Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq....

168
Monodromy and K -theory of Schubert Curves Jake Levinson (University of Michigan) joint with Maria Gillespie (UC-Davis) UW Combinatorics Seminar January 25, 2017 M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 1 / 26

Transcript of Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq....

Page 1: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Monodromy and K -theory of Schubert Curves

Jake Levinson (University of Michigan)

joint with Maria Gillespie (UC-Davis)

UW Combinatorics SeminarJanuary 25, 2017

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 1 / 26

Page 2: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Variation on a theme of Schubert

Construct a locus S Ď tlines in P3u “ G p2, 4q:

Take the twisted cubic P1 ãÑ P3, t ÞÑ r1 : t : t2 : t3s,

Define S by:

S “

$

&

%

L P P3 :

LX L0 ‰ ∅LX L1 ‰ ∅LX L8 ‰ ∅

,

/

.

/

-

Ď G p2, 4q

Classically: Specify 4 lines; get S “ finite “ 2 points.

Instead: S is a curve! (deg “ 2, χ “ 1)

“Reality”: A fourth condition LX Lt , t P RP1, always gives tworeduced, real points P SpRq.Monodromy: Sweep t around RP1

ñ points switch places.

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 2 / 26

Page 3: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Variation on a theme of Schubert

Construct a locus S Ď tlines in P3u “ G p2, 4q:

Take the twisted cubic P1 ãÑ P3, t ÞÑ r1 : t : t2 : t3s,

Define S by:

S “

$

&

%

L P P3 :

LX L0 ‰ ∅LX L1 ‰ ∅LX L8 ‰ ∅

,

/

.

/

-

Ď G p2, 4q

Classically: Specify 4 lines; get S “ finite “ 2 points.

Instead: S is a curve! (deg “ 2, χ “ 1)

“Reality”: A fourth condition LX Lt , t P RP1, always gives tworeduced, real points P SpRq.Monodromy: Sweep t around RP1

ñ points switch places.

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 2 / 26

Page 4: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Variation on a theme of Schubert

Construct a locus S Ď tlines in P3u “ G p2, 4q:

Take the twisted cubic P1 ãÑ P3, t ÞÑ r1 : t : t2 : t3s,and tangent lines at 0, 1,8

Define S by:

S “

$

&

%

L P P3 :

LX L0 ‰ ∅LX L1 ‰ ∅LX L8 ‰ ∅

,

/

.

/

-

Ď G p2, 4q

Classically: Specify 4 lines; get S “ finite “ 2 points.

Instead: S is a curve! (deg “ 2, χ “ 1)

“Reality”: A fourth condition LX Lt , t P RP1, always gives tworeduced, real points P SpRq.Monodromy: Sweep t around RP1

ñ points switch places.

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 2 / 26

Page 5: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Variation on a theme of Schubert

Construct a locus S Ď tlines in P3u “ G p2, 4q:

Take the twisted cubic P1 ãÑ P3, t ÞÑ r1 : t : t2 : t3s,and tangent lines at 0, 1,8

Define S by:

S “

$

&

%

L P P3 :

LX L0 ‰ ∅LX L1 ‰ ∅LX L8 ‰ ∅

,

/

.

/

-

Ď G p2, 4q

Classically: Specify 4 lines; get S “ finite “ 2 points.

Instead: S is a curve! (deg “ 2, χ “ 1)

“Reality”: A fourth condition LX Lt , t P RP1, always gives tworeduced, real points P SpRq.Monodromy: Sweep t around RP1

ñ points switch places.

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 2 / 26

Page 6: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Variation on a theme of Schubert

Construct a locus S Ď tlines in P3u “ G p2, 4q:

Take the twisted cubic P1 ãÑ P3, t ÞÑ r1 : t : t2 : t3s,and tangent lines at 0, 1,8

Define S by:

S “

$

&

%

L P P3 :

LX L0 ‰ ∅LX L1 ‰ ∅LX L8 ‰ ∅

,

/

.

/

-

Ď G p2, 4q

Classically: Specify 4 lines; get S “ finite “ 2 points.

Instead: S is a curve! (deg “ 2, χ “ 1)

“Reality”: A fourth condition LX Lt , t P RP1, always gives tworeduced, real points P SpRq.Monodromy: Sweep t around RP1

ñ points switch places.

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 2 / 26

Page 7: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Variation on a theme of Schubert

Construct a locus S Ď tlines in P3u “ G p2, 4q:

Take the twisted cubic P1 ãÑ P3, t ÞÑ r1 : t : t2 : t3s,and tangent lines at 0, 1,8

Define S by:

S “

$

&

%

L P P3 :

LX L0 ‰ ∅LX L1 ‰ ∅LX L8 ‰ ∅

,

/

.

/

-

Ď G p2, 4q

Classically: Specify 4 lines; get S “ finite “ 2 points.

Instead: S is a curve! (deg “ 2, χ “ 1)

“Reality”: A fourth condition LX Lt , t P RP1, always gives tworeduced, real points P SpRq.Monodromy: Sweep t around RP1

ñ points switch places.

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 2 / 26

Page 8: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Variation on a theme of Schubert

Construct a locus S Ď tlines in P3u “ G p2, 4q:

Take the twisted cubic P1 ãÑ P3, t ÞÑ r1 : t : t2 : t3s,and tangent lines at 0, 1,8

Define S by:

S “

$

&

%

L P P3 :

LX L0 ‰ ∅LX L1 ‰ ∅LX L8 ‰ ∅

,

/

.

/

-

Ď G p2, 4q

Classically: Specify 4 lines; get S “ finite “ 2 points.

Instead: S is a curve! (deg “ 2, χ “ 1)

“Reality”: A fourth condition LX Lt , t P RP1, always gives tworeduced, real points P SpRq.

Monodromy: Sweep t around RP1ñ points switch places.

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 2 / 26

Page 9: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Variation on a theme of Schubert

Construct a locus S Ď tlines in P3u “ G p2, 4q:

Take the twisted cubic P1 ãÑ P3, t ÞÑ r1 : t : t2 : t3s,and tangent lines at 0, 1,8

Define S by:

S “

$

&

%

L P P3 :

LX L0 ‰ ∅LX L1 ‰ ∅LX L8 ‰ ∅

,

/

.

/

-

Ď G p2, 4q

Classically: Specify 4 lines; get S “ finite “ 2 points.

Instead: S is a curve! (deg “ 2, χ “ 1)

“Reality”: A fourth condition LX Lt , t P RP1, always gives tworeduced, real points P SpRq.Monodromy: Sweep t around RP1

ñ points switch places.

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 2 / 26

Page 10: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Tangent flags to the rational normal curve

The rational normal curve in Pn´1:

P1 ãÑ PpCnq “ Pn´1 by

t ÞÑ r1 : t : t2 : ¨ ¨ ¨ : tn´1s

(Maximally) tangent flag Ft , t P P1:

S will be a locus in Grpk ,Cnq, defined using Ft“0,1,8.

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 3 / 26

Page 11: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Tangent flags to the rational normal curve

The rational normal curve in Pn´1:

P1 ãÑ PpCnq “ Pn´1 by

t ÞÑ r1 : t : t2 : ¨ ¨ ¨ : tn´1s

(Maximally) tangent flag Ft , t P P1:

S will be a locus in Grpk ,Cnq, defined using Ft“0,1,8.

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 3 / 26

Page 12: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Tangent flags to the rational normal curve

The rational normal curve in Pn´1:

P1 ãÑ PpCnq “ Pn´1 by

t ÞÑ r1 : t : t2 : ¨ ¨ ¨ : tn´1s

(Maximally) tangent flag Ft , t P P1:

S will be a locus in Grpk ,Cnq, defined using Ft“0,1,8.

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 3 / 26

Page 13: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Schubert varieties in Grassmannians

Grassmannian: Grpk ,Cnq “ tk-planes V Ă Cnu

Schubert variety ΩλpF q: (codimension “ |λ|)

Complete flag F Ď Cn,Partition λ Ď k ˆ pn ´ kq rectangle:

λ “ p3, 1q ðñ

ΩλpF q “ tV : dimpV XF k`λi´i q ě i for all iu.

Unique codimension-1 Schubert variety Ω pF q

For tangent flags F “ Ft , ΩλpFtq used to study degenerations ofcurves [Eisenbud-Harris ’80s]

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 4 / 26

Page 14: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Schubert varieties in Grassmannians

Grassmannian: Grpk ,Cnq “ tk-planes V Ă Cnu

Schubert variety ΩλpF q: (codimension “ |λ|)

Complete flag F Ď Cn,Partition λ Ď k ˆ pn ´ kq rectangle:

λ “ p3, 1q ðñ

ΩλpF q “ tV : dimpV XF k`λi´i q ě i for all iu.

Unique codimension-1 Schubert variety Ω pF q

For tangent flags F “ Ft , ΩλpFtq used to study degenerations ofcurves [Eisenbud-Harris ’80s]

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 4 / 26

Page 15: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Schubert varieties in Grassmannians

Grassmannian: Grpk ,Cnq “ tk-planes V Ă Cnu

Schubert variety ΩλpF q: (codimension “ |λ|)

Complete flag F Ď Cn,Partition λ Ď k ˆ pn ´ kq rectangle:

λ “ p3, 1q ðñ

ΩλpF q “ tV : dimpV XF k`λi´i q ě i for all iu.

Unique codimension-1 Schubert variety Ω pF q

For tangent flags F “ Ft , ΩλpFtq used to study degenerations ofcurves [Eisenbud-Harris ’80s]

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 4 / 26

Page 16: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Schubert varieties in Grassmannians

Grassmannian: Grpk ,Cnq “ tk-planes V Ă Cnu

Schubert variety ΩλpF q: (codimension “ |λ|)

Complete flag F Ď Cn,Partition λ Ď k ˆ pn ´ kq rectangle:

λ “ p3, 1q ðñ

ΩλpF q “ tV : dimpV XF k`λi´i q ě i for all iu.

Unique codimension-1 Schubert variety Ω pF q

For tangent flags F “ Ft , ΩλpFtq used to study degenerations ofcurves [Eisenbud-Harris ’80s]

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 4 / 26

Page 17: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

The general construction: a Schubert curve S Ď G pk , nq

Rational normal curve P1 ãÑ Pn´1, tangent flags Ft“0,1,8

Select three partitions, α, β, γ with |α| ` |β| ` |γ| “ kpn ´ kq ´ 1.

Definition

The Schubert curve S Ď G pk , nq is

S “ Spα, β, γq “ ΩαpFt“0q X ΩβpFt“1q X ΩγpFt“8q.

degpSq, χpOSq: from combinatorial data: Young tableaux.

“Reality” and Monodromy:Fourth Schubert condition λ “ at t P RP1

vary t sweep out SpRq (!!)

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 5 / 26

Page 18: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

The general construction: a Schubert curve S Ď G pk , nq

Rational normal curve P1 ãÑ Pn´1, tangent flags Ft“0,1,8

Select three partitions, α, β, γ with |α| ` |β| ` |γ| “ kpn ´ kq ´ 1.

Definition

The Schubert curve S Ď G pk , nq is

S “ Spα, β, γq “ ΩαpFt“0q X ΩβpFt“1q X ΩγpFt“8q.

degpSq, χpOSq: from combinatorial data: Young tableaux.

“Reality” and Monodromy:Fourth Schubert condition λ “ at t P RP1

vary t sweep out SpRq (!!)

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 5 / 26

Page 19: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

The general construction: a Schubert curve S Ď G pk , nq

Rational normal curve P1 ãÑ Pn´1, tangent flags Ft“0,1,8

Select three partitions, α, β, γ with |α| ` |β| ` |γ| “ kpn ´ kq ´ 1.

Definition

The Schubert curve S Ď G pk , nq is

S “ Spα, β, γq “ ΩαpFt“0q X ΩβpFt“1q X ΩγpFt“8q.

degpSq, χpOSq: from combinatorial data: Young tableaux.

“Reality” and Monodromy:Fourth Schubert condition λ “ at t P RP1

vary t sweep out SpRq (!!)

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 5 / 26

Page 20: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

The general construction: a Schubert curve S Ď G pk , nq

Rational normal curve P1 ãÑ Pn´1, tangent flags Ft“0,1,8

Select three partitions, α, β, γ with |α| ` |β| ` |γ| “ kpn ´ kq ´ 1.

Definition

The Schubert curve S Ď G pk , nq is

S “ Spα, β, γq “ ΩαpFt“0q X ΩβpFt“1q X ΩγpFt“8q.

degpSq, χpOSq: from combinatorial data: Young tableaux.

“Reality” and Monodromy:Fourth Schubert condition λ “ at t P RP1

vary t sweep out SpRq (!!)

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 5 / 26

Page 21: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Real geometry of Schubert curves

Theorem (L., extending Speyer, Mukhin-Tarasov-Varchenko; see alsoPurbhoo (and Eisenbud-Harris . . . ))

S “ Spα, β, γq a Schubert curve, SpRq its real points.

There is a map f : S Ñ P1, inducing a smooth covering of realpoints, SpRq Ñ RP1. (Note: f ´1ptq “ S X Ω pFtq.)

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 6 / 26

Page 22: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Conventions on Young tableaux

Yamanouchi tableau of shape νµ:

Semistandard, whose reverse row word is ballot.

T “

1 1 12 2

1 2 3 32 3 4 43 5

µ

µ = (3, 3, 1)

ν = (6, 5, 5, 4, 1)

Content “ (#1’s, #2’s, ¨ ¨ ¨ )

Word “ 111223321443253

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 7 / 26

Page 23: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Conventions on Young tableaux

Yamanouchi tableau of shape νµ:

Semistandard, whose reverse row word is ballot.

T “

1 1 12 2

1 2 3 32 3 4 43 5

µ

µ = (3, 3, 1)

ν = (6, 5, 5, 4, 1)

Content “ (#1’s, #2’s, ¨ ¨ ¨ )

Word “ 111223321443253

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 7 / 26

Page 24: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Real geometry of Schubert curves

Theorem (L., extending Speyer, Mukhin-Tarasov-Varchenko; see alsoPurbhoo (and Eisenbud-Harris . . . ))

S “ Spα, β, γq a Schubert curve, SpRq its real points.

There is a map f : S Ñ P1, inducing a smooth covering of realpoints, SpRq Ñ RP1. (Note: f ´1ptq “ S X Ω pFtq.)

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 8 / 26

Page 25: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Real geometry of Schubert curves

Theorem (L., extending Speyer, Mukhin-Tarasov-Varchenko; see alsoPurbhoo (and Eisenbud-Harris . . . ))

S “ Spα, β, γq a Schubert curve, SpRq its real points.

f ´1p0q Ø LRpα, , β, γq “ tableaux of shape γcα, with one innercorner marked ˆ, the rest Yamanouchi of content β.

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 8 / 26

Page 26: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Real geometry of Schubert curves

Theorem (L., extending Speyer, Mukhin-Tarasov-Varchenko; see alsoPurbhoo (and Eisenbud-Harris . . . ))

S “ Spα, β, γq a Schubert curve, SpRq its real points.

f ´1p8q Ø LRpα, β, , γq “ tableaux of shape γcα, with one outercorner marked ˆ, the rest Yamanouchi of content β.

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 8 / 26

Page 27: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Real geometry of Schubert curves

Theorem (L., extending Speyer, Mukhin-Tarasov-Varchenko; see alsoPurbhoo (and Eisenbud-Harris . . . ))

S “ Spα, β, γq a Schubert curve, SpRq its real points.

The arcs of SpRq lying over R´ and R` induce shuffling (JDT) andevacuation-shuffling on tableaux psh, eshq.

shesh

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 8 / 26

Page 28: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Real geometry of Schubert curves

Theorem (L., extending Speyer, Mukhin-Tarasov-Varchenko; see alsoPurbhoo (and Eisenbud-Harris . . . ))

S “ Spα, β, γq a Schubert curve, SpRq its real points.

Monodromy operator: ω “ sh ˝ esh.

Orbit structure of ω fully characterizes SpRq!

shesh

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 8 / 26

Page 29: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Shuffling, or JDT: Slide b through the tableau using jeu de taquin.

1 1 1

1 2 2 2

2 3 3

1 3 4 4

3 4 5 ×

α

γ

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 9 / 26

Page 30: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Shuffling, or JDT: Slide b through the tableau using jeu de taquin.

1 1 1

1 2 2 2

2 3 3

1 3 4 4

3 4 5 ×

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 9 / 26

Page 31: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Shuffling, or JDT: Slide b through the tableau using jeu de taquin.

1 1 1

1 2 2 2

2 3 3

1 3 4 4

3 4 5×

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 9 / 26

Page 32: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Shuffling, or JDT: Slide b through the tableau using jeu de taquin.

1 1 1

1 2 2 2

2 3 3

1 3 4

3 4 4 5

×

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 9 / 26

Page 33: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Shuffling, or JDT: Slide b through the tableau using jeu de taquin.

1 1 1

1 2 2 2

2 3

1 3 3 4

3 4 4 5

×

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 9 / 26

Page 34: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Shuffling, or JDT: Slide b through the tableau using jeu de taquin.

1 1 1

1 2 2 2

2 3

1 3 3 4

3 4 4 5

×

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 9 / 26

Page 35: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Evacuation-shuffling:

Conjugation prsr´1q of shuffling by rectification.

1 Rectify: Treat ˆ as 0.2 Shuffle (JDT)3 Un-rectify: Treat ˆ as 8.

1 1 1

2 2

1 2 3

×1 1 1

2 2

1 2 3

×

T

eshpT q

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 10 / 26

Page 36: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Evacuation-shuffling:

Conjugation prsr´1q of shuffling by rectification.1 Rectify: Treat ˆ as 0.

2 Shuffle (JDT)3 Un-rectify: Treat ˆ as 8.

1 1 1

2 2

1 2 3

×1 1 1

2 2

1 2 3

×

T

eshpT q

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 10 / 26

Page 37: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Evacuation-shuffling:

Conjugation prsr´1q of shuffling by rectification.1 Rectify: Treat ˆ as 0.

2 Shuffle (JDT)3 Un-rectify: Treat ˆ as 8.

1 1 1

2 2

1 2 3

×1 1 1

2 2

1 2 3

×

T

eshpT q

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 10 / 26

Page 38: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Evacuation-shuffling:

Conjugation prsr´1q of shuffling by rectification.1 Rectify: Treat ˆ as 0.

2 Shuffle (JDT)3 Un-rectify: Treat ˆ as 8.

1 1 1

2 2

1 2 3

×1 1 1

2 2 2

1 3

×

T

eshpT q

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 10 / 26

Page 39: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Evacuation-shuffling:

Conjugation prsr´1q of shuffling by rectification.1 Rectify: Treat ˆ as 0.

2 Shuffle (JDT)3 Un-rectify: Treat ˆ as 8.

1 1 1

2 2

1 2 3

×1 1 1

2 2 2

1 3

×

T

eshpT q

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 10 / 26

Page 40: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Evacuation-shuffling:

Conjugation prsr´1q of shuffling by rectification.1 Rectify: Treat ˆ as 0.

2 Shuffle (JDT)3 Un-rectify: Treat ˆ as 8.

1 1 1

2 2

1 2 3

×1 1 1

2 2 2

1 3

×

1

T

eshpT q

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 10 / 26

Page 41: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Evacuation-shuffling:

Conjugation prsr´1q of shuffling by rectification.1 Rectify: Treat ˆ as 0.

2 Shuffle (JDT)3 Un-rectify: Treat ˆ as 8.

1 1 1

2 2

1 2 3

×1 1 1

1 2 2 2

3

×

1

T

eshpT q

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 10 / 26

Page 42: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Evacuation-shuffling:

Conjugation prsr´1q of shuffling by rectification.1 Rectify: Treat ˆ as 0.

2 Shuffle (JDT)3 Un-rectify: Treat ˆ as 8.

1 1 1

2 2

1 2 3

×1 1 1

1 2 2 2

3

×

12

T

eshpT q

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 10 / 26

Page 43: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Evacuation-shuffling:

Conjugation prsr´1q of shuffling by rectification.1 Rectify: Treat ˆ as 0.

2 Shuffle (JDT)3 Un-rectify: Treat ˆ as 8.

1 1 1

2 2

1 2 3

×1 1 1

1 2 2 2

3

×

12

T

eshpT q

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 10 / 26

Page 44: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Evacuation-shuffling:

Conjugation prsr´1q of shuffling by rectification.1 Rectify: Treat ˆ as 0.

2 Shuffle (JDT)3 Un-rectify: Treat ˆ as 8.

1 1 1

2 2

1 2 3

×1 1

1 2 2 2

3

× 1

12

T

eshpT q

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 10 / 26

Page 45: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Evacuation-shuffling:

Conjugation prsr´1q of shuffling by rectification.1 Rectify: Treat ˆ as 0.

2 Shuffle (JDT)3 Un-rectify: Treat ˆ as 8.

1 1 1

2 2

1 2 3

×1

1 2 2 2

3

× 1 1

12

T

eshpT q

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 10 / 26

Page 46: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Evacuation-shuffling:

Conjugation prsr´1q of shuffling by rectification.1 Rectify: Treat ˆ as 0.

2 Shuffle (JDT)3 Un-rectify: Treat ˆ as 8.

1 1 1

2 2

1 2 3

× 1 2 2 2

3

× 1 1 1

12

3

T

eshpT q

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 10 / 26

Page 47: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Evacuation-shuffling:

Conjugation prsr´1q of shuffling by rectification.1 Rectify: Treat ˆ as 0.2 Shuffle (JDT)

3 Un-rectify: Treat ˆ as 8.

1 1 1

2 2

1 2 3

× 1 2 2 2

3

× 1 1 1

12

3

T

eshpT q

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 10 / 26

Page 48: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Evacuation-shuffling:

Conjugation prsr´1q of shuffling by rectification.1 Rectify: Treat ˆ as 0.2 Shuffle (JDT)

3 Un-rectify: Treat ˆ as 8.

1 1 1

2 2

1 2 3

×1 1 1

2 2 2

3

×1

12

3

T

eshpT q

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 10 / 26

Page 49: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Evacuation-shuffling:

Conjugation prsr´1q of shuffling by rectification.1 Rectify: Treat ˆ as 0.2 Shuffle (JDT)

3 Un-rectify: Treat ˆ as 8.

1 1 1

2 2

1 2 3

×1 1 1

2 2 2

3

×1

12

3

T

eshpT q

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 10 / 26

Page 50: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Evacuation-shuffling:

Conjugation prsr´1q of shuffling by rectification.1 Rectify: Treat ˆ as 0.2 Shuffle (JDT)

3 Un-rectify: Treat ˆ as 8.

1 1 1

2 2

1 2 3

×1 1 1

2 2 2

3

×1

12

3

T

eshpT q

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 10 / 26

Page 51: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Evacuation-shuffling:

Conjugation prsr´1q of shuffling by rectification.1 Rectify: Treat ˆ as 0.2 Shuffle (JDT)

3 Un-rectify: Treat ˆ as 8.

1 1 1

2 2

1 2 3

×1 1 1

2 2 2

3

×1

12

3

T

eshpT q

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 10 / 26

Page 52: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Evacuation-shuffling:

Conjugation prsr´1q of shuffling by rectification.1 Rectify: Treat ˆ as 0.2 Shuffle (JDT)3 Un-rectify: Treat ˆ as 8.

1 1 1

2 2

1 2 3

×1 1 1

2 2 2

3

×1

12

3

T

eshpT q

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 10 / 26

Page 53: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Evacuation-shuffling:

Conjugation prsr´1q of shuffling by rectification.1 Rectify: Treat ˆ as 0.2 Shuffle (JDT)3 Un-rectify: Treat ˆ as 8.

1 1 1

2 2

1 2 3

×1 1 1

2 2 2

3

×1

12

T

eshpT q

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 10 / 26

Page 54: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Evacuation-shuffling:

Conjugation prsr´1q of shuffling by rectification.1 Rectify: Treat ˆ as 0.2 Shuffle (JDT)3 Un-rectify: Treat ˆ as 8.

1 1 1

2 2

1 2 3

×1 1 1

2 2 2

3

×1

12

T

eshpT q

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 10 / 26

Page 55: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Evacuation-shuffling:

Conjugation prsr´1q of shuffling by rectification.1 Rectify: Treat ˆ as 0.2 Shuffle (JDT)3 Un-rectify: Treat ˆ as 8.

1 1 1

2 2

1 2 3

×1 1 1

2 2 2

3

×1

12

T

eshpT q

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 10 / 26

Page 56: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Evacuation-shuffling:

Conjugation prsr´1q of shuffling by rectification.1 Rectify: Treat ˆ as 0.2 Shuffle (JDT)3 Un-rectify: Treat ˆ as 8.

1 1 1

2 2

1 2 3

×1 1 1 1

2 2 2

3

×12

T

eshpT q

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 10 / 26

Page 57: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Evacuation-shuffling:

Conjugation prsr´1q of shuffling by rectification.1 Rectify: Treat ˆ as 0.2 Shuffle (JDT)3 Un-rectify: Treat ˆ as 8.

1 1 1

2 2

1 2 3

×1 1 1 1

2 2 2

3

×1

T

eshpT q

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 10 / 26

Page 58: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Evacuation-shuffling:

Conjugation prsr´1q of shuffling by rectification.1 Rectify: Treat ˆ as 0.2 Shuffle (JDT)3 Un-rectify: Treat ˆ as 8.

1 1 1

2 2

1 2 3

×1 1 1 1

2 2

2 3

×1

T

eshpT q

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 10 / 26

Page 59: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Evacuation-shuffling:

Conjugation prsr´1q of shuffling by rectification.1 Rectify: Treat ˆ as 0.2 Shuffle (JDT)3 Un-rectify: Treat ˆ as 8.

1 1 1

2 2

1 2 3

×1 1 1 1

2 2

2 3

×

T

eshpT q

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 10 / 26

Page 60: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Evacuation-shuffling:

Conjugation prsr´1q of shuffling by rectification.1 Rectify: Treat ˆ as 0.2 Shuffle (JDT)3 Un-rectify: Treat ˆ as 8.

1 1 1

2 2

1 2 3

×1 1 1 1

2

2 2 3

×

T

eshpT q

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 10 / 26

Page 61: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Shuffling and Evacuation-Shuffling

Two bijections:

LRpα, , β, γqesh

ÝÝÝÝÑÐÝÝÝÝ

sh

LRpα, β, , γq

Evacuation-shuffling:

Conjugation prsr´1q of shuffling by rectification.1 Rectify: Treat ˆ as 0.2 Shuffle (JDT)3 Un-rectify: Treat ˆ as 8.

1 1 1

2 2

1 2 3

×1 1 1

1 2

2 2 3

×

T eshpT q

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 10 / 26

Page 62: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Questions about ω “ sh ˝ esh

Three motivating problems:

1 Find an easier algorithm.

2 Describe orbits of ω geometry of S

In general: likely hard!

Related: promotion on standard tableaux

orbits ÐÑ components of Spα, , . . . ,looomooon

|γα|´1

, γqpRq.

3 Connection to K-theoretic Schubert calculus

Combinatorial identities involving χpOSq and ωχpOSq computed by genomic tableaux [Pechenik-Yong ’14]

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 11 / 26

Page 63: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Questions about ω “ sh ˝ esh

Three motivating problems:

1 Find an easier algorithm.

2 Describe orbits of ω geometry of S

In general: likely hard!

Related: promotion on standard tableaux

orbits ÐÑ components of Spα, , . . . ,looomooon

|γα|´1

, γqpRq.

3 Connection to K-theoretic Schubert calculus

Combinatorial identities involving χpOSq and ωχpOSq computed by genomic tableaux [Pechenik-Yong ’14]

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 11 / 26

Page 64: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Questions about ω “ sh ˝ esh

Three motivating problems:

1 Find an easier algorithm.

2 Describe orbits of ω geometry of SIn general: likely hard!

Related: promotion on standard tableaux

orbits ÐÑ components of Spα, , . . . ,looomooon

|γα|´1

, γqpRq.

3 Connection to K-theoretic Schubert calculus

Combinatorial identities involving χpOSq and ωχpOSq computed by genomic tableaux [Pechenik-Yong ’14]

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 11 / 26

Page 65: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Questions about ω “ sh ˝ esh

Three motivating problems:

1 Find an easier algorithm.

2 Describe orbits of ω geometry of SIn general: likely hard!

Related: promotion on standard tableaux

orbits ÐÑ components of Spα, , . . . ,looomooon

|γα|´1

, γqpRq.

3 Connection to K-theoretic Schubert calculus

Combinatorial identities involving χpOSq and ωχpOSq computed by genomic tableaux [Pechenik-Yong ’14]

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 11 / 26

Page 66: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Local, linear-time algorithm for evacuation-shuffling

Theorem (Gillespie,L.)

Start at i “ 1.

Phase 1 (move b down-and-left):

Switch b with nearest i in reading order.

If no i available, go to Phase 2.

Phase 2 (move b right-and-up):

If suffix from b is not tied for pi , i ` 1q, switch b with nearest i inreading order. Repeat until tied. Increment i , repeat.

Phase 1pi “ q

1 1 1 1 12 2 2 2

× 1 2 3 31 1 2 3 4 4

2 3 3 3 4 5 53 4 4

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 12 / 26

Page 67: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Local, linear-time algorithm for evacuation-shuffling

Theorem (Gillespie,L.)

Start at i “ 1.

Phase 1 (move b down-and-left):

Switch b with nearest i in reading order.

If no i available, go to Phase 2.

Phase 2 (move b right-and-up):

If suffix from b is not tied for pi , i ` 1q, switch b with nearest i inreading order. Repeat until tied. Increment i , repeat.

Phase 1pi “ 1q

1 1 1 1 12 2 2 2

× 1 2 3 31 1 2 3 4 4

2 3 3 3 4 5 53 4 4

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 12 / 26

Page 68: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Local, linear-time algorithm for evacuation-shuffling

Theorem (Gillespie,L.)

Start at i “ 1.

Phase 1 (move b down-and-left):

Switch b with nearest i in reading order.

If no i available, go to Phase 2.

Phase 2 (move b right-and-up):

If suffix from b is not tied for pi , i ` 1q, switch b with nearest i inreading order. Repeat until tied. Increment i , repeat.

Phase 1pi “ 2q

1 1 1 1 12 2 2 2

1 1 2 3 31 × 2 3 4 4

2 3 3 3 4 5 53 4 4

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 12 / 26

Page 69: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Local, linear-time algorithm for evacuation-shuffling

Theorem (Gillespie,L.)

Start at i “ 1.

Phase 1 (move b down-and-left):

Switch b with nearest i in reading order.

If no i available, go to Phase 2.

Phase 2 (move b right-and-up):

If suffix from b is not tied for pi , i ` 1q, switch b with nearest i inreading order. Repeat until tied. Increment i , repeat.

Phase 1pi “ 3q

1 1 1 1 12 2 2 2

1 1 2 3 31 2 2 3 4 4

× 3 3 3 4 5 53 4 4

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 12 / 26

Page 70: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Local, linear-time algorithm for evacuation-shuffling

Theorem (Gillespie,L.)

Start at i “ 1.

Phase 1 (move b down-and-left):

Switch b with nearest i in reading order.

If no i available, go to Phase 2.

Phase 2 (move b right-and-up):

If suffix from b is not tied for pi , i ` 1q, switch b with nearest i inreading order. Repeat until tied. Increment i , repeat.

Phase 1pi “ 4q

1 1 1 1 12 2 2 2

1 1 2 3 31 2 2 3 4 4

3 3 3 3 4 5 5× 4 4

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 12 / 26

Page 71: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Local, linear-time algorithm for evacuation-shuffling

Theorem (Gillespie,L.)

Start at i “ 1.

Phase 1 (move b down-and-left):

Switch b with nearest i in reading order.

If no i available, go to Phase 2.

Phase 2 (move b right-and-up):

If suffix from b is not tied for pi , i ` 1q, switch b with nearest i inreading order. Repeat until tied. Increment i , repeat.

Phase 2pi “ 4q

1 1 1 1 12 2 2 2

1 1 2 3 31 2 2 3 4 4

3 3 3 3 4 5 5× 4 4

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 12 / 26

Page 72: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Local, linear-time algorithm for evacuation-shuffling

Theorem (Gillespie,L.)

Start at i “ 1.

Phase 1 (move b down-and-left):

Switch b with nearest i in reading order.

If no i available, go to Phase 2.

Phase 2 (move b right-and-up):

If suffix from b is not tied for pi , i ` 1q, switch b with nearest i inreading order. Repeat until tied. Increment i , repeat.

Phase 2pi “ 4q

1 1 1 1 12 2 2 2

1 1 2 3 31 2 2 3 4 4

3 3 3 3 4 5 54 × 4

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 12 / 26

Page 73: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Local, linear-time algorithm for evacuation-shuffling

Theorem (Gillespie,L.)

Start at i “ 1.

Phase 1 (move b down-and-left):

Switch b with nearest i in reading order.

If no i available, go to Phase 2.

Phase 2 (move b right-and-up):

If suffix from b is not tied for pi , i ` 1q, switch b with nearest i inreading order. Repeat until tied. Increment i , repeat.

Phase 2pi “ 4q

1 1 1 1 12 2 2 2

1 1 2 3 31 2 2 3 4 4

3 3 3 3 4 5 54 4 ×

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 12 / 26

Page 74: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Local, linear-time algorithm for evacuation-shuffling

Theorem (Gillespie,L.)

Start at i “ 1.

Phase 1 (move b down-and-left):

Switch b with nearest i in reading order.

If no i available, go to Phase 2.

Phase 2 (move b right-and-up):

If suffix from b is not tied for pi , i ` 1q, switch b with nearest i inreading order. Repeat until tied. Increment i , repeat.

Phase 2pi “ 4q

1 1 1 1 12 2 2 2

1 1 2 3 31 2 2 3 4 4

3 3 3 3 × 5 54 4 4

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 12 / 26

Page 75: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Local, linear-time algorithm for evacuation-shuffling

Theorem (Gillespie,L.)

Start at i “ 1.

Phase 1 (move b down-and-left):

Switch b with nearest i in reading order.

If no i available, go to Phase 2.

Phase 2 (move b right-and-up):

If suffix from b is not tied for pi , i ` 1q, switch b with nearest i inreading order. Repeat until tied. Increment i , repeat.

Phase 2pi “ 5q

1 1 1 1 12 2 2 2

1 1 2 3 31 2 2 3 4 4

3 3 3 3 × 5 54 4 4

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 12 / 26

Page 76: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Local, linear-time algorithm for evacuation-shuffling

Theorem (Gillespie,L.)

Start at i “ 1.

Phase 1 (move b down-and-left):

Switch b with nearest i in reading order.

If no i available, go to Phase 2.

Phase 2 (move b right-and-up):

If suffix from b is not tied for pi , i ` 1q, switch b with nearest i inreading order. Repeat until tied. Increment i , repeat.

Phase 2pi “ 5q

1 1 1 1 12 2 2 2

1 1 2 3 31 2 2 3 4 4

3 3 3 3 5 × 54 4 4

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 12 / 26

Page 77: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Local, linear-time algorithm for evacuation-shuffling

Theorem (Gillespie,L.)

Start at i “ 1.

Phase 1 (move b down-and-left):

Switch b with nearest i in reading order.

If no i available, go to Phase 2.

Phase 2 (move b right-and-up):

If suffix from b is not tied for pi , i ` 1q, switch b with nearest i inreading order. Repeat until tied. Increment i , repeat.

Phase 2pi “ 5q

1 1 1 1 12 2 2 2

1 1 2 3 31 2 2 3 4 4

3 3 3 3 5 5 ×4 4 4

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 12 / 26

Page 78: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

First: “Pieri case”, β “ horizontal strip “ .

Claim:ˆ 1 1

1 11

esh //1 1 1

1 ˆ1

1 1 1ˆ 1

1

esh //1 1 1

1 1ˆ

1 1 11 1

ˆ

esh //1 1 ˆ

1 11

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 13 / 26

Page 79: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

Proof of Pieri Case:

× 1 11 1

1

× 1 11 1

1

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 14 / 26

Page 80: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

Proof of Pieri Case:

× 1 11 1

1

× 1 11 1

1

1

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 14 / 26

Page 81: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

Proof of Pieri Case:

× 1 11 1

1

× 1 1 11

1

1

2

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 14 / 26

Page 82: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

Proof of Pieri Case:

× 1 11 1

1

× 1 1 11 1

1

2

3

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 14 / 26

Page 83: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

Proof of Pieri Case:

× 1 11 1

1

1 1 1 11

× 1

2

3

4

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 14 / 26

Page 84: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

Proof of Pieri Case:

× 1 11 1

1

1 1 1 1×1 1

2

3

4

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 14 / 26

Page 85: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

Proof of Pieri Case:

× 1 11 1

1

1 1 1 11 ×

1

2

3

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 14 / 26

Page 86: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

Proof of Pieri Case:

× 1 11 1

1

1 1 1 1×

1

1

2

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 14 / 26

Page 87: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

Proof of Pieri Case:

× 1 11 1

1

1 1 11 ×

1

1

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 14 / 26

Page 88: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

Proof of Pieri Case:

× 1 11 1

1

1 1 11 ×

1

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 14 / 26

Page 89: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

Proof of Pieri Case:

× 1 11 1

1

1 1 11 ×

1

1 1 11 1

×

1 1 11 1

×

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 14 / 26

Page 90: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

Proof of Pieri Case:

× 1 11 1

1

1 1 11 ×

1

1 1 11 1

×

1 1 1 11

×1

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 14 / 26

Page 91: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

Proof of Pieri Case:

× 1 11 1

1

1 1 11 ×

1

1 1 11 1

×

1 1 1 1× 1 1

2

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 14 / 26

Page 92: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

Proof of Pieri Case:

× 1 11 1

1

1 1 11 ×

1

1 1 11 1

×

1 1 1 1 1× 1

2

3

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 14 / 26

Page 93: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

Proof of Pieri Case:

× 1 11 1

1

1 1 11 ×

1

1 1 11 1

×

1 1 1 1 1×1

2

34

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 14 / 26

Page 94: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

Proof of Pieri Case:

× 1 11 1

1

1 1 11 ×

1

1 1 11 1

×

1 1 1 1 ×11

2

34

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 14 / 26

Page 95: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

Proof of Pieri Case:

× 1 11 1

1

1 1 11 ×

1

1 1 11 1

×

1 1 1 1 ×1 1

2

3

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 14 / 26

Page 96: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

Proof of Pieri Case:

× 1 11 1

1

1 1 11 ×

1

1 1 11 1

×

1 1 1 ×1 1 1

2

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 14 / 26

Page 97: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

Proof of Pieri Case:

× 1 11 1

1

1 1 11 ×

1

1 1 11 1

×

1 1 1 ×1

1

1

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 14 / 26

Page 98: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

Proof of Pieri Case:

× 1 11 1

1

1 1 11 ×

1

1 1 11 1

×

1 1 ×1 1

1

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 14 / 26

Page 99: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

General case: “Factor” T into strips, move b incrementally. Refer toPieri case.

× 1 1 1 1 1

1 2 2 2 2

2 3 3 3 3

4 4 4

5

1 1 1

× 1 1 2 2

1 2 2 3

3 3 4

4 4

2 3 5

Switch b with nearest square...

... prior to it in horizontal strip (Pieri case)

... after it in vertical strip (transpose of Pieri case).

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 15 / 26

Page 100: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

General case: “Factor” T into strips, move b incrementally. Refer toPieri case.

× 1 1 1 1 1

1 2 2 2 2

2 3 3 3 3

4 4 4

5

1 1 1

× 1 1 2 2

1 2 2 3

3 3 4

4 4

2 3 5

Switch b with nearest square...

... prior to it in horizontal strip (Pieri case)

... after it in vertical strip (transpose of Pieri case).

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 15 / 26

Page 101: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

General case: “Factor” T into strips, move b incrementally. Refer toPieri case.

1 1 1 1 1 1

× 2 2 2 2

2 3 3 3 3

4 4 4

5

1 1 1

1 1 1 2 2

× 2 2 3

3 3 4

4 4

2 3 5

Switch b with nearest square...

... prior to it in horizontal strip (Pieri case)

... after it in vertical strip (transpose of Pieri case).

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 15 / 26

Page 102: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

General case: “Factor” T into strips, move b incrementally. Refer toPieri case.

1 1 1 1 1 1

× 2 2 2 2

2 3 3 3 3

4 4 4

5

1 1 1

1 1 1 2 2

× 2 2 3

3 3 4

4 4

2 3 5

Switch b with nearest square...

... prior to it in horizontal strip (Pieri case)

... after it in vertical strip (transpose of Pieri case).

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 15 / 26

Page 103: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

General case: “Factor” T into strips, move b incrementally. Refer toPieri case.

1 1 1 1 1 1

2 2 2 2 2

× 3 3 3 3

4 4 4

5

1 1 1

1 1 1 2 2

2 2 2 3

3 3 4

4 4

× 3 5

Switch b with nearest square...

... prior to it in horizontal strip (Pieri case)

... after it in vertical strip (transpose of Pieri case).

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 15 / 26

Page 104: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

General case: “Factor” T into strips, move b incrementally. Refer toPieri case.

1 1 1 1 1 1

2 2 2 2 2

× 3 3 3 3

4 4 4

5

1 1 1

1 1 1 2 2

2 2 2 3

3 3 4

4 4

× 3 5

Switch b with nearest square...

... prior to it in horizontal strip (Pieri case)

... after it in vertical strip (transpose of Pieri case).

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 15 / 26

Page 105: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

General case: “Factor” T into strips, move b incrementally. Refer toPieri case.

1 1 1 1 1 1

2 2 2 2 2

× 3 3 3 3

4 4 4

5

1 1 1

1 1 1 2 2

2 2 2 3

3 3 4

4 4

× 3 5

Switch b with nearest square...

... prior to it in horizontal strip (Pieri case)

... after it in vertical strip (transpose of Pieri case).

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 15 / 26

Page 106: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

General case: “Factor” T into strips, move b incrementally. Refer toPieri case.

1 1 1 1 1 1

2 2 2 2 2

× 3 3 3 3

4 4 4

5

1 1 1

1 1 1 2 2

2 2 2 3

3 3 4

4 4

× 3 5

Switch b with nearest square...

... prior to it in horizontal strip (Pieri case)

... after it in vertical strip (transpose of Pieri case).

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 15 / 26

Page 107: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

General case: “Factor” T into strips, move b incrementally. Refer toPieri case.

1 1 1 1 1 1

2 2 2 2 2

× 3 3 3 3

4 4 4

5

1 1 1

1 1 1 2 2

2 2 2 3

3 3 4

4 4

× 3 5

Switch b with nearest square...

... prior to it in horizontal strip (Pieri case)

... after it in vertical strip (transpose of Pieri case).

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 15 / 26

Page 108: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

General case: “Factor” T into strips, move b incrementally. Refer toPieri case.

1 1 1 1 1 1

2 2 2 2 2

3 × 3 3 3

4 4 4

5

1 1 1

1 1 1 2 2

2 2 2 3

3 3 4

4 4

3 × 5

Switch b with nearest square...

... prior to it in horizontal strip (Pieri case)

... after it in vertical strip (transpose of Pieri case).

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 15 / 26

Page 109: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

General case: “Factor” T into strips, move b incrementally. Refer toPieri case.

1 1 1 1 1 1

2 2 2 2 2

3 3 × 3 3

4 4 4

5

1 1 1

1 1 1 2 2

2 2 2 3

3 3 4

× 4

3 4 5

Switch b with nearest square...

... prior to it in horizontal strip (Pieri case)

... after it in vertical strip (transpose of Pieri case).

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 15 / 26

Page 110: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

General case: “Factor” T into strips, move b incrementally. Refer toPieri case.

1 1 1 1 1 1

2 2 2 2 2

3 3 3 × 3

4 4 4

5

1 1 1

1 1 1 2 2

2 2 2 3

3 3 4

4 ×3 4 5

Switch b with nearest square...

... prior to it in horizontal strip (Pieri case)

... after it in vertical strip (transpose of Pieri case).

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 15 / 26

Page 111: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Proof of local rule

General case: “Factor” T into strips, move b incrementally. Refer toPieri case.

1 1 1 1 1 1

2 2 2 2 2

3 3 3 3 ×4 4 4

5

1 1 1

1 1 1 2 2

2 2 2 3

3 3 ×4 4

3 4 5

Switch b with nearest square...

... prior to it in horizontal strip (Pieri case)

... after it in vertical strip (transpose of Pieri case).

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 15 / 26

Page 112: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Application: K-theory and χpOSq

K-theoretic Schubert calculus:

χpOSq “ cα,β,γ,b ´ kα,β,γ ,

cα,β,γ,b “ |LRpα, , β, γq| “ Young tableaux with b

kα,β,γ = |K pγcα;βq| “ genomic tableaux [Pechenik-Yong ’15]

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 16 / 26

Page 113: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Application: K-theory and χpOSq

K-theoretic Schubert calculus:

χpOSq “ cα,β,γ,b ´ kα,β,γ ,

cα,β,γ,b “ |LRpα, , β, γq| “ Young tableaux with b

kα,β,γ = |K pγcα;βq| “ genomic tableaux [Pechenik-Yong ’15]

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 16 / 26

Page 114: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Application: K-theory and χpOSq

K-theoretic Schubert calculus:

χpOSq “ cα,β,γ,b ´ kα,β,γ ,

cα,β,γ,b “ |LRpα, , β, γq| “ Young tableaux with b

kα,β,γ = |K pγcα;βq| “ genomic tableaux [Pechenik-Yong ’15]

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 16 / 26

Page 115: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Application: K-theory and χpOSq

K-theoretic Schubert calculus:

χpOSq “ cα,β,γ,b ´ kα,β,γ ,

cα,β,γ,b “ |LRpα, , β, γq| “ Young tableaux with b

kα,β,γ = |K pγcα;βq| “ genomic tableaux [Pechenik-Yong ’15]

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 16 / 26

Page 116: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Genomic tableaux

Genomic tableau: T with shaded entries tb,b1u, where:

(i) b,b1 non-adjacent, contain same entry i ,(ii) No i ’s between them in the reading word,(iii) Delete either b or b1 ñ leftover reading word is ballot.

Which of the following are genomic tableaux?

K -theoretic content: β “ p4, 2, 1q

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 17 / 26

Page 117: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Genomic tableaux

Genomic tableau: T with shaded entries tb,b1u, where:

(i) b,b1 non-adjacent, contain same entry i ,(ii) No i ’s between them in the reading word,(iii) Delete either b or b1 ñ leftover reading word is ballot.

Which of the following are genomic tableaux?

1 11 2 2

1 2 3

1 11 2 2

1 2 3

1 11 2 2

1 2 3

1 11 2 2

1 2 3

K -theoretic content: β “ p4, 2, 1q

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 17 / 26

Page 118: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Genomic tableaux

Genomic tableau: T with shaded entries tb,b1u, where:

(i) b,b1 non-adjacent, contain same entry i ,(ii) No i ’s between them in the reading word,(iii) Delete either b or b1 ñ leftover reading word is ballot.

Which of the following are genomic tableaux?

1 11 2 2

1 2 3

1 11 2 2

1 2 3

1 11 2 2

1 2 3

1 11 2 2

1 2 3

K -theoretic content: β “ p4, 2, 1q

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 17 / 26

Page 119: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Genomic tableaux

Genomic tableau: T with shaded entries tb,b1u, where:

(i) b,b1 non-adjacent, contain same entry i ,(ii) No i ’s between them in the reading word,(iii) Delete either b or b1 ñ leftover reading word is ballot.

Which of the following are genomic tableaux?

1 11 2 2

1 2 3

1 11 2 2

1 2 3

1 11 2 2

1 2 3

1 11 2 2

1 2 3

K -theoretic content: β “ p4, 2, 1q

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 17 / 26

Page 120: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Generating genomic tableaux

Theorem (Gillespie, L.)

Two bijections

K pγcα;βq Ø tnon-adjacent moves in esh (Phase 1)u

K pγcα;βq Ø tnon-adjacent moves in esh (Phase 2)u

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 18 / 26

Page 121: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Generating genomic tableaux

Theorem (Gillespie, L.)

Two bijections

K pγcα;βq Ø tnon-adjacent moves in esh (Phase 1)u

K pγcα;βq Ø tnon-adjacent moves in esh (Phase 2)u

1 1 1× 1 1 2 21 2 2 33 3 4

4 42 3 5

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 18 / 26

Page 122: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Generating genomic tableaux

Theorem (Gillespie, L.)

Two bijections

K pγcα;βq Ø tnon-adjacent moves in esh (Phase 1)u

K pγcα;βq Ø tnon-adjacent moves in esh (Phase 2)u

1 1 11 1 1 2 2× 2 2 33 3 4

4 42 3 5

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 18 / 26

Page 123: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Generating genomic tableaux

Theorem (Gillespie, L.)

Two bijections

K pγcα;βq Ø tnon-adjacent moves in esh (Phase 1)u

K pγcα;βq Ø tnon-adjacent moves in esh (Phase 2)u

1 1 11 1 1 2 22 2 2 33 3 4

4 4× 3 5

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 18 / 26

Page 124: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Generating genomic tableaux

Theorem (Gillespie, L.)

Two bijections

K pγcα;βq Ø tnon-adjacent moves in esh (Phase 1)u

K pγcα;βq Ø tnon-adjacent moves in esh (Phase 2)u

1 1 11 1 1 2 22 2 2 33 3 4

4 42 3 5

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 18 / 26

Page 125: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Generating genomic tableaux

Theorem (Gillespie, L.)

Two bijections

K pγcα;βq Ø tnon-adjacent moves in esh (Phase 1)u

K pγcα;βq Ø tnon-adjacent moves in esh (Phase 2)u

1 1 11 1 1 2 22 2 2 33 3 4

4 4× 3 5

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 18 / 26

Page 126: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Generating genomic tableaux

Theorem (Gillespie, L.)

Two bijections

K pγcα;βq Ø tnon-adjacent moves in esh (Phase 1)u

K pγcα;βq Ø tnon-adjacent moves in esh (Phase 2)u

1 1 11 1 1 2 22 2 2 33 3 4

4 43 × 5

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 18 / 26

Page 127: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Generating genomic tableaux

Theorem (Gillespie, L.)

Two bijections

K pγcα;βq Ø tnon-adjacent moves in esh (Phase 1)u

K pγcα;βq Ø tnon-adjacent moves in esh (Phase 2)u

1 1 11 1 1 2 22 2 2 33 3 4

× 43 4 5

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 18 / 26

Page 128: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Generating genomic tableaux

Theorem (Gillespie, L.)

Two bijections

K pγcα;βq Ø tnon-adjacent moves in esh (Phase 1)u

K pγcα;βq Ø tnon-adjacent moves in esh (Phase 2)u

1 1 11 1 1 2 22 2 2 33 3 4

4 43 4 5

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 18 / 26

Page 129: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Generating genomic tableaux

Theorem (Gillespie, L.)

Two bijections

K pγcα;βq Ø tnon-adjacent moves in esh (Phase 1)u

K pγcα;βq Ø tnon-adjacent moves in esh (Phase 2)u

1 1 11 1 1 2 22 2 2 33 3 4

× 43 4 5

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 18 / 26

Page 130: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Generating genomic tableaux

Theorem (Gillespie, L.)

Two bijections

K pγcα;βq Ø tnon-adjacent moves in esh (Phase 1)u

K pγcα;βq Ø tnon-adjacent moves in esh (Phase 2)u

1 1 11 1 1 2 22 2 2 33 3 4

4 ×3 4 5

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 18 / 26

Page 131: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Generating genomic tableaux

Theorem (Gillespie, L.)

Two bijections

K pγcα;βq Ø tnon-adjacent moves in esh (Phase 1)u

K pγcα;βq Ø tnon-adjacent moves in esh (Phase 2)u

1 1 11 1 1 2 22 2 2 33 3 ×

4 43 4 5

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 18 / 26

Page 132: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Generating genomic tableaux

Theorem (Gillespie, L.)

Two bijections

K pγcα;βq Ø tnon-adjacent moves in esh (Phase 1)u

K pγcα;βq Ø tnon-adjacent moves in esh (Phase 2)u

1 1 11 1 1 2 22 2 2 33 3 4

4 43 4 5

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 18 / 26

Page 133: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Generating genomic tableaux

Theorem (Gillespie, L.)

Two bijections

K pγcα;βq Ø tnon-adjacent moves in esh (Phase 1)u

K pγcα;βq Ø tnon-adjacent moves in esh (Phase 2)u

1 1 11 1 1 2 22 2 2 33 3 ×

4 43 4 5

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 18 / 26

Page 134: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Application: geometry!

Corollary [Gillespie,L.]

Suppose ω acts trivially, i.e. SpRq Ñ RP1 is a disjoint union ofdegree-1 circles.

Then S Ñ P1 is algebraically trivial, S – Ů

deg f P1.

(Not true of general maps of real algebraic curves!)

Schubert curves over C [Gillespie, L.]:

S with arbitrarily many C-connected components

S integral, with arbitrarily high genus gapSq

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 19 / 26

Page 135: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Application: geometry!

Corollary [Gillespie,L.]

Suppose ω acts trivially, i.e. SpRq Ñ RP1 is a disjoint union ofdegree-1 circles.

Then S Ñ P1 is algebraically trivial, S – Ů

deg f P1.

(Not true of general maps of real algebraic curves!)

Schubert curves over C [Gillespie, L.]:

S with arbitrarily many C-connected components

S integral, with arbitrarily high genus gapSq

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 19 / 26

Page 136: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Application: geometry!

Corollary [Gillespie,L.]

Suppose ω acts trivially, i.e. SpRq Ñ RP1 is a disjoint union ofdegree-1 circles.

Then S Ñ P1 is algebraically trivial, S – Ů

deg f P1.

(Not true of general maps of real algebraic curves!)

Schubert curves over C [Gillespie, L.]:

S with arbitrarily many C-connected components

S integral, with arbitrarily high genus gapSq

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 19 / 26

Page 137: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Application: sign, rlength of ω

Reflection length of σ P SN“ mintr : σ “ τ1 ¨ ¨ ¨ τru with τi arbitrary transpositions= N ´#orbitspσq

Sign signpσq “ rlengthpσq pmod 2q.

(L.) From geometry (properties of map S Ñ P1): Is there acombinatorial explanation?

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 20 / 26

Page 138: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Application: sign, rlength of ω

Reflection length of σ P SN“ mintr : σ “ τ1 ¨ ¨ ¨ τru with τi arbitrary transpositions= N ´#orbitspσq

Sign signpσq “ rlengthpσq pmod 2q.

(L.) From geometry (properties of map S Ñ P1):

# components of SpRq ” χpOSq pmod 2q and

# components of SpRq ě χpOSq.

Is there a combinatorial explanation?

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 20 / 26

Page 139: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Application: sign, rlength of ω

Reflection length of σ P SN“ mintr : σ “ τ1 ¨ ¨ ¨ τru with τi arbitrary transpositions= N ´#orbitspσq

Sign signpσq “ rlengthpσq pmod 2q.

(L.) From geometry (properties of map S Ñ P1):

|K pγcα;βq| ” signpωq pmod 2q,

|K pγcα;βq| ě rlengthpωq.

Is there a combinatorial explanation?

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 20 / 26

Page 140: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Application: sign, rlength of ω

Reflection length of σ P SN“ mintr : σ “ τ1 ¨ ¨ ¨ τru with τi arbitrary transpositions= N ´#orbitspσq

Sign signpσq “ rlengthpσq pmod 2q.

(L.) From geometry (properties of map S Ñ P1):

|K pγcα;βq| ” signpωq pmod 2q,

|K pγcα;βq| ě rlengthpωq.

Is there a combinatorial explanation?

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 20 / 26

Page 141: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

The sign and reflection length of ω

Corollary (Gillespie,L.)

Independent proofs of

|K pγcα;βq| ” signpωq pmod 2q,

|K pγcα;βq| ě rlengthpωq.

Idea: factor esh and sh into steps:

X1

e1

88 X2

e2

88

s1xx

X3

e3

99

s2xx

¨ ¨ ¨

e`pβq22

s3ww

X`pβq`1

s`pβqxx

Each si ˝ ei has very simple orbit structure and

signpωq ”ÿ

signpsi ˝ ei q pmod 2q,

rlengthpωq ďÿ

rlengthpsi ˝ ei q

“ÿ

|K pγcα;βqpiq|.

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 21 / 26

Page 142: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

The sign and reflection length of ω

Corollary (Gillespie,L.)

Independent proofs of

|K pγcα;βq| ” signpωq pmod 2q,

|K pγcα;βq| ě rlengthpωq.

Idea: factor esh and sh into steps:

X1

e1

88 X2

e2

88

s1xx

X3

e3

99

s2xx

¨ ¨ ¨

e`pβq22

s3ww

X`pβq`1

s`pβqxx

Each si ˝ ei has very simple orbit structure and

signpωq ”ÿ

signpsi ˝ ei q pmod 2q,

rlengthpωq ďÿ

rlengthpsi ˝ ei q

“ÿ

|K pγcα;βqpiq|.

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 21 / 26

Page 143: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

The sign and reflection length of ω

Corollary (Gillespie,L.)

Independent proofs of

|K pγcα;βq| ” signpωq pmod 2q,

|K pγcα;βq| ě rlengthpωq.

Idea: factor esh and sh into steps:

X1

e1

88 X2

e2

88

s1xx

X3

e3

99

s2xx

¨ ¨ ¨

e`pβq22

s3ww

X`pβq`1

s`pβqxx

Each si ˝ ei has very simple orbit structure and

signpωq ”ÿ

signpsi ˝ ei q pmod 2q,

rlengthpωq ďÿ

rlengthpsi ˝ ei q

“ÿ

|K pγcα;βqpiq|.

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 21 / 26

Page 144: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

The sign and reflection length of ω

Corollary (Gillespie,L.)

Independent proofs of

|K pγcα;βq| ” signpωq pmod 2q,

|K pγcα;βq| ě rlengthpωq.

Idea: factor esh and sh into steps:

X1

e1

88 X2

e2

88

s1xx

X3

e3

99

s2xx

¨ ¨ ¨

e`pβq22

s3ww

X`pβq`1

s`pβqxx

Each si ˝ ei has very simple orbit structure and

signpωq ”ÿ

signpsi ˝ ei q pmod 2q,

rlengthpωq ďÿ

rlengthpsi ˝ ei q “ÿ

|K pγcα;βqpiq|.

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 21 / 26

Page 145: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

What’s next?

Combinatorics:

Conjecture. In every orbit O of ω, at least |O| ´ 1 genomic tableauxare generated (in each Phase).

Holds for `pβq ď 2; holds for k , n ď 10 (all α, β, γ).

Local rules for esh, ω in general:

Shifted tableaux for OG pn, 2n ` 1q [with Kevin Purbhoo]

crystal-like structure on shifted SSYTs? (Coming soon...!)

Tableau switching: eshpS ,T q, where S ‰ b.

Geometry:

Schubert curves in OG pn, 2n ` 1q, LG p2nq [Purbhoo]

Higher dimensions: “Schubert surfaces”, 3-folds, ...

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 22 / 26

Page 146: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

What’s next?

Combinatorics:

Conjecture. In every orbit O of ω, at least |O| ´ 1 genomic tableauxare generated (in each Phase).

Holds for `pβq ď 2; holds for k , n ď 10 (all α, β, γ).

Local rules for esh, ω in general:

Shifted tableaux for OG pn, 2n ` 1q [with Kevin Purbhoo]

crystal-like structure on shifted SSYTs? (Coming soon...!)

Tableau switching: eshpS ,T q, where S ‰ b.

Geometry:

Schubert curves in OG pn, 2n ` 1q, LG p2nq [Purbhoo]

Higher dimensions: “Schubert surfaces”, 3-folds, ...

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 22 / 26

Page 147: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

What’s next?

Combinatorics:

Conjecture. In every orbit O of ω, at least |O| ´ 1 genomic tableauxare generated (in each Phase).

Holds for `pβq ď 2; holds for k , n ď 10 (all α, β, γ).

Local rules for esh, ω in general:

Shifted tableaux for OG pn, 2n ` 1q [with Kevin Purbhoo]

crystal-like structure on shifted SSYTs? (Coming soon...!)

Tableau switching: eshpS ,T q, where S ‰ b.

Geometry:

Schubert curves in OG pn, 2n ` 1q, LG p2nq [Purbhoo]

Higher dimensions: “Schubert surfaces”, 3-folds, ...

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 22 / 26

Page 148: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

What’s next?

Combinatorics:

Conjecture. In every orbit O of ω, at least |O| ´ 1 genomic tableauxare generated (in each Phase).

Holds for `pβq ď 2; holds for k , n ď 10 (all α, β, γ).

Local rules for esh, ω in general:

Shifted tableaux for OG pn, 2n ` 1q [with Kevin Purbhoo]

crystal-like structure on shifted SSYTs? (Coming soon...!)

Tableau switching: eshpS ,T q, where S ‰ b.

Geometry:

Schubert curves in OG pn, 2n ` 1q, LG p2nq [Purbhoo]

Higher dimensions: “Schubert surfaces”, 3-folds, ...

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 22 / 26

Page 149: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

PREVIEW: Schubert curves in OG(n,2n+1)

(with Maria Gillespie and Kevin Purbhoo)

Odd orthogonal Grassmannian (type C):

Symmetric form x´,´y on C2n`1

V Ď C2n`1 is isotropic if xv1, v2y “ 0 for all v1, v2 P V .

OG pn, 2n ` 1q “ tV P Grpn, 2n ` 1q isotropicu.

‘Halved’ combinatorial picture:

Similar story, giving Spα, β, γq Ă OG pn, 2n ` 1q

Thm (G-L-P). Topology of S determined by shifted JDT, esh.

Local esh: Phase 1 resembles Type A, Phase 2 does not!Instead, Phase 2 uses crystal-like (coplactic) operators on words.

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 23 / 26

Page 150: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

PREVIEW: Schubert curves in OG(n,2n+1)

(with Maria Gillespie and Kevin Purbhoo)

Odd orthogonal Grassmannian (type C):

Symmetric form x´,´y on C2n`1

V Ď C2n`1 is isotropic if xv1, v2y “ 0 for all v1, v2 P V .

OG pn, 2n ` 1q “ tV P Grpn, 2n ` 1q isotropicu.

‘Halved’ combinatorial picture:

Similar story, giving Spα, β, γq Ă OG pn, 2n ` 1q

Thm (G-L-P). Topology of S determined by shifted JDT, esh.

Local esh: Phase 1 resembles Type A, Phase 2 does not!Instead, Phase 2 uses crystal-like (coplactic) operators on words.

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 23 / 26

Page 151: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

PREVIEW: Schubert curves in OG(n,2n+1)

(with Maria Gillespie and Kevin Purbhoo)

Odd orthogonal Grassmannian (type C):

Symmetric form x´,´y on C2n`1

V Ď C2n`1 is isotropic if xv1, v2y “ 0 for all v1, v2 P V .

OG pn, 2n ` 1q “ tV P Grpn, 2n ` 1q isotropicu.

‘Halved’ combinatorial picture:

Similar story, giving Spα, β, γq Ă OG pn, 2n ` 1q

Thm (G-L-P). Topology of S determined by shifted JDT, esh.

Local esh: Phase 1 resembles Type A, Phase 2 does not!Instead, Phase 2 uses crystal-like (coplactic) operators on words.

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 23 / 26

Page 152: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Schubert curves in OG(n,2n+1)

Strict partitions α, β, γ, shifted (ballot) SSYTs T

Alphabet 11 ă 1 ă 21 ă 2 ă ¨ ¨ ¨ , allowed to have 11

11 and 1 1 .

Convention: first ti , i 1u in reading order is an i .

Shifted esh:

Phase 1: Switch past alphabet, alternating directions.Phase 2: Apply coplactic operators to reading word.

3

1′ 1 1× 1′ 2′

1 2

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 24 / 26

Page 153: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Schubert curves in OG(n,2n+1)

Strict partitions α, β, γ, shifted (ballot) SSYTs T

Alphabet 11 ă 1 ă 21 ă 2 ă ¨ ¨ ¨ , allowed to have 11

11 and 1 1 .

Convention: first ti , i 1u in reading order is an i .

Shifted esh:

Phase 1: Switch past alphabet, alternating directions.Phase 2: Apply coplactic operators to reading word.

3

1′ 1 11′ × 2′

1 2

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 24 / 26

Page 154: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Schubert curves in OG(n,2n+1)

Strict partitions α, β, γ, shifted (ballot) SSYTs T

Alphabet 11 ă 1 ă 21 ă 2 ă ¨ ¨ ¨ , allowed to have 11

11 and 1 1 .

Convention: first ti , i 1u in reading order is an i .

Shifted esh:

Phase 1: Switch past alphabet, alternating directions.Phase 2: Apply coplactic operators to reading word.

3

1′ 1 11′ 1 2′

× 2

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 24 / 26

Page 155: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Schubert curves in OG(n,2n+1)

Strict partitions α, β, γ, shifted (ballot) SSYTs T

Alphabet 11 ă 1 ă 21 ă 2 ă ¨ ¨ ¨ , allowed to have 11

11 and 1 1 .

Convention: first ti , i 1u in reading order is an i .

Shifted esh:

Phase 1: Switch past alphabet, alternating directions.Phase 2: Apply coplactic operators to reading word.

3

1′ 1 11′ 1 ×2′ 2

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 24 / 26

Page 156: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Schubert curves in OG(n,2n+1)

Strict partitions α, β, γ, shifted (ballot) SSYTs T

Alphabet 11 ă 1 ă 21 ă 2 ă ¨ ¨ ¨ , allowed to have 11

11 and 1 1 .

Convention: first ti , i 1u in reading order is an i .

Shifted esh:

Phase 1: Switch past alphabet, alternating directions.Phase 2: Apply coplactic operators to reading word.

3

1′ 1 11′ 1 22′ ×

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 24 / 26

Page 157: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Schubert curves in OG(n,2n+1)

Strict partitions α, β, γ, shifted (ballot) SSYTs T

Alphabet 11 ă 1 ă 21 ă 2 ă ¨ ¨ ¨ , allowed to have 11

11 and 1 1 .

Convention: first ti , i 1u in reading order is an i .

Shifted esh:

Phase 1: Switch past alphabet, alternating directions.Phase 2: Apply coplactic operators to reading word.

×

1′ 1 11′ 1 22′ 3

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 24 / 26

Page 158: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Schubert curves in OG(n,2n+1)

Strict partitions α, β, γ, shifted (ballot) SSYTs T

Alphabet 11 ă 1 ă 21 ă 2 ă ¨ ¨ ¨ , allowed to have 11

11 and 1 1 .

Convention: first ti , i 1u in reading order is an i .

Shifted esh:

Phase 1: Switch past alphabet, alternating directions.Phase 2: Apply coplactic operators to reading word.

×

1′ 1 11 1 22 3

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 24 / 26

Page 159: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Example of Phase 2 (coplactic operators)

Operators Ei ,Fi ,E1i ,F

1i for raising and lowering weights

F : converts an i Ñ i ` 1, possibly also moves a primeF 1: converts an i Ñ pi ` 1q1 (can omit in computation)

Apply F1,F2,F3, . . . (essentially “limxÑ8 Fx”)

11 2

× 31 123

2 4

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 25 / 26

Page 160: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Example of Phase 2 (coplactic operators)

Operators Ei ,Fi ,E1i ,F

1i for raising and lowering weights

F : converts an i Ñ i ` 1, possibly also moves a primeF 1: converts an i Ñ pi ` 1q1 (can omit in computation)

Apply F1,F2,F3, . . . (essentially “limxÑ8 Fx”)

11 2

1′ 31 123

2 4

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 25 / 26

Page 161: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Example of Phase 2 (coplactic operators)

Operators Ei ,Fi ,E1i ,F

1i for raising and lowering weights

F : converts an i Ñ i ` 1, possibly also moves a primeF 1: converts an i Ñ pi ` 1q1 (can omit in computation)

Apply F1,F2,F3, . . . (essentially “limxÑ8 Fx”)

11 2

1 31 2′

23

2 4

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 25 / 26

Page 162: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Example of Phase 2 (coplactic operators)

Operators Ei ,Fi ,E1i ,F

1i for raising and lowering weights

F : converts an i Ñ i ` 1, possibly also moves a primeF 1: converts an i Ñ pi ` 1q1 (can omit in computation)

Apply F1,F2,F3, . . . (essentially “limxÑ8 Fx”)

11 2

1 31 23′

32 4

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 25 / 26

Page 163: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Example of Phase 2 (coplactic operators)

Operators Ei ,Fi ,E1i ,F

1i for raising and lowering weights

F : converts an i Ñ i ` 1, possibly also moves a primeF 1: converts an i Ñ pi ` 1q1 (can omit in computation)

Apply F1,F2,F3, . . . (essentially “limxÑ8 Fx”)

11 2

1 31 234′

2 4

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 25 / 26

Page 164: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Example of Phase 2 (coplactic operators)

Operators Ei ,Fi ,E1i ,F

1i for raising and lowering weights

F : converts an i Ñ i ` 1, possibly also moves a primeF 1: converts an i Ñ pi ` 1q1 (can omit in computation)

Apply F1,F2,F3, . . . (essentially “limxÑ8 Fx”)

11 2

1 31 234

2 5

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 25 / 26

Page 165: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Example of Phase 2 (coplactic operators)

Operators Ei ,Fi ,E1i ,F

1i for raising and lowering weights

F : converts an i Ñ i ` 1, possibly also moves a primeF 1: converts an i Ñ pi ` 1q1 (can omit in computation)

Apply F1,F2,F3, . . . (essentially “limxÑ8 Fx”)

11 2

1 31 234

2 6

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 25 / 26

Page 166: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Example of Phase 2 (coplactic operators)

Operators Ei ,Fi ,E1i ,F

1i for raising and lowering weights

F : converts an i Ñ i ` 1, possibly also moves a primeF 1: converts an i Ñ pi ` 1q1 (can omit in computation)

Apply F1,F2,F3, . . . (essentially “limxÑ8 Fx”)

11 2

1 31 234

2 7

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 25 / 26

Page 167: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Example of Phase 2 (coplactic operators)

Operators Ei ,Fi ,E1i ,F

1i for raising and lowering weights

F : converts an i Ñ i ` 1, possibly also moves a primeF 1: converts an i Ñ pi ` 1q1 (can omit in computation)

Apply F1,F2,F3, . . . (essentially “limxÑ8 Fx”)

11 2

1 31 234

2 ×

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 25 / 26

Page 168: Monodromy and K-theory of Schubert Curvesjakelev/papers/... · reduced, realpoints PSpRq. Monodromy: Sweep t around RP 1 æpointsswitch places. M. Gillespie and J. Levinson Monodromy

Thank you!

M. Gillespie and J. Levinson Monodromy of Schubert Curves UW Combinatorics 26 / 26