MRF6S18100N_pwrmosfet

download MRF6S18100N_pwrmosfet

of 20

Transcript of MRF6S18100N_pwrmosfet

  • 7/29/2019 MRF6S18100N_pwrmosfet

    1/20

    MRF6S18100NR1 MRF6S18100NBR1

    1RF Device DataFreescale Semiconductor

    RF Power Field Effect TransistorsN-Channel Enhancement-Mode Lateral MOSFETs

    Design ed for GSM and GSM EDGE base stat ion appl ic at ions with

    freq uenc ies from 1800 to 2000 MHz. Suita ble for TDMA, CDMA and

    multicarrier amplifier applications.

    GSMApplication Typical GSM Performance: VDD = 28 Volts, IDQ = 900 mA, Pout =

    100 Watts, Full Frequency Band (1805-1880 MHz or 1930-1990 MHz)Power Gain 14.5 dBDrain Efficiency 49%

    GSM EDGE Application

    Typical GSM EDGE Performance: VDD = 28 Volts, IDQ = 700 mA,Pout = 40 Watts Avg., Full Frequency Band (1805-1880 MHz or1930- 1990 MHz)

    Power Gain 15 dBDrain Efficiency 35%Spectral Regrowth @ 400 kHz Offset = -63 dBcSpectral Regrowth @ 600 kHz Offset = -76 dBcEVM 2% rms

    Capable of Handling 5:1 VSWR, @ 28 Vdc, 1990 MHz, 100 Watts CW

    Output Power

    Features

    Characterized with Series Equivalent Large-Signal Impedance Parameters

    Internally Matched for Ease of Use

    Qualified Up to a Maximum of 32 VDDOperation

    Integrated ESD Protection

    Designed for Lower Memory Effects and Wide Instantaneous BandwidthApplications

    200C Capable Plastic Package

    RoHS Compliant

    In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.

    Table 1. Maximum Ratings

    Rating Symbol Value Unit

    Drain-Source Voltage VDSS -0.5, +68 Vdc

    Gate-Source Voltage VGS -0.5, +12 Vdc

    Total Device Dissipation @ TC = 25C

    Derate above 25C

    PD 343

    1.96

    W

    W/C

    Storage Temperature Range Tstg - 65 to +175 C

    Operating Junction Temperature TJ 200 C

    Table 2. Thermal Characteristics

    Characteristic Symbol Value(1,2)

    UnitThermal Resistance, Junction to Case

    Case Temperature 80C, 100 CW

    Case Temperature 77C, 40 CW

    RJC0.51

    0.62

    C/W

    1. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access

    the MTTF calculators by product.

    2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.

    Select Documentation/Application Notes - AN1955.

    Document Number: MRF6S18100NRev. 1, 5/2006

    Freescale SemiconductorTechnical Data

    MRF6S18100NR1MRF6S18100NBR1

    1805-1990 MHz, 100 W, 28 V

    GSM/GSM EDGE

    LATERAL N-CHANNEL

    RF POWER MOSFETs

    CASE 1486-03, STYLE 1TO-270 WB-4

    MRF6S18100NR1

    CASE 1484-04, STYLE 1

    TO-272 WB-4

    MRF6S18100NBR1

    Freescale Semiconductor, Inc., 2006. All rights reserved.

  • 7/29/2019 MRF6S18100N_pwrmosfet

    2/202

    RF Device DataFreescale Semiconductor

    MRF6S18100NR1 MRF6S18100NBR1

    Table 3. ESD Protection Characteristics

    Test Methodology Class

    Human Body Model (per JESD22-A114) 1B (Minimum)

    Machine Model (per EIA/JESD22-A115) A (Minimum)

    Charge Device Model (per JESD22-C101) IV (Minimum)

    Table 4. Moisture Sensitivity Level

    Test Methodology Rating Package Peak Temperature Unit

    Per JESD 22-A113, IPC/JEDEC J-STD-020 3 260 C

    Table 5. Electrical Characteristics (TC = 25C unless otherwise noted)

    Characteristic Symbol Min Typ Max Unit

    Off Characteristics

    Zero Gate Voltage Drain Leakage Current

    (VDS = 68 Vdc, VGS = 0 Vdc)

    IDSS 10 Adc

    Zero Gate Voltage Drain Leakage Current

    (VDS = 28 Vdc, VGS = 0 Vdc)

    IDSS 1 Adc

    Gate-Source Leakage Current

    (VGS = 5 Vdc, VDS = 0 Vdc)

    IGSS 500 nAdc

    On Characteristics

    Gate Threshold Voltage(VDS = 10 Vdc, ID = 330 Adc)

    VGS(th) 1.6 2 3 Vdc

    Gate Quiescent Voltage

    (VDS = 28 Vdc, ID = 900 mAdc, Measured in Functional Test)

    VGS(Q) 1.5 2.8 3.5 Vdc

    Drain-Source On-Voltage

    (VGS = 10 Vdc, ID = 3.3 Adc)

    VDS(on) 0.24 Vdc

    Forward Transconductance

    (VDS = 10 Vdc, ID = 3.3 Adc)

    gfs 5.3 S

    Dynamic Characteristics(1)

    Reverse Transfer Capacitance

    (VDS = 28 Vdc 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)

    Crss 1.5 pF

    Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, Pout = 100 W, IDQ = 900 mA, f = 1930-1990 MHz

    Power Gain Gps 13 14.5 16 dB

    Drain Efficiency D 47 49 %

    Input Return Loss IRL -12 -9 dB

    Pout @ 1 dB Compression Point P1dB 100 110 W

    1. Part internally matched both on input and output.

    (continued)

  • 7/29/2019 MRF6S18100N_pwrmosfet

    3/20

    MRF6S18100NR1 MRF6S18100NBR1

    3RF Device DataFreescale Semiconductor

    Table 5. Electrical Characteristics (TC = 25C unless otherwise noted (continued)

    Characteristic Symbol Min Typ Max Unit

    Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 hm system) VDD= 28 Vdc, IDQ= 700 mA, Pout =

    40 W Avg., 1805-1880 MHz or 1930-1990 MHz EDGE Modulation

    Power Gain Gps 15 dB

    Drain Efficiency D 35 %

    Error Vector Magnitude EVM 2 % rms

    Spectral Regrowth at 400 kHz Offset SR1 -63 dBc

    Spectral Regrowth at 600 kHz Offset SR2 -76 dBc

    Typical CW Performances (In Freescale GSM Test Fixture, 50 hm system) VDD= 28 Vdc, IDQ= 900 mA, Pout = 100 W,

    1805-1880 MHz

    Power Gain Gps 14.5 dB

    Drain Efficiency D 49 %

    Input Return Loss IRL -12 dB

    Pout @ 1 dB Compression Point P1dB 110 W

  • 7/29/2019 MRF6S18100N_pwrmosfet

    4/204

    RF Device DataFreescale Semiconductor

    MRF6S18100NR1 MRF6S18100NBR1

    Figure 1. MRF6S18100NR1(NBR1) Test Circuit Schematic 1930-1990 MHz

    Z9 0.485x 1.000Microstrip

    Z10* 0.590x 0.083Microstrip

    Z11* 0.805x 0.083Microstrip

    Z13, Z14 0.870x 0.080Microstrip

    PCB Taconic TLX8 -0300, 0.030, r = 2.55

    *Variable for tuning.

    Z1, Z12 0.250x 0.083Microstrip

    Z2* 0.450x 0.083Microstrip

    Z3* 0.535x 0.083Microstrip

    Z4* 0.540x 0.083Microstrip

    Z5 0.365x 1.000Microstrip

    Z6 1.190x 0.080MicrostripZ7, Z8 0.115x 1.000Microstrip

    VBIAS VSUPPLY

    RF

    OUTPUTRF

    INPUT

    DUT

    C1 C2 C3 C4 C5

    R1

    Z1 Z2 Z3

    C6

    Z8

    R2Z6

    R3

    Z7

    Z13

    Z14

    VSUPPLY

    C11 C12 C13

    C7 C8

    Z4 Z5 Z9

    C10

    Z10 Z11 Z12

    C14+

    C9

    Table 6. MRF6S18100NR1(NBR1) Test Circuit Component Designations and Values 1930-1990 MHz

    Part Description Part Number Manufacturer

    C1 100 nF Chip Capacitor (1206) 1206C104KAT AVX

    C2, C3, C6, C10, C11 6.8 pF 600B Chip Capacitors 600B6R8BW ATC

    C4, C5, C12, C13 4.7 F Chip Capacitors (1812) C4532X5R1H475MT TDK

    C7 0.3 pF 700B Chip Capacitor 700B0R3BW ATC

    C8 1.3 pF 600B Chip Capacitor 600B1R3BW ATC

    C9 0.5 pF 600B Chip Capacitor 600B0R5BW ATC

    C14 470 F, 63 V Electrolytic Capacitor, Radial 13661471 Philips

    R1, R2 10 k, 1/4 W Chip Resistors (1206)

    R3 10 , 1/4 W Chip Resistor (1206)

  • 7/29/2019 MRF6S18100N_pwrmosfet

    5/20

    MRF6S18100NR1 MRF6S18100NBR1

    5RF Device DataFreescale Semiconductor

    Figure 2. MRF6S18100NR1(NBR1) Test Circuit Component Layout 1930- 1990 MHz

    MRF6S18100N

    CUTOUTAREA

    R1

    Rev. 0

    R2 C1 C2

    R3

    C6

    C7 C8

    C14

    C3C4 C5

    C9

    C10

    C11 C12 C13

  • 7/29/2019 MRF6S18100N_pwrmosfet

    6/206

    RF Device DataFreescale Semiconductor

    MRF6S18100NR1 MRF6S18100NBR1

    TYPICAL CHARACTERISTICS 1930-1990 MHz

    Gps,

    POWERGAIN(dB)

    IRL,

    INPUTR

    ETURNLOSS(dB)

    f, FREQUENCY (MHz)

    131900

    20

    Gps

    VDD = 28 Vdc

    IDQ = 900 mA

    17 60

    50

    40

    30

    2020

    IRL

    Figure 3. Power Gain, Input Return Loss and Drain

    Efficiency versus Frequency @ Pout = 100 Watts

    30

    0

    10

    20

    40

    D,

    DRAIN

    EFFICIENCY(%)

    16

    15

    14

    D

    1920 1940 1960 1980 2000

    Gps,

    POWERGAIN(dB)

    IRL,

    INPUTRETURNLOSS(dB)

    f, FREQUENCY (MHz)

    131900

    20

    Gps

    VDD = 28 Vdc

    IDQ = 900 mA

    17 60

    50

    40

    30

    2020

    IRL

    Figure 4. Power Gain, Input Return Loss and Drain

    Efficiency versus Frequency @ Pout = 40 Watts

    30

    0

    10

    20

    40

    D,

    DRAINEFFICIENCY(%)

    16

    15

    14D

    1920 1940 1960 1980 2000

    Figure 5. Power Gain versus Output Power

    Pout, OUTPUT POWER (WATTS)

    VDD = 28 Vdc

    f = 1960 MHz

    1125 mA

    IDQ = 1350 mA

    10

    11

    1

    16

    14

    13

    12

    100

    Gps,

    PO

    WERGAIN(dB)

    15

    900 mA

    665 mA

    450 mA

    40

    2

    0

    16

    12

    10

    6

    4

    20 16060 80

    Figure 6. Power Gain versus Output Power

    Pout, OUTPUT POWER (WATTS) CW

    VDD = 12 V

    28V

    IDQ = 900 mA

    f = 1960 MHz

    Gps,P

    OWERGAIN(dB)

    24V

    20V16V

    32V

    14

    8

    100 120 140

  • 7/29/2019 MRF6S18100N_pwrmosfet

    7/20

    MRF6S18100NR1 MRF6S18100NBR1

    7RF Device DataFreescale Semiconductor

    TYPICAL CHARACTERISTICS 1930-1990 MHz

    Figure 7. Power Gain and Drain Efficiency

    versus CW Output Power

    Figure 8. EVM versus Frequency

    100

    8

    18

    1

    0

    50VDD = 28 Vdc

    IDQ = 900 mA

    f = 1960 MHz

    TC = 30_C

    30_C

    25_C

    85_C

    10

    16

    14

    12

    10

    40

    30

    20

    10

    Pout, OUTPUT POWER (WATTS) CW

    Figure 9. EVM and Drain Efficiency versus

    Output Power

    50

    60

    65

    70

    75

    1920

    85

    Figure 10. Spectral Regrowth at 400 kHz and

    600 kHz versus Frequency

    f, FREQUENCY (MHz)

    Pout= 61 W Avg.

    44 W Avg.

    20 W Avg.

    VDD = 28 Vdc

    IDQ = 700 mA

    Pout, OUTPUT POWER (WATTS) AVG.

    100

    4

    12V

    DD= 28 Vdc

    IDQ = 700 mA

    f = 1960 MHz

    EDGE Modulation

    8

    6

    0

    101

    2

    20

    60

    40

    30

    0

    10

    85_C

    Gps

    TC = 30_

    C

    25_C

    85_C

    75

    40

    0

    Pout, OUTPUT POWER (WATTS)

    50

    55

    60

    65

    70

    20

    Figure 11. Spectral Regrowth at 400 kHz

    versus Output Power

    D,

    DRAIN

    EFFICIENCY(%)

    D,

    DRAINEFFICIENCY(%)

    D

    Gps,P

    OWERGAIN(dB)

    EVM,

    ERRORVECT

    ORMAGNITUDE(%rms)

    20000

    5

    3

    1

    1980196019401920

    4

    2

    EVM,

    ERRORVECTORMAGNITUDE(%rm

    s)

    SPECTRALREG

    ROWTH@4

    00kHz(dBc)

    SPECTRALREGROWTH@4

    00kHzAND600kH

    z(dBc)

    25_C

    85_C

    10 50

    EVM

    25_C

    1940 1960 1980 2000

    VDD = 28 Vdc

    IDQ = 700 mA

    f = 1960 MHz

    EDGE Modulation

    Pout= 61 W Avg.

    44 W Avg.

    20 W Avg.

    61 W Avg.

    44 W Avg. 20 W Avg.

    f, FREQUENCY (MHz)

    40 60 80 100

    VDD = 28 Vdc, IDQ = 700 mA

    f = 1960 MHz, EDGE Modulation

    85_C

    25_C

    85

    55

    0

    Pout, OUTPUT POWER (WATTS)

    60

    70

    75

    80

    Figure 12. Spectral Regrowth at 600 kHz

    versus Output Power

    SPECTRALREG

    ROWTH@6

    00kHz(dBc)

    20 40 60 80 100

    65

    SR @ 400 kHz

    SR @ 600 kHz

    TC = 30_C55

    80

    1900 2020

    45VDD = 28 Vdc, IDQ = 700 mA

    f = 1960 MHz, EDGE Modulation

    D

    TC = 30_C

  • 7/29/2019 MRF6S18100N_pwrmosfet

    8/208

    RF Device DataFreescale Semiconductor

    MRF6S18100NR1 MRF6S18100NBR1

    TYPICAL CHARACTERISTICS

    210

    1.E+09

    90

    TJ, JUNCTION TEMPERATURE (C)

    This above graph displays calculated MTTF in hours x ampere2

    drain current. Life tests at elevated temperatures have correlated to

    better than 10% of the theoretical prediction for metal failure. Divide

    MTTF factor by ID2 for MTTF in a particular application.

    100 110 120 130 140 150 160 170 180

    1.E+08

    1.E+06

    1.E+07

    Figure 13. MTTF Factor versus Junction Temperature

    MTTFFACTOR(HOURSXAMPS2)

    190 200

    GSM TEST SIGNAL

    Figure 14. EDGE Spectrum

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    200 kHz Span 2 MHzCenter 1.96 GHz

    110

    400 kHz

    600 kHz

    400 kHz

    600 kHz

    (dB)

    Reference Power VBW = 30 kHz

    Sweep Time = 70 ms

    RBW = 30 kHz

  • 7/29/2019 MRF6S18100N_pwrmosfet

    9/20

    MRF6S18100NR1 MRF6S18100NBR1

    9RF Device DataFreescale Semiconductor

    Zo = 5

    Zload f = 1900 MHz

    f = 2020 MHzZsource

    f = 1900 MHz

    f = 2020 MHz

    VDD = 28 Vdc, IDQ = 900 mA, Pout = 100 W

    f

    MHz

    ZsourceW

    ZloadW

    1900 2.80 - j4.53 1.75 - j3.52

    1930 2.71 - j4.27 1.67 - j3.25

    1960 2.63 - j4.03 1.59 - j2.99

    1990 2.56 - j3.79 1.52 - j2.74

    2020 2.51 - j3.57 1.47 - j2.51

    Zsource = Test circuit impedance as measured fromgate to ground.

    Zload = Test circuit impedance as measuredfrom drain to ground.

    Zsource

    Zload

    Input

    Matching

    Network

    Device

    Under

    Test

    Output

    Matching

    Network

    Figure 15. Series Equivalent Source and Load Impedance 1930- 1990 MHz

  • 7/29/2019 MRF6S18100N_pwrmosfet

    10/2010

    RF Device DataFreescale Semiconductor

    MRF6S18100NR1 MRF6S18100NBR1

    Figure 16. MRF6S18100NR1(NBR1) Test Circuit Schematic 1805- 1880 MHz

    Z9 0.485x 1.000Microstrip

    Z10* 0.080x 0.083Microstrip

    Z11* 0.340x 0.083Microstrip

    Z12* 0.975x 0.083Microstrip

    Z14, Z15 0.960x 0.080Microstrip

    PCB Taconic TLX8 -0300, 0.030, r = 2.55*Variable for tuning.

    Z1, Z13 0.250x 0.083Microstrip

    Z2* 0.620x 0.083Microstrip

    Z3* 0.715x 0.083Microstrip

    Z4* 0.190x 0.083Microstrip

    Z5 0.365x 1.000Microstrip

    Z6 1.190x 0.080MicrostripZ7, Z8 0.115x 1.000Microstrip

    VBIAS VSUPPLY

    RF

    OUTPUTRF

    INPUT

    DUT

    C1 C2 C3 C4 C5

    R1

    Z1 Z2 Z3

    C6

    Z8

    R2Z6

    R3

    Z7

    Z14

    Z15

    VSUPPLY

    C14 C15 C16

    C7 C8

    Z4 Z5 Z9

    C13

    Z10 Z12 Z13

    C17+

    C10 C12

    Z11

    C11C9

    Table 7. MRF6S18100NR1(NBR1) Test Circuit Component Designations and Values 1805-1880 MHz

    Part Description Part Number Manufacturer

    C1 100 nF Chip Capacitor (1206) 1206C104KAT AVX

    C2, C3, C6, C13, C14 8.2 pF 600B Chip Capacitors 600B8R2BW ATC

    C4, C5, C15, C16 4.7 F Chip Capacitors (1812) C4532X5R1H475MT TDK

    C7, C8, C11, C12 0.2 pF 700B Chip Capacitors 700B0R2BW ATC

    C9 1 pF 600B Chip Capacitor 600B1R0BW ATC

    C10 0.5 pF 600B Chip Capacitor 600B0R5BW ATC

    C17 470 F, 63 V Electrolytic Capacitor, Radial 13661471 Philips

    R1, R2 10 k, 1/4 W Chip Resistor (1206)

    R3 10 , 1/4 W Chip Resistor (1206)

  • 7/29/2019 MRF6S18100N_pwrmosfet

    11/20

    MRF6S18100NR1 MRF6S18100NBR1

    11RF Device DataFreescale Semiconductor

    Figure 17. MRF6S18100NR1(NBR1) Test Circuit Component Layout 1805- 1880 MHz

    MRF6S18100N

    CUTOUTAREA

    R1

    Rev. 0

    R2 C1 C2

    R3

    C6

    C7 C8

    C17

    C3 C4 C5

    C10C13

    C14 C15 C16

    C9 C11 C12

  • 7/29/2019 MRF6S18100N_pwrmosfet

    12/2012

    RF Device DataFreescale Semiconductor

    MRF6S18100NR1 MRF6S18100NBR1

    TYPICAL CHARACTERISTICS 1805-1880 MHz

    Gps,

    PO

    WERGAIN(dB)

    IRL,

    INPUTRETU

    RNLOSS(dB)

    f, FREQUENCY (MHz)

    121800

    20

    Gps

    VDD = 28 Vdc

    IDQ = 900 mA

    17 60

    50

    40

    30

    1880

    IRL

    Figure 18. Power Gain, Input Return Loss and Drain

    Efficiency versus Frequency @ Pout = 100 Watts

    30

    0

    10

    20

    40

    D,

    DRAINEFF

    ICIENCY(%)

    16

    15

    14

    D

    1810 1820 1830 1840 1850

    13

    1860 1870

    1800 18801810 1820 1830 1840 1850 1860 1870

    Gps,

    POWERGAIN(dB)

    IRL,

    INPUTRETURNLOSS(dB)

    f, FREQUENCY (MHz)

    13 20

    Gps

    VDD = 28 Vdc

    IDQ = 900 mA

    16 50

    40

    30

    IRL

    Figure 19. Power Gain, Input Return Loss and Drain

    Efficiency versus Frequency @ Pout = 40 Watts

    30

    10

    20

    40

    D,

    DRAINEFFICIENCY(%)

    15

    14

    D

    Figure 20. EVM versus Frequency

    f, FREQUENCY (MHz)

    Pout= 60 W Avg.

    42 W Avg.

    25 W Avg.

    VDD = 28 Vdc

    IDQ = 700 mA

    EVM,

    ERRORVEC

    TORMAGNITUDE(%rms)

    19001

    6

    3

    1880186018401800

    4

    2

    5

    1820

    Figure 21. EVM and Drain Efficiency versus

    Output Power

    Pout, OUTPUT POWER (WATTS) AVG.

    100

    4

    10VDD = 28 Vdc

    IDQ = 700 mA

    f = 1840 MHz

    EDGE Modulation

    8

    6

    0

    101

    2

    20

    50

    40

    30

    0

    10 D,

    DRAINEFFICIENCY(%)

    EVM,

    ERRORVEC

    TORMAGNITUDE(%rms)

    TC = 25_C

    D

    EVM

    10

  • 7/29/2019 MRF6S18100N_pwrmosfet

    13/20

    MRF6S18100NR1 MRF6S18100NBR1

    13RF Device DataFreescale Semiconductor

    TYPICAL CHARACTERISTICS 1805-1880 MHZ

    45

    60

    65

    70

    75

    1780

    85

    Figure 22. Spectral Regrowth at 400 kHz and

    600 kHz versus Frequency

    SPECTRALREGROWTH@400kHzAND600kHz(dBc)

    1800 1820 1840 1860

    55

    1880 1900 1920

    75

    45

    0Pout, OUTPUT POWER (WATTS)

    50

    55

    60

    65

    70

    Figure 23. Spectral Regrowth at 400 kHz

    versus Output Power

    SPECTRALREGROWTH@4

    00kHz(dBc)

    20 40 60 80

    TC = 25_C

    85

    60

    0Pout, OUTPUT POWER (WATTS)

    70

    75

    80

    20

    Figure 24. Spectral Regrowth at 600 kHz

    versus Output Power

    SPECTRALREGROWTH@6

    00kHz(dBc)

    40 60 80

    65

    f, FREQUENCY (MHz)

    50

    80

    VDD = 28 Vdc

    IDQ = 700 mAf = 1960 MHz

    Pout= 60 W Avg.

    42 W Avg.

    25 W Avg.

    60 W Avg.

    25 W Avg.

    42 W Avg.

    SR @ 400 kHz

    SR @ 600 kHz

    VDD = 28 Vdc, IDQ = 700 mA

    f = 1840 MHz, EDGE ModulationVDD = 28 Vdc, IDQ = 700 mA

    f = 1840 MHz, EDGE Modulation

    TC = 25_C

  • 7/29/2019 MRF6S18100N_pwrmosfet

    14/2014

    RF Device DataFreescale Semiconductor

    MRF6S18100NR1 MRF6S18100NBR1

    Zo = 5

    Zload

    Zsource

    f = 1900 MHz

    f = 1780 MHz

    f = 1780 MHz

    f = 1900 MHz

    VDD = 28 Vdc, IDQ = 900 mA, Pout = 100 W

    f

    MHz

    ZsourceW

    ZloadW

    1780 1.96 - j4.09 1.94 - j2.90

    1804 1.90 - j3.86 1.88 - j2.67

    1840 1.82 - j3.53 1.80 - j2.42

    1880 1.76 - j3.16 1.73 - j1.99

    1900 1.72 - j2.97 1.70 - j1.82

    Zsource = Test circuit impedance as measured fromgate to ground.

    Zload = Test circuit impedance as measuredfrom drain to ground.

    Zsource

    Zload

    Input

    Matching

    Network

    Device

    Under

    Test

    Output

    Matching

    Network

    Figure 25. Series Equivalent Source and Load Impedance 1805- 1880 MHz

  • 7/29/2019 MRF6S18100N_pwrmosfet

    15/20

    MRF6S18100NR1 MRF6S18100NBR1

    15RF Device DataFreescale Semiconductor

    NOTES

  • 7/29/2019 MRF6S18100N_pwrmosfet

    16/2016

    RF Device DataFreescale Semiconductor

    MRF6S18100NR1 MRF6S18100NBR1

    PACKAGE DIMENSIONS

    CASE 1486-03ISSUE C

    DATUM

    PLANE

    BOTTOM VIEW

    A1

    2X

    D1

    E3

    E1

    D3

    E4

    A2

    PIN 5

    NOTE 8

    AB

    C

    H

    DRAIN LEAD

    D

    AMaaa C

    4X

    b1

    2X

    D2NOTES:

    1. CONTROLLING DIMENSION: INCH.2. INTERPRET DIMENSIONS AND TOLERANCES

    PER ASME Y14.5M1994.3. DATUM PLANE H IS LOCATED AT THE TOP OF

    LEAD AND IS COINCIDENT WITH THE LEADWHERE THE LEAD EXITS THE PLASTIC BODY ATTHE TOP OF THE PARTING LINE.

    4. DIMENSIONS D" AND E1" DO NOT INCLUDEMOLD PROTRUSION. ALLOWABLE PROTRUSIONIS .006 PER SIDE. DIMENSIONSD" AND E1" DOINCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H .

    5. DIMENSIONb1" DOES NOT INCLUDE DAMBARPROTRUSION. ALLOWABLE DAMBARPROTRUSION SHALL BE .005 TOTAL IN EXCESSOF THE b1" DIMENSION AT MAXIMUM MATERIALCONDITION.

    6. DATUMS A AND B TO BE DETERMINED ATDATUM PLANE H.

    7. DIMENSION A2 APPLIES WITHIN ZONE J" ON LY.8. HATCHING REPRESENTS THE EXPOSED AREA

    OF THE HEAT SLUG.

    c1

    FZONE J

    E22X

    A

    DIM

    A

    MIN MAX MIN MAX

    MILLIMETERS

    .100 .104 2.54 2.64

    INCHES

    A1 .039 .043 0.99 1.09A2 .040 .042 1.02 1.07D .712 .720 18.08 18.29

    D1 .688 .692 17.48 17.58D2 .011 .019 0.28 0.48D3 .600 15.24 E .551 .559 14 14.2

    E1 .353 .357 8.97 9.07E2 .132 .140 3.35 3.56E3 .124 .132 3.15 3.35E4 .270 6.86

    F

    b1 .164 .170 4.17 4.32

    c1 .007 .011 0.18 0.28e

    .025 BSC

    .106 BSC

    0.64 BSC

    2.69 BSC

    1

    STYLE 1:PIN 1. DRAIN

    2. DRAIN3. GATE4. GATE5. SOURCE

    aaa .004 0.10

    GATE LEAD

    4X

    e

    2X

    E

    SEATING

    PLANE

    4

    23

    NOTE 7

    E5

    E5

    E5 .346 .350 8.79 8.89

    TO-270 WB- 4MRF6S18100NR1

  • 7/29/2019 MRF6S18100N_pwrmosfet

    17/20

    MRF6S18100NR1 MRF6S18100NBR1

    17RF Device DataFreescale Semiconductor

  • 7/29/2019 MRF6S18100N_pwrmosfet

    18/2018

    RF Device DataFreescale Semiconductor

    MRF6S18100NR1 MRF6S18100NBR1

  • 7/29/2019 MRF6S18100N_pwrmosfet

    19/20

    MRF6S18100NR1 MRF6S18100NBR1

    19RF Device DataFreescale Semiconductor

  • 7/29/2019 MRF6S18100N_pwrmosfet

    20/20

    MRF6S18100NR1 MRF6S18100NBR1

    Information in this document is provided solely to enable system and software

    implementers to use Freescale Semiconductor products. There are no express or

    implied copyright licenses granted hereunder to design or fabricate any integrated

    circuits or integrated circuits based on the information in this document.

    Freescale Semiconductor reserves the right to make changes without further notice to

    any products herein. Freescale Semiconductor makes no warranty, representation or

    guarantee regarding the suitability of its products for any particular purpose, nor does

    Freescale Semiconductor assume any liability arising out of the application or use of

    any product or circuit, and specifically disclaims any and all liability, including without

    limitation consequential or incidental damages. Typical parameters that may be

    provided in Freescale Semiconductor data sheets and/or specifications can and dovary in different applications and actual performance may vary over time. All operating

    parameters, including Typicals, must be validated for each customer application by

    customers technical experts. Freescale Semiconductor does not convey any license

    under its patent rights nor the rights of others. Freescale Semiconductor products are

    not designed, intended, or authorized for use as components in systems intended for

    surgical implant into the body, or other applications intended to support or sustain life,

    or for any other application in which the failure of the Freescale Semiconductor product

    could create a situation where personal injury or death may occur. Should Buyer

    purchase or use Freescale Semiconductor products for any such unintended or

    unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

    and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

    claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

    directly or indirectly, any claim of personal injury or death associated with such

    unintended or unauthorized use, even if such claim alleges that Freescale

    Semiconductor was negligent regarding the design or manufacture of the part.

    Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.

    All other product or service names are the property of their respective owners.

    Freescale Semiconductor, Inc. 2006. All rights reserved.

    How to Reach Us:

    Home Page:www.freescale.com

    E-mail:[email protected]

    USA/Europe or Locations Not Listed:Freescale SemiconductorTechnical Information Center, CH3701300 N. Alma School RoadChandler, Arizona 85224+1-800- 521-6274 or +1- [email protected]

    Europe, Middle East, and Africa:Freescale Halbleiter Deutschland GmbHTechnical Information CenterSchatzbogen 781829 Muenchen, Germany+44 1296 380 456 (English)+46 8 52200080 (English)+49 89 92103 559 (German)+33 1 69 35 48 48 (French)[email protected]

    Japan:Freescale Semiconductor Japan Ltd.

    HeadquartersARCO Tower 15F1-8-1, Shimo-Meguro, Meguro-ku,Tokyo 153-0064Japan0120 191014 or +81 3 5437 [email protected]

    Asia/Pacific:Freescale Semiconductor Hong Kong Ltd.Technical Information Center2 Dai King StreetTai Po Industrial EstateTai Po, N.T., Hong Kong+800 2666 [email protected]

    For Literature Requests Only:Freescale Semiconductor Literature Distribution Center

    P.O. Box 5405Denver, Colorado 802171- 800-441-2447 or 303-675- 2140Fax: [email protected]