators like crossover and mutation. Pthemselves with the internal velocity.

They also have memory, which is important to the algorithm.

ATTRIBUTES OF PSO Particles do not die.

Page 115: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 115/155

The information sharing mechanism in PSO is significantly different Info from best to others.

PSO has a memory NOT “what”  that best solution was, but “where”  that best solution was

Quality: Population responds to quality factors pbest  and gbest .

Diverse Response: Responses allocated between pbest  and gbest .

 Stability: Population changes state only when gbest  changes.

ATTRIBUTES OF PSO  Adaptability: Population does change state when gbest  changes.

Page 116: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 116/155

p y p g g g

There is no selection in PSO All particles survive for the length of the run. PSO is the only EA that does not remove candidate population members.

In PSO, topology is constant; a neighbor is a neighbor.

Simple in concept

Easy to implement

Computationally efficient.

Page 117: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 117/155

PARTICLE SWARM OPTIMIZA _______________________PITFALLS O

PITFALLS OF PSO

Tendency to cluster very quickly

Page 118: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 118/155

Tendency to cluster very quickly

Reinitialization

Use multiple velocity update strategies

Particles may move into infeasible region

Disregard the particles

Modify or repair the particle to move it back into feasible region

Problem specific

Page 119: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 119/155

PARTICLE SWARM OPTIMIZA _______________________OPTIMIZATION IN DYNAMIC ENVIRO

OPTIMIZATION IN DYNAMIC ENVIRO

Many real-world optimization problems are dynamic and require

Page 120: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 120/155

y p p y qalgorithms capable of adapting to the changing optima over time.

E.g., Traffic conditions in a city change dynamically

and continuously. What might be regarded as an

optimal route at one time might not be optimal in

the next minute.

In contrast to optimization towards a static optimum, in a dynamic egoal is to track as closely as possible the dynamically changing optim

OPTIMIZATION IN DYNAMIC ENVIRO

WHY PSO??????????????????

Page 121: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 121/155

With a population of candidate solutions, a PSO algorithm can

information about characteristics of the environment. PSO, as characterized by its fast convergence behavior, has an in-built

to a changing environment.

Some early works on PSO have shown that PSO is effective for locatoptima in both static and dynamic environments.

Two major issues must be resolved when dealing with dynamic prob

How to detect that a change in the environment has actually occurred?

How to respond  appropriately to the change so that the optima can still

Page 122: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 122/155

PARTICLE SWARM OPTIMIZA _______________________EXA

EXAMPLE 1: COMBINATORIAL OPTIMIZ

Combinatorial optimization problem

Page 123: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 123/155

Combinatorial optimization problem

Issue: How to ensure x take integers in the iteration process?

Use the binary version of PSO, represent x as a binary string.

2 21 2

1

2

1 2

min ( ) ( 1) ( 2)

. . 0 6

  0 10

  , are integers

  f x x x

 s t x

 x

 x x

EXAMPLE 1: COMBINATORIAL OPTIMIZ

Choose the length of binary string

Page 124: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 124/155

g y g

For x 1

For x 2

The binary length for (x 1, x 2) is 3+4=7

For Instance1 0 0 0 1 0 1

x 1=4 x 2=5

1 12 2 2

6 0log log log 6

accuracy required 1

b alength

   

2 22 2 2

10 0log log log 1

accuracy required 1

b alength

 

EXAMPLE 1: COMBINATORIAL OPTIMIZ

Suppose the population size is four.

Page 125: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 125/155

Initialization

Binary Integer objective function

1 0 0 1 0 1 1 (4, 11) f =90

0 1 1 1 1 1 0 (3,12) f =104

0 0 0 0 1 1 1 (0,7) f =26

1 1 1 0 0 1 1 (7,3) f =37 Set v 1

0= v 20=v 3

0=v 40=(0 0 0 0 0 0 0)

gbest=(0 0 0 0 1 1 1)

EXAMPLE 1: COMBINATORIAL OPTIMIZ

Iteration: iter=1

Page 126: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 126/155

Binary Integer objective function

Agent1 0 1 0 0 0 0 0  (2,0) f =5Agent2 1 0 0 1 0 0 1  (4,11) f =90

Agent3 1 0 1 0 1 0 1  (5,5) f =25

Agent4 0 0 0 0 1 0 1  (0,7) f =26

pbest1 0 1 0 0 0 0 0  (2,0) f =5

pbest2 1 0 0 1 0 0 1  (4,11)f =90

Pbest3 1 0 1 0 1 0 1  (5,5) f =25

pbest4 0 0 0 0 1 0 1  (0,7) f =26

gbest 0 1 0 0 0 0 0  (2,0) f =5

EXAMPLE 1: COMBINATORIAL OPTIMIZ

Iteration: iter=2

Page 127: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 127/155

Binary Integer objective function

Agent1 0 1 0 0 0 0 0  (2,0) f =5Agent2 1 1 0 0 1 0 1 (6,7) f =50

Agent3 0 0 0 0 0 0 0 (0,0) f =5

Agent4 0 0 0 0 1 0 1 (0,5) f =10

pbest1 0 1 0 0 0 0 0  (2,0) f =5

pbest2 1 1 0 0 1 0 1 (6,7) f =50

pbest3 0 0 0 0 0 0 0 (0,0) f =5

pbest4 0 0 0 0 1 0 1 (0,5) f =10

gbest 0 0 0 0 0 0 0 (0,0) f =5

EXAMPLE 1: COMBINATORIAL OPTIMIZ

Iteration: iter=10

Page 128: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 128/155

Binary Integer objective function

Agent1 0 0 1 0 0 1 0  (1,2) f =0Agent2 0 0 0 0 0 1 0  (0,2) f =1

Agent3 0 0 1 0 0 1 0  (1,2) f =0

Agent4 0 0 1 0 1 1 0 (1,4) f =4

pbest1 0 0 1 0 0 1 0  (1,2) f =0

pbest2 0 0 0 0 0 1 0  (0,2) f =1

pbest3 0 0 1 0 0 1 0  (1,2) f =0

pbest4 0 0 1 0 1 1 0 (1,4) f =4

gbest 0 0 1 0 0 1 0  (1,2) f =0

EXAMPLE 1: COMBINATORIAL OPTIMIZ

Page 129: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 129/155

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9

iter

f (x )

EXAMPLE 2: WEAPON TARGET ALLOCA

Weapon Target Allocation is a reactive assignment of

Page 130: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 130/155

p g g

engage incoming missile threats.

Decision making on deployment of various types of defending

Multilayer is complex due to various modern and sophistica

weapons, different types of defending weapons required to

attacking weapons so as to increase the survivability of the assets

spent for procurement, deployment and operation of such defend

Manning of these weapons, area availability at the assvalues/preference/priorities set for each asset by decision maker

asset more than the other etc.

EXAMPLE 2: WEAPON TARGET ALLOCA

Mathematical Model

Page 131: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 131/155

Let

 D = Types of defending weapons availableS = Number of assets

 A = Types of attacking weapons

k dsa = Probability of successful interception by one defentype d   deployed to defend an asset  s against an attactype a 

 xdsa = Number of defending weapons of type d  that are deploattacking weapon of type a to defend asset s (defense p

n sa = Number of attacking weapons of type a aimed at asset

 g  sa = The probability that a single attacking weapons of typasset s when it is able to penetrate the defending weap

EXAMPLE 2: WEAPON TARGET ALLOCA

v s = Value of asset s 

Page 132: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 132/155

cd = Cost of operating one defending weapon of type d  

md = Manpower required per defending weapon of type d

 Bd = Number of defending weapons of type d

 Ra = Number of attacking weapons of type a

G s = Ground area available at asset s

t d = Ground area required by a defending weapon of type dC max = Maximum operating cost of weapons deployed

 M maxd = Maximum available manpower to operate defending w

EXAMPLE 2: WEAPON TARGET ALLOCA

The  probability  that weapons deployed in d th layer w

Page 133: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 133/155

p y p p y y

able to intercept a single attacking weapon of type a ogiven by

The  probability  that a single attacking weapon of typ

intercepted by any layer on asset s is given by

(1 )dsa

 sa

 x

n

dsak 

1

(1 )dsa

 sa

 x D

n

dsad 

EXAMPLE 2: WEAPON TARGET ALLOCA

The probability  that a single attacking weapon of type

Page 134: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 134/155

p y g g p yp

the asset s is given by

The survival probability of asset s by multiple layer deattacked by all types of attacking weapons is given by

1

(1 )dsa

 sa

 x D

n

dsa sad 

k g 

1 1

( ) 1 (1 )

 sadsa

 sa

n x

 A Dn

dsa saa d 

 H s k g 

EXAMPLE 2: WEAPON TARGET ALLOCA

The objective  from the defending side is to maximi

Page 135: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 135/155

j g

expected value of the surviving assets which is given by

From the attacking side, the problem is to minimizobjective function.

1

( )S 

 s s

v H s

EXAMPLE 2: WEAPON TARGET ALLOCA

Constraints

Page 136: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 136/155

Weapon availability

Area availability

Cost

Manpower

1 1

, 1, , D A

d dsa sd a

t x G s S  

max1 1 1

 D S A

d dsad s a c x C 

max1 1

, 1, ,S A

d dsa d   s a

m x M d D

1 1

, 1, ,S A

dsa d   s a

 x B d D

EXAMPLE 2: WEAPON TARGET ALLOCA

This is an Integer Nonlinear Programming  prob

Page 137: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 137/155

g g g p

constraints.

S.t.1 1

, 1, , D A

d dsa sd a

t x G s S  

max1 1 1

 D S A

d dsad s a

c x C 

max1 1

, 1, ,S A

d dsa d   s a

m x M d D

1 1

, 1, ,S A

dsa d   s a

 x B d D

1 1 1

max 1 (1 )

 sadsa

 sa

n x

 A DS  n s dsa sa

 s   a d 

v k g   

 

EXAMPLE 2: WEAPON TARGET ALLOCA

By constructing a penalty function, transform i

Page 138: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 138/155

y g p y

optimization problem without constraint

1 1 1

2

1 1 1

2

1 1 1

1 1 1

max ( ) 1 (1 )

  max[0, ]

  max[0, ]

  max[0,

 sadsa

 sa

n x

 A DS n

 s dsa sa s   a d 

 D S A

d dsa d  d s a

S D A

 s d dsa s s d a

S A

d dsad s a

  f x v k g 

 x B

t x G

c x

 

  

  

 

 

 

2

max

2

max1 1 1

]

  max[0, ]

 D

 D S A

d d dsa d  d s a

m x M  

EXAMPLE 2: WEAPON TARGET ALLOCA

Consider that two types of weapons are available to defend three a

Page 139: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 139/155

two types of attacking weapons.

The maximum number of available defending weapons of the first

and that of the second type is 50.

 B1=100,  B2=50

The number of attacking weapons of the first and the second type a

respectively.

 R1=50,  R2=29

EXAMPLE 2: WEAPON TARGET ALLOCA

The values of the first, second and third assets are 40

Page 140: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 140/155

200 respectively

v1=400, v2=300, v3=200

 Assume the attack plan is known, the allocation o

weapons is as follows:

n11=5, n12=9, n21=25, n22=7, n31=20, n32=13

n11+n21+n31=5+25+20=50, n12+n22+n32=9+7+13=29

EXAMPLE 2: WEAPON TARGET ALLOCA

Effectiveness  of defending weapons and damage probabilitie

weapons

Page 141: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 141/155

pDefending weapon type (d )  Asset (s )  Attacking weapon type (a )  k dsa

0.20 

2  1  1  0.60 

1  1  2  0.35 

2  1  2  0.50 

1  2  1  0.25 

2  2  1  0.50 

1  2  2  0.20 

2  2  2  0.45 

1  3  1  0.35 

2  3  1  0.45 

1  3  2  0.25 

2  3  2  0.65 

EXAMPLE 2: WEAPON TARGET ALLOCA

Problem : Determine an optimal defense plan against the k

Page 142: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 142/155

 plan

Consider the constraint of weapon availability alone. C

 penalty function

Set  1=  2=100

2 23 2 3

1 1 11 1

max ( ) 1 (1 ) max[0,

 sadsa

 sa

n x

n

 s dsa sa d  s d s a d 

  f x v k g  

EXAMPLE 2: WEAPON TARGET ALLOCA

Binary coding

Page 143: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 143/155

Since B1=100, so 0 x111, x112, x121, x122, x131, x132 100

Since B2=50, so 0 x211, x212, x221, x222, x231, x232 50

A solution x=( x111, x112, x121, x122, x131, x132 , x211, x212, x221, x222, x231, x2

encoded as a 78-bit binary string (7 bits6+6 bits 6= 78)

2 2log log 100 6.64 (take 7)accuracy required

b alength

 

2 2log log 50 5.64 (take 6)

accuracy required

b alength

 

EXAMPLE 2: WEAPON TARGET ALLOCA

For instance

Page 144: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 144/155

1 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 0 0 1 1 1 0 0 1 0 0 1 1

indicates

 x=( x111, x112, x121, x122, x131, x132 , x211, x212, x221, x222, x231, x232 ) 

=(92, 106, 62, 121, 102, 16, 47, 56, 63, 36, 14, 19)

Set Number of agents=10, iter max=100

EXAMPLE 2: WEAPON TARGET ALLOCA

800

Page 145: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 145/155

-600

-400

-200

0

200

400

600

800

0 10 20 30 40 50 60 70 80 90

Iter

f (x )

EXAMPLE 2: WEAPON TARGET ALLOCA

Optimal solution

Page 146: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 146/155

x 111= 2 x 112=40 x 121= 8 x 122= 10 x 131=34 x 132= 6 ( =100)

 x 211=3 x 212=8 x 221= 25 x 222= 0 x 231=2 x 232= 12 ( =50)

Optimal objective function: 544.8

PSO

Page 147: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 147/155

THE FUTURE?

Page 148: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 148/155

REFERENCE BOOKS

Swarm Intelligence

/

Page 149: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 149/155

James Kennedy, Russell C Eberhart, Academic Press /

Morgan Kaufmann, 2001

Practical Optimization: Algorithms and Engineering

Applications

Andreas Antoniou and Wu-Sheng Lu 2007

PARTICLE SWARM OPTIMIZA

Page 150: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 150/155

PARTICLE SWARM OPTIMIZA

 _______________________PSO IN M

1)Sphere Function 

STANDARD BENCHMARK FUNCT

Page 151: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 151/155

  n

n

i

i   x x x  f   5,5,1

2

 It is continuous, convex, uni-modal and

one of the simplest benchmark tests.

 Also known as DeJong’s function. 

     

  1

222

1 10,10,1100n

n

iii   x x x x x  f  

2)Rosenbrock Function 

STANDARD BENCHMARK FUNCT

Page 152: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 152/155

1i

 Rosenbrock function is a classic

optimization problem, also known as banana

function or the second function of de Jong.

 The global minimum is present inside a long,

narrow, parabolic-shaped flat valley.

 To locate the valley is trivial, however,convergence to the global optimum is difficult

and hence it has been frequently used to assess

the performance of optimization algorithms.

 D

2

3)Rastrigin Function 

STANDARD BENCHMARK FUNCT

Page 153: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 153/155

i

ii   x x x  f  

1

2 102cos10     

 Rastrigin's function is often used to evaluate

global optimizers.

 This function is comparatively a difficult

 problem because of its large search space and

the large number of local minima.

The function is highly multi-modal, and the

locations of the minima are regularly

distributed.

4)Ackley Function 

  nn

i

n

 x xn

 xn

e x  f   32,32,2cos1

exp1

2.0exp2020 2

 

 

 

     

STANDARD BENCHMARK FUNCT

Page 154: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 154/155

ii nn 11    

 

 The Ackley problem has several local

minima but only one global minimum.

 It is a widely used multi-modal test function.

Page 155: Msdo 2015 Lecture 8 Pso

7/23/2019 Msdo 2015 Lecture 8 Pso

http://slidepdf.com/reader/full/msdo-2015-lecture-8-pso 155/155

THANK YOU FOR YOUR INT