Monte Carlo filtering and regional sensitivity analysis (RSA)

48
http://eemc.jrc.ec.europa.eu 1 Monte Carlo filtering and regional sensitivity analysis (RSA) M. Ratto, IPSC-JRC, European Commission DYNARE Workshop, CEF2011, San Francisco

Transcript of Monte Carlo filtering and regional sensitivity analysis (RSA)

Page 1: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu1

Monte Carlo filtering and

regional sensitivity analysis (RSA)

M. Ratto, IPSC-JRC, European Commission

DYNARE Workshop, CEF2011, San Francisco

Page 2: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu2

Background

• environmental sciences, early 80’s;

• complex numerical and analytical models, based on first principles, conservation laws, … ;

• ill-defined parameters, competing model structures(different constitutive equations, different types of process considered, spatial/temporal resolution, … )

• need to establish magnitude and sources of prediction uncertainty;

• Monte Carlo simulation analyses.

Page 3: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu3

MC filtering and RSA

One of the earliest landmark application of MC simulation: eutrophication in the Peel Inlet, SW Australia.

Regional Sensitivity Analysis developed and employed.

Hornberger G.M., Spear R.C., An approach to the preliminary analysis of environmental systems, J. Environm. Management, 12, 7-18, 1981.

Young, P.C., Parkinson, S. D. and Lees, M. Simplicity out of complexity: Occam’s razor revisited. Journal of Applied Statistics 23, 165-210, 1996.

Young, P.C., Data-based mechanistic modelling, generalised sensitivity and dominant mode analysis. Computer Physics Communication 117, 113-129, 1999.

Page 4: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu4

MC filtering and RSA

Two tasks for RSA:

• qualitative definition of the system behaviour

[a set of constraints: thresholds, ceilings, time bounds based on available information on the system];

• binary classification of model outputs based on the specified behaviour definition.

[qualifies a simulation as behaviour (B) if the model output lies within constraints, non-behaviour ( ) otherwise]B

Page 5: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu5

MC filtering and RSA

Define a range for k input factors xi [1 ≤ i ≤ k], reflecting uncertainty in parameters and model constituent hypotheses.

Each Monte Carlo simulation is associated to a vector of values of the input factors.

Classifying simulations as either B or , a set of binary elements is defined allowing to distinguish two sub-sets for each xi:

B

)|( Bxi

)|( Bxi

Page 6: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu6

)( BXi

iX

Y

)( BXi

B

B

MC filtering and RSA

Page 7: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu7

MC filtering and RSA

The Kolmogorov-Smirnov two-sample test (two-sided version) is performed for each factor independently

)|()|(:)|()|(:

1

0

BxfBxfH

BxfBxfH

inim

inim

≠=

Test statistic:

)|()|(sup)(,

BxFBxFxd inimyinm −=

whereF are marginal cumulative probability functions, f are probability density functions

Page 8: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu8

MC filtering and RSA

At what significance level α does the computed value of dm,n determine the rejection of Ho?

α is the probability to reject Ho when it is true (i.e. to recognise a factor as important when it is not).

The importance of each parameter is inversely related to this significance level.

Page 9: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu9

MC filtering and RSA

Derive the critical level Dα at which the computed value of dm,n determines the rejection of Ho (the smaller α, the higher Dα).

If dm,n > Dα, then Ho is rejected at significance level α.

Page 10: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu10

MC filtering and RSA

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Xi

F(X

i)

PriorF

m(X

i|B)

Fn(X

i|B)

dm,n

Page 11: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu11

RSA: comment

RSA has many ‘global’ properties:

The whole range of value of input factors is considered, all factors are varied at the same time.

CAVEAT:

RSA classification analyses univariate marginal distributions.

Lacks for interaction structure.

Page 12: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu12

Mapping stability: example (1)

Phillips curve:

GDP y, inflation i, output gap c

titytttt

tcttt

tptt

ttt

actiEii

acAcAc

app

cpy

,11

,22

1

,1

)1(

)/2cos(2

++−+⋅=+−=

+=+=

+−

−−

ωωτπ

Page 13: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu13

Mapping stability: example (1)

Stability is assured if

5.0>ω

Page 14: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu14

Mapping stability: example (1)

0 0.5 10

5

10

15

20A

0 0.5 10

5

10

15

20ω

0 50 100 1500

5

10

15

20τ

0 0.5 10

0.2

0.4

0.6

0.8

1

x

F(x

)

A. K-S prob 1

0 0.5 10

0.2

0.4

0.6

0.8

1

x

F(x

)

ω. K-S prob 4.5031e-221

0 50 100 1500

0.2

0.4

0.6

0.8

1

x

F(x

)

τ. K-S prob 1

Page 15: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu15

Mapping stability: example (2)

Phillips curve, extended version:

GDP y, inflation i, output gap c

tityttftbt

tcttt

tptt

ttt

actiEii

acAcAc

app

cpy

,11

,22

1

,1

)/2cos(2

+++⋅=+−=

+=+=

+−

−−

ωωτπ

Page 16: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu16

Mapping stability: example (2)

Stability is assured if

1<+ fb ωω

Page 17: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu17

Mapping stability: example (2)

0 0.5 10

5

10

15

20A

0 0.5 10

10

20

30

40

ωb

0 0.5 10

10

20

30

40

ωf

0 50 100 1500

5

10

15

20τ

0 0.5 10

0.2

0.4

0.6

0.8

1

x

F(x

)

A. K-S prob 1

0 0.5 10

0.2

0.4

0.6

0.8

1

x

F(x

)

ωb. K-S prob 1.0423e-054

0 0.5 10

0.2

0.4

0.6

0.8

1

x

F(x

)

ωf. K-S prob 2.2889e-057

0 50 100 1500

0.2

0.4

0.6

0.8

1

x

F(x

)

τ. K-S prob 0.99541

Page 18: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu18

Mapping stability: example (2)

0 0.5 10

0.5

1

ωb

ω fcc = -0.50539

Bivariate analysis

Page 19: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu19

Mapping stability: example (3)

• As the complexity of the model structure and its parameterization increases, it is not trivial to know a priory the set of model coefficients assuring stability;

Page 20: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu20

Mapping stability : example (3)

• The Lubik Schorfheide (2005) model

• 12 parameters;

Page 21: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu21

Lubik Schorfheide model (2005)

Page 22: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu22

Lubik Schorfheide model (2005)

Page 23: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu23

Lubik Schorfheide model (2005)

Page 24: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu24

Lubik Schorfheide model (2005)

Page 25: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu25

Toolbox documentation

Page 26: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu26

Toolbox documentation

Page 27: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu27

Mapping the fit

How do parameters adjust to fit the multivariate set of observed covariates?

Are there trade-off’s?

Page 28: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu28

Mapping the fit

- Sample structural coefficients prior distributions (or ranges);

OR

- Use Metropolis posterior sample;

Compute RMSE’s of the 1-step ahead model predictions for each of the N observed series.

Page 29: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu29

Mapping the fit

N filtering rules: defining as B the

samples corresponding to the best 10% RMSE’s, -B otherwise.

For each parameter we get N ‘behavioural’ sets:

fj(Xi|B); j = 1,…, N

Page 30: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu30

Mapping the fit

Trade off occurs when:

1) one structural parameter drives significantly the fit of more than one observed series;

AND

2) fj(Xi|B)≠ fk(Xi|B)

Page 31: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu31

Mapping the fit: prior

0 100 200 300 4000

0.2

0.4

0.6

0.8

1e_R

0 200 400 600 8000

0.2

0.4

0.6

0.8

1e_q

0 100 200 300 4000

0.2

0.4

0.6

0.8

1e_A

0 100 200 300 4000

0.2

0.4

0.6

0.8

1e_ys

0 200 400 6000

0.2

0.4

0.6

0.8

1e_pies

0 2 4 6 80

0.2

0.4

0.6

0.8

1psi1

basey

obs

Robs

pieobs

dqde

Page 32: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu32

Mapping the fit: prior

0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1psi2

0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1psi3

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1rho_R

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1alpha

0 5 10 150

0.2

0.4

0.6

0.8

1rr

0 1 2 3 40

0.2

0.4

0.6

0.8

1k

basey

obs

Robs

pieobs

dqde

Page 33: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu33

Mapping the fit: prior

0 1 2 30

0.2

0.4

0.6

0.8

1tau

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1rho_q

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1rho_A

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1rho_ys

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1rho_pies

basey

obs

Robs

pieobs

dqde

Page 34: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu34

Mapping the fit: posterior

0.2 0.3 0.4 0.5 0.6 0.70

0.2

0.4

0.6

0.8

1

σR

1 1.2 1.4 1.6 1.8 20

0.2

0.4

0.6

0.8

1

σq

0.4 0.6 0.8 1 1.2 1.40

0.2

0.4

0.6

0.8

1

σz

0 1 2 3 40

0.2

0.4

0.6

0.8

1

σy*

1.4 1.6 1.8 2 2.20

0.2

0.4

0.6

0.8

1

σπ*

1 2 3 40

0.2

0.4

0.6

0.8

1

ψ1

basey

R

π∆q

∆e

basey

R

π∆q

∆e

basey

R

π∆q

∆e

base

y

R

π∆q

∆e

base

y

R

π∆q

∆e

base

y

R

π∆q

∆e

Page 35: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu35

0 0.2 0.4 0.6 0.80

0.2

0.4

0.6

0.8

1

ψ2

0 0.2 0.4 0.6 0.80

0.2

0.4

0.6

0.8

1

ψ3

0.5 0.6 0.7 0.8 0.90

0.2

0.4

0.6

0.8

1

ρR

0 0.1 0.2 0.3 0.40

0.2

0.4

0.6

0.8

0 2 4 6 80

0.2

0.4

0.6

0.8

1r

0 0.5 1 1.50

0.2

0.4

0.6

0.8

basey

R

π∆q

∆e

basey

R

π∆q

∆e

basey

R

π∆q

∆e

base

y

R

π∆q

∆e

base

y

R

π∆q

∆e

base

y

R

π∆q

∆e

Mapping the fit: posterior

Page 36: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu36

0 0.2 0.4 0.6 0.80

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.80

0.2

0.4

0.6

0.8

1

ρq

0.4 0.5 0.6 0.70

0.2

0.4

0.6

0.8

1

ρz

0.8 0.85 0.9 0.95 10

0.2

0.4

0.6

0.8

1

ρy*

0 0.2 0.4 0.6 0.80

0.2

0.4

0.6

0.8

1

ρπ*

basey

R

π∆q

∆e

basey

R

π∆q

∆e

base

y

R

π∆q

∆e

base

y

R

π∆q

∆e

base

y

R

π∆q

∆e

Mapping the fit: posterior

Page 37: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu37

Mapping the fit: posterior

psi1-psi3 conflict: an interpretation?

Page 38: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu38

Toolbox documentation

Page 39: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu39

RSA: problems

Correlation and interaction structures of the B subset [⇒ also Beck’s review, 1987]:

• Smirnov test is a sufficient test only if Hois rejected

(i.e. the factor is IMPORTANT);

• any covariance structure induced by the classification is not detected by the univariate dm,n statistic.

e.g. factors combined as products or quotients may compensate

• bivariate correlation analysis is not revealing, either.

Page 40: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu40

RSA problems: example (1)

Example 1. Y = X1*X2, X1,X2 ∼U[-0.5,0.5]

Behavioural runs: Y>0.

-0.5 0 0.5-0.5

0

0.5

X1

X2 Smirnov test fails

Correlation analysis would help (e.g. PCA)

Scatter plot of the B subset in the X1,X2 plane

Page 41: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu41

RSA problems: example (1)

Example 1. Cumulative distributions of X1

(Behavioural runs: Y>0.)

-0.5 0 0.50

0.2

0.4

0.6

0.8

1

X1

F(X

1)

originalB sampleB- sample

Page 42: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu42

RSA problems: example (1)

In this case, a correlation analysis would be helpful.

the correlation coefficient of (X1, X2) for the B set is ρ=0.75.

This suggests performing a Principal Component Analysis on the B set, obtaining the two components (the eigenvectors of the correlation matrix):

Page 43: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu43

RSA problems: example (1)

PC1 = (0.7079, 0.7063); accounting for the 87.5% of the variation of the B set.

PC2 = (-0.7063, 0.7079); accounting for the 12.5% of the variation of the B set.

The direction of the principal component PC1 (associated with the highest eigenvalue) indicates the privileged orientation for acceptable runs.

Page 44: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu44

RSA problems: example (1)

-0.5 0 0.5-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

PC1

PC

2

B subsetB subset

Page 45: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu45

RSA problems: example (1)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.80

0.5

1

PC1

cdf(P

C1)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.80

0.5

1

PC2

cdf(P

C2)PriorB subsetB subset

PriorB subsetB subset

Page 46: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu46

RSA problems: example (1)

Now the level of significance for rejecting the

null hypothesis when it is true is very small

(α<0.1%), implying a very strong relevance of the linear combinations of the two input factors,

defined by the principal component analysis

Page 47: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu47

RSA problems: example (2)

Example 2. Y = X12 + X2

2, X1,X2 ∼U[-0.5,0.5]

Behavioural runs: [0.2 < Y < 0.25]

-0.5 0 0.5-0.5

0

0.5

X1

X2

Smirnov test fails

Correlation fails as well

(sample ρ≈-0.04)

Scatter plot of the B subset in the X1,X2 plane

Page 48: Monte Carlo filtering and regional sensitivity analysis (RSA)

http://eemc.jrc.ec.europa.eu48

RSA problems (ctd.)

To address the RSA limitations and to better understand the impact of uncertainty and interaction in the high-dimensional parameter spaces of models, Spear et al. (1994) developed the computer intensive tree-structured density estimation technique (TSDE),

Interesting applications of TSDE in environmental sciences can be found in Spear (1997), Grieb at al. (1999) and Osidele and Beck (2001).