MRI, FBP and phase encoding. Spins Precession RF pulse.

23
MRI, FBP and phase MRI, FBP and phase encoding encoding
  • date post

    15-Jan-2016
  • Category

    Documents

  • view

    228
  • download

    0

Transcript of MRI, FBP and phase encoding. Spins Precession RF pulse.

Page 1: MRI, FBP and phase encoding. Spins Precession RF pulse.

MRI, FBP and phase MRI, FBP and phase encodingencoding

Page 2: MRI, FBP and phase encoding. Spins Precession RF pulse.

SpinsSpins

Page 3: MRI, FBP and phase encoding. Spins Precession RF pulse.

PrecessionPrecession

Page 4: MRI, FBP and phase encoding. Spins Precession RF pulse.

RF pulseRF pulse

Page 5: MRI, FBP and phase encoding. Spins Precession RF pulse.

T1 and T2T1 and T2

Page 6: MRI, FBP and phase encoding. Spins Precession RF pulse.

Bloch EquationsBloch Equations

Page 7: MRI, FBP and phase encoding. Spins Precession RF pulse.

ReceiverReceiver

Page 8: MRI, FBP and phase encoding. Spins Precession RF pulse.

T1 and T2T1 and T2

Page 9: MRI, FBP and phase encoding. Spins Precession RF pulse.

Effect of tissueEffect of tissueT1 and T2 CONSTANTS

T1 Constants at 1.5 T Controlled by TR

T2 Constants at 1.5 T Controlled by TE

Fat85

Muscle86045

White matter78090

Gray matter920100

CSF30001400

Page 10: MRI, FBP and phase encoding. Spins Precession RF pulse.

Slice selectionSlice selection

Page 11: MRI, FBP and phase encoding. Spins Precession RF pulse.

Slice selectionSlice selection

Page 12: MRI, FBP and phase encoding. Spins Precession RF pulse.

FBPFBP

Page 13: MRI, FBP and phase encoding. Spins Precession RF pulse.

Filtered Back ProjectionFiltered Back Projection

Page 14: MRI, FBP and phase encoding. Spins Precession RF pulse.

FilteredFiltered B Baack Projectionck Projection

Page 15: MRI, FBP and phase encoding. Spins Precession RF pulse.

Filtered Back Projection

Page 16: MRI, FBP and phase encoding. Spins Precession RF pulse.

Filtered backprojection• Filter the measured projection data at different projection angles with a special function.• Backproject the filtered projection data to form the reconstructed image.

Filtering can be implemented in 2 ways, in the spatial domain, the filter operation is equivalent to to convolving the measured projection data using a special convolving function h(t)

p t p t h t, ( , ) ( , ) ( )

More efficient multiplication will be in the spatial frequency domain.• FFT the measured projection data into the frequency domain:p(,)=FT {p(t, )• Multiply the the fourier transform projections with the special function.•Inverse Fourier transform the product p’(,).

Page 17: MRI, FBP and phase encoding. Spins Precession RF pulse.

Phase EncodingPhase Encoding

Gradient

Slice Plane

Slice Phase Frequency

XY Z X or Y Y or X

XZ Y X or Z Z or X

YZ X Y or Z Z or Y

Page 18: MRI, FBP and phase encoding. Spins Precession RF pulse.

Phase encodingPhase encoding

Page 19: MRI, FBP and phase encoding. Spins Precession RF pulse.

K spaceK space

Page 20: MRI, FBP and phase encoding. Spins Precession RF pulse.

K SpaceK Space

Page 21: MRI, FBP and phase encoding. Spins Precession RF pulse.

Partial K Partial K space space

reconstrucreconstructiontion

Page 22: MRI, FBP and phase encoding. Spins Precession RF pulse.

Partial K space Partial K space reconstructionreconstruction

Page 23: MRI, FBP and phase encoding. Spins Precession RF pulse.

Partial K space Partial K space reconstructionreconstruction