MOSFET Small Signal Model and Analysis •Just as we did...

14
ECE 3040 - Dr. Alan Doolittle Georgia Tech MOSFET Small Signal Model and Analysis •Just as we did with the BJT, we can consider the MOSFET amplifier analysis in two parts: •Find the DC operating point •Then determine the amplifier output parameters for very small input signals.

Transcript of MOSFET Small Signal Model and Analysis •Just as we did...

ECE 3040 - Dr. Alan DoolittleGeorgia Tech

MOSFET Small Signal Model and Analysis

•Just as we did with the BJT, we can consider the MOSFET amplifier analysis in two parts:

•Find the DC operating point

•Then determine the amplifier output parameters for very small input signals.

ECE 3040 - Dr. Alan DoolittleGeorgia Tech

MOSFET Small Signal Model and Analysis

Linear Two Port Network

+V1

-

i1 i2+V2

-

I1=y11V1 + y12V2

I2=y21V1 + y22V2

General “y-parameter” Network

Non-Linear I-V relationship

(BJT, MOSFET,

etc…)

+V1

-

i1 i2+V2

-

Linearize over “small

signal range”

IGS=y11VGS + y12VDS

IDS=y21VGS + y22VDS

MOSFET “y-parameter” Network

vGS

vDS

iDS

iGS

ECE 3040 - Dr. Alan DoolittleGeorgia Tech

IGS=y11VGS + y12VDS

IDS=y21VGS + y22VDS

[ [ [IGS y11 y12 VGS

IDS y21 y22 VDS

[[[

=QVQVi

jij

DSGSV

Iy

,,,∂

∂=

Derivative of current-voltage equation evaluated at the Quiescent Point

MOSFET Small Signal Model and Analysis

( )[ ]( ) TNGSDSDSTNGSn

DS VVVforVVVK

I −≥+−= λ12

2

MOSFET Amplifiers are biased into Saturation (or Active Mode)

1.) Input Conductance

2.) Output Conductance

3.) Transconductance

00000 1211 ==⇒=∂∂

=∂∂

⇒= yandyVI

andVI

IDS

GS

GS

GSGS

( )222 2 TGS

n

DS

DS VVK

yVI

−==∂∂ λ

( )( )DSTGSnGS

DS VVVKyVI

λ+−==∂∂

121

ECE 3040 - Dr. Alan DoolittleGeorgia Tech

MOSFET Small Signal Model and AnalysisCompare with BJT Results

( )DS

DSTGS

no

V

IVV

Kgy

+=−==

λ

λ12

222

( )( )

=+−==

2

121TNGS

DSDSTGSnm VV

IVVVKgy λ

CEA

C

VVI

y+

=22

T

C

VI

y =21

MOSFET BJT

There is a large amount of symmetry between the MOSFET and the BJT

Each of these parameters act in the

same manner

ECE 3040 - Dr. Alan DoolittleGeorgia Tech

MOSFET Small Signal Model and AnalysisPutting the mathematical model into a small signal equivalent circuit

Compare this to the BJT small signal equivalent circuit

ECE 3040 - Dr. Alan DoolittleGeorgia Tech

MOSFET Small Signal Model and AnalysisExample: Jaeger 13.94

Calculate the voltage gain, Av=vo/vs

Given: Kn=1 mA/V2 , λ=0.015 V-1

Bias Point of: IDS=2 mA, VDS=7.5V

ECE 3040 - Dr. Alan DoolittleGeorgia Tech

MOSFET Small Signal Model and AnalysisExample: Jaeger 13.94

( )2

2 TGSn

o VVK

g −=λ ( )( )DSTGSnm VVVKg λ+−= 1

Need to find VGS-VT

( )[ ]( )

( )[ ]( )

Ω=⇒==∴

==−

+−=

+−=

krSgmSg

VVV

VVVmA

mA

VVVK

I

oom

TNGS

TNGS

DSTNGSn

DS

9.361.2711.2

9.111.14

)5.7(015.012/1

2

12

22

2

µ

λ

ECE 3040 - Dr. Alan DoolittleGeorgia Tech

MOSFET Small Signal Model and AnalysisExample: Jaeger 13.94

( ) ( )

[ ]VVvv

vv

vv

A

kmSRRdrgvv

andMegk

Megvv

vv

vv

vv

A

GS

o

s

GS

s

ov

omGS

o

s

GS

GS

o

s

GS

s

ov

/27.7

35.748.31.2399.0110

1

−===∴

−=−=−==+

=

==

ECE 3040 - Dr. Alan DoolittleGeorgia Tech

MOSFET Small Signal Model and AnalysisAdd in capacitances

Reverse Bias Junction capacitances

Overlap of Gate Oxide

Gate to channel to

Bulk capacitance

Overlap of Gate Oxide

LD LD

ECE 3040 - Dr. Alan DoolittleGeorgia Tech

MOSFET Small Signal Model and AnalysisComplete Model of a MOSFET

Reverse Bias Junction capacitances

Overlap of Gate Oxide and Gate to

channel capacitance

Overlap of Gate Oxide

Gate to channel to

Bulk capacitance

FSBmmb

Vgg

φγ

22 +=

Due to effective modulation of the threshold voltage.

ECE 3040 - Dr. Alan DoolittleGeorgia Tech

MOSFET Small Signal Model and AnalysisSPICE MOSFET Model

SPICE models the drain current ( IDS ) of an n-channel MOSFET using the following parameters/equations (SPICE variables are shown in ALLCAPPITAL LETTERS)

Cutoff: IDS = 0

Linear:

Saturation:

Threshold Voltage:

Channel LengthLEFF=L-2LD

( )[ ] ( )( )DSDSGSDSEFF

DS VLAMBDAVVTHVVLWKP

I +−−

= 12

2

( )[ ] ( )( )DSGSEFF

DS VLAMBDAVTHVLWKP

I +−

= 1

22

( )PHIVPHIGAMMAVTOV BSTH 22 −−+=

ECE 3040 - Dr. Alan DoolittleGeorgia Tech

MOSFET Small Signal Model and AnalysisSPICE MOSFET Model – Additional Parameters

SPICE takes many of it’s parameters from the integrated circuit layout design:

L

W AD=WxLdiff(drain)

Ldiff(drain)Ldiff(source)

AS=WxLdiff(source)

Source Gate Drain

L = polysilicon gate length W = polysilicon gate width

AD = drain area AS = source area

PD = perimeter of drain diffusion (not including edge under gate)

PS = perimeter of source diffusion (not including edge under gate)

NRD = number of “squares” in drain diffusion

NRS = number of “squares” in source diffusion

PS=2xLdiff(source)+W PD=2xLdiff(drain)+W

Specified in terms of the minimum feature size

ECE 3040 - Dr. Alan DoolittleGeorgia Tech

MOSFET Small Signal Model and AnalysisSPICE MOSFET Model – Additional Parameters

Most Used

ECE 3040 - Dr. Alan DoolittleGeorgia Tech

MOSFET AmplifiersWhat is the Maximum Gain Possible?

( )( )( )

( )( )TGS

DSMaxv

TGSn

DSTGSnMaxv

omMaxv

VVV

A

VVK

VVVKA

vgA

−+

−=

−+−

−=

−=

λλ

λλ

1

1

,

2,

,

Saturated! Issatisfied. always0, MOSFET modedepletion afor 0

,current)?(Constant

⇒−>≥=

−>

isVsoVand

VVbut

VVVsaturateditIs

TP

TP

GSDS

TPGSDS

go is internal to the transistor and can not be avoided. Any additional resistor due to external circuitry will lower the gain. For this reason current sources are often used as the “load” instead of bias resistors in amplifier circuits.

Gate Bias

AC Signal