Motion Camou

download Motion Camou

of 15

Transcript of Motion Camou

  • 7/27/2019 Motion Camou

    1/15

    Motion Camouflage for Unicycle Robots using

    Optimal Control

    Inaki Rano and Chris Burbridge

    [email protected]

    Computer Sciences and Systems Engineering Dept

    University of Zaragoza

    Spain

    TAROS 2010

    Rano & Burbridge UniZar & ISRC-Ulster

    Unicycle Motion Camouflage

    http://find/
  • 7/27/2019 Motion Camou

    2/15

    Table of Contents

    1 Motion Camouflage for

    2 Unicycle Robots using

    3 Optimal Control

    4 All together

    5 Results

    Rano & Burbridge UniZar & ISRC-Ulster

    Unicycle Motion Camouflage

    http://find/http://goback/
  • 7/27/2019 Motion Camou

    3/15

    Everybody knows what Motion is!!

    We see motion on static images. Can we see motion as somethingstatic?

    Rano & Burbridge UniZar & ISRC-Ulster

    Unicycle Motion Camouflage

    http://find/
  • 7/27/2019 Motion Camou

    4/15

    Camouflage

    A method of crypsis (avoidance of observation) that allows anotherwise visible organism or object to remain indiscernible fromthe surrounding environment through deception.

    Rano & Burbridge UniZar & ISRC-Ulster

    Unicycle Motion Camouflage

    http://find/http://goback/
  • 7/27/2019 Motion Camou

    5/15

    Motion Camouflage? Are You Kidding?

    Thats impossible!

    Rano & Burbridge UniZar & ISRC-Ulster

    Unicycle Motion Camouflage

    http://find/
  • 7/27/2019 Motion Camou

    6/15

    Motion Camouflage

    Stealth behaviour ofdragonflies and hover-flies.

    Eyes (cameras) onlymeasure angles (rays).

    The Shadowee sees theShadower always on theFocal Point.

    Blooming; the visual size of

    the Shadower increases.

    Camouflage for attack orretreat.

    Rano & Burbridge UniZar & ISRC-Ulster

    Unicycle Motion Camouflage

    http://find/
  • 7/27/2019 Motion Camou

    7/15

    Unicycle Robots

    Unicycle motion model

    x = vcos

    y = vsin

    =

    3D state space (x, y, ) and twocontrol inputs (v, ).

    Some robots follow this model;dual-drive, synchro-drive, tricycle,(Ackerman).

    Rano & Burbridge UniZar & ISRC-Ulster

    Unicycle Motion Camouflage

    http://find/
  • 7/27/2019 Motion Camou

    8/15

    Why Unicycle Robots?

    Existing 2D and 3D MotionCamouflage techniques treat theshadower as a point

    Animals move in 2D/3D but they

    have a heading (theyre not points)

    Restriction to motion (2D)

    dxsin dycos = 0

    animals usually dont moveperpendicular to their heading.

    Unless youre a crab. . .

    Rano & Burbridge UniZar & ISRC-Ulster

    Unicycle Motion Camouflage

    http://find/http://goback/
  • 7/27/2019 Motion Camou

    9/15

    Calculus of Variations

    Find the function y(t) that minimises the functional

    J[y] =

    tfti

    g(t, y(t), y(t))dt

    y(t) can be obtained solving the Euler-Lagrange equation

    g

    y

    d

    dt

    g

    y= 0

    with boundary conditions. But we have a system to be controlledx = F(x, u), where x(t) n and u(t) m.

    Rano & Burbridge UniZar & ISRC-Ulster

    Unicycle Motion Camouflage

    http://find/
  • 7/27/2019 Motion Camou

    10/15

    Optimal Control

    Find the control functions u(t) that minimise the functional

    J[x, u] = h(x(tf)) +

    tfti

    g(t, x(t), u(t))dt

    with the dynamic constrain x = F(x, u) and the appropriateboundary conditions.

    Constrained Minimisation? This is a job for the LagrangeMultipliers!!

    J[x, u] = h(x(tf)) +

    tf

    ti

    [g(t, x(t), u(t))+

    (t)(F(x(t), u(t)) x(t))] dt

    Rano & Burbridge UniZar & ISRC-Ulster

    Unicycle Motion Camouflage

    http://find/
  • 7/27/2019 Motion Camou

    11/15

    Optimal Control Solution

    If we define the Hamiltonian

    H(x(t), u(t), (t)) = g(t, x(t), u(t)) + (t)tF(x(t), u(t))

    the solution can be obtained from the equations

    x(t) =H

    (x(t), u(t), (t))

    (t) = H

    x(x(t), u(t), (t))

    0 = Hu

    (x(t), u(t), (t))

    as the solution to a Boundary Value Problem.

    Rano & Burbridge UniZar & ISRC-Ulster

    Unicycle Motion Camouflage

    http://find/http://goback/
  • 7/27/2019 Motion Camou

    12/15

    All together

    f x=(f , f )y

    =(x , y )p pxp

    =(x , y )t tx t

    CCL

    Y

    X

    p

    Dynamic constrains

    xpyp

    pxtyt

    =

    vcos pvsin p

    vxtvyt

    Control inputs u=

    v

    Function to minimise

    g(x) =1

    2|(xp f) (xt f)|

    2

    +1

    2uTRu

    Rano & Burbridge UniZar & ISRC-Ulster

    Unicycle Motion Camouflage

    http://find/
  • 7/27/2019 Motion Camou

    13/15

    Results

    Focal Point

    Shadower

    Shadowee

    CC

    L

    Trajectory

    3.0

    2.5

    2.0

    1.5

    1.0

    0.5

    0.0

    0.0 0.5 1.0 1.5 2.0 2.5 3.0

    Error

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    0 20 40 60 80 100

    Trajectory

    1.5

    1.0

    0.5

    0.0

    0.5

    1.0

    1.5

    0.0 0.5 1.0 1.5 2.0 2.5 3.0

    Error

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 20 40 60 80 100 120 140 160 180 2 00

    Rano & Burbridge UniZar & ISRC-Ulster

    Unicycle Motion Camouflage

    http://goback/http://find/http://goback/
  • 7/27/2019 Motion Camou

    14/15

    Discussion

    The good news

    Motion Camouflage can be achieved for non-holonomicmotion...

    . . . for any focal point.

    It is extensible to any shadowee trajectory. . .

    . . . and velocities seem to stay bounded

    The bad news

    Need to know too much information (time, positions, velocity)No certainty on bounded velocities

    Rano & Burbridge UniZar & ISRC-Ulster

    Unicycle Motion Camouflage

    http://find/http://goback/
  • 7/27/2019 Motion Camou

    15/15

    Thanks for your attention

    Better to remain silent and

    be thought a fool than to speak outand remove all doubt

    Abraham Lincoln

    Rano & Burbridge UniZar & ISRC-Ulster

    Unicycle Motion Camouflage

    http://find/