Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution...

34
Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and Simon Lacroix LAAS-CNRS, Toulouse 9 Mar. 2016 / Montpellier A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 1 / 32

Transcript of Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution...

Page 1: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Monitoring the Evolution of Cumulus Cloudswith a Fleet of UAVs

Alessandro Renzaglia, Christophe Reymann and Simon Lacroix

LAAS-CNRS, Toulouse

9 Mar. 2016 / Montpellier

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 1 / 32

Page 2: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Introduction: the SkyScanner project

Outline

1 Introduction: the SkyScanner project

2 Modeling the environmentProblem StatementGaussian processes: an introductionLinks between models and planning

3 Trajectory generationProblem FormulationOptimization Method

4 Experiments & ResultsMeso-NH simulations: a realistic environmentPath planning: preliminary results

5 Summary and prospects

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 2 / 32

Page 3: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Introduction: the SkyScanner project

Mapping the micro-physical properties of cumulusclouds

Spatio-temporal evolution of µ-physical properties of a cumulus ?Issues :

Size, at the base: ≈100m,height: ≈1kmShort lifespan ≈ 20min to 1h

Solution:A plane ?A drone (UAV) ?⇒ A fleet of UAVs

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 3 / 32

Page 4: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Introduction: the SkyScanner project

The SkyScanner project

Project financed by the STAE foundation

CNRM: Model of thecloud µ-physicsISAE: Conception ofan automaticallyoptimized vehicleONERA: Optimizedcontrol architectureENAC: 3D Windestimation, thePaparazzi autopilotLAAS: Path planningand mapping

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 4 / 32

Page 5: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Introduction: the SkyScanner project

Objectives of a mission

A fleet (>2) of UAVs has to collect data inside a cumulus cloudObjectives:

(Maximum) duration: 1h

Identify the different areas and characteristic variables of thecloud:altitude of the base, height, strength of the ascending currents,...⇒ parametric, conceptual model

Map the evolution of some µ-physical parameters in predefinedareas⇒ (dense) statistical model

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 5 / 32

Page 6: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Introduction: the SkyScanner project

A hierarchy of models

parametric modelEx: updraft = f (diam, height)

stochastic regression model

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 6 / 32

Page 7: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Introduction: the SkyScanner project

Two-stage planning approach

Task planning

∆T ≈ 1min

Path planning

∆T ≈ 10sec

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 7 / 32

Page 8: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Modeling the environment

Outline

1 Introduction: the SkyScanner project

2 Modeling the environmentProblem StatementGaussian processes: an introductionLinks between models and planning

3 Trajectory generationProblem FormulationOptimization Method

4 Experiments & ResultsMeso-NH simulations: a realistic environmentPath planning: preliminary results

5 Summary and prospects

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 8 / 32

Page 9: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Modeling the environment Problem Statement

Modeling the environment

Issues:

Reconstructing a 3D+Time map from punctual and sparsemeasurements

Size of a cumulus

We use Gaussian Processes to solve this regression problem

«A Gaussian Process is a collection of random variables, any finitenumber of which have a joint Gaussian distribution.», CE Rasmussenet CKI Williams, Gaussian Processes for Machine Learning (2006)).

Gaussian ⇒ entirely defining by its mean and covariance

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 9 / 32

Page 10: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Modeling the environment Problem Statement

Gaussian Process Regression (GPR)

+ Abundance in literature (although more statistics - big data)+ Continuous world, prediction of the error

+/− Cost of inference: O(n3) building model, O(n2) each inference− Choosing kernels, slow hyper-parameters optimization

Noiseless GPR GPR with noise

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 10 / 32

Page 11: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Modeling the environment Gaussian processes: an introduction

Problem statement

Given some samples, we wish to reconstruct the underlying process f

Definition

f : Rnfeatures −→ RX �−→ y = f (X )

In our case, nfeatures = 4

→ the features are the space-time locations of the samples

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 11 / 32

Page 12: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Modeling the environment Gaussian processes: an introduction

Definitions

Definitionf ≈ GP(m(X), k(X,X))m(x): expectation, zero in most casesk(x, x�): covariance or kernel (function)

DefinitionLet (X,Y ) be an ensemble of n samples in Rk × R, then:

m(x) := 0 (zero mean)

Σ := k(X,X) + σ2noiseI

Σ is the n × n covariance matrix accounting for a Gaussian noise ofvariance σ2

noise

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 12 / 32

Page 13: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Modeling the environment Gaussian processes: an introduction

Kernel families

How to choose the covariance function (kernel) ?

Squared Exponential kernel family

Choose a kernel family→ sets a prior (stationarity,periodicity...)

Set hyper-parameters→ optimization

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 13 / 32

Page 14: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Modeling the environment Gaussian processes: an introduction

Inference

TheoremInference: for a given sample x� in RK

y� = k(x�,X)Σ−1y

V(y�) = k(x�, x�)− k(x�,X)Σ−1k(x�,X)�

y� is the mean, V(y�) the variance at point x� of the functionsrepresented by the GP conditioned by the X previous samples

Cost of inference:O(n3) for inverting Σ

O(n2) for subsequent predictions

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 14 / 32

Page 15: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Modeling the environment Gaussian processes: an introduction

Illustration of the mapping process

2.10 2.15 2.20 2.25 2.30 2.35 2.40

x coordinate (km)

2.10

2.15

2.20

2.25

2.30

2.35

2.40

yco

ordi

nate

(km

)

Ground truth

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2.10 2.15 2.20 2.25 2.30 2.35 2.40

x coordinate (km)

2.10

2.15

2.20

2.25

2.30

2.35

2.40

yco

ordi

nate

(km

)

Predicted mean y�

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2.10 2.15 2.20 2.25 2.30 2.35 2.40

x coordinate (km)

2.10

2.15

2.20

2.25

2.30

2.35

2.40

yco

ordi

nate

(km

)

Predicted variance V [y�]

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.10 2.15 2.20 2.25 2.30 2.35 2.40

x coordinate (km)

2.10

2.15

2.20

2.25

2.30

2.35

2.40

yco

ordi

nate

(km

)

Ground truth

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2.10 2.15 2.20 2.25 2.30 2.35 2.40

x coordinate (km)

2.10

2.15

2.20

2.25

2.30

2.35

2.40

yco

ordi

nate

(km

)

Predicted mean y�

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2.10 2.15 2.20 2.25 2.30 2.35 2.40

x coordinate (km)

2.10

2.15

2.20

2.25

2.30

2.35

2.40

yco

ordi

nate

(km

)

Predicted variance V [y�]

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.10 2.15 2.20 2.25 2.30 2.35 2.40

x coordinate (km)

2.10

2.15

2.20

2.25

2.30

2.35

2.40

yco

ordi

nate

(km

)

Ground truth

−0.6

0.0

0.6

1.2

1.8

2.4

3.0

3.6

2.10 2.15 2.20 2.25 2.30 2.35 2.40

x coordinate (km)

2.10

2.15

2.20

2.25

2.30

2.35

2.40

yco

ordi

nate

(km

)

Predicted mean y�

−0.6

0.0

0.6

1.2

1.8

2.4

3.0

3.6

2.10 2.15 2.20 2.25 2.30 2.35 2.40

x coordinate (km)

2.10

2.15

2.20

2.25

2.30

2.35

2.40

yco

ordi

nate

(km

)

Predicted variance V [y�]

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 15 / 32

Page 16: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Modeling the environment Links between models and planning

Information gathering

Is a planned path interesting in terms of gathered information ?

Goal: maximize information given a criterion on the model

minimizing the covariance between samples:D: maximize differential entropy (log-det of Σ−1)T: maximize trace of Σ−1

Let m new samples Xnew and ΣX the n × n covariance matrix betweenthe n previous samples X :

ΣXnew |X = k(Xnew ,Xnew )− k(Xnew ,X)Σ−1X k(Xnew ,X)�

We then compute directly D and T from the conditional covariance ΣXnew |X

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 16 / 32

Page 17: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Modeling the environment Links between models and planning

Information gathering

Is a planned path interesting in terms of gathered information ?

Goal: maximize information given a criterion on the model

minimizing the covariance between samples:D: maximize differential entropy (log-det of Σ−1)T: maximize trace of Σ−1

Let m new samples Xnew and ΣX the n × n covariance matrix betweenthe n previous samples X :

ΣXnew |X = k(Xnew ,Xnew )− k(Xnew ,X)Σ−1X k(Xnew ,X)�

We then compute directly D and T from the conditional covariance ΣXnew |X

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 16 / 32

Page 18: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Trajectory generation

Outline

1 Introduction: the SkyScanner project

2 Modeling the environmentProblem StatementGaussian processes: an introductionLinks between models and planning

3 Trajectory generationProblem FormulationOptimization Method

4 Experiments & ResultsMeso-NH simulations: a realistic environmentPath planning: preliminary results

5 Summary and prospects

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 17 / 32

Page 19: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Trajectory generation Problem Formulation

Problem Formulation

Task to achieveMaximize the information gain within an area of interest whileminimizing the energy consumption

Centralized approach: ground station and no communication issues

Aircraft dynamics:

Constant airspeedConstrained control inputs: turn radius R and power input Pin

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 18 / 32

Page 20: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Trajectory generation Problem Formulation

Problem Formulation

Task to achieveMaximize the information gain within an area of interest whileminimizing the energy consumption

Centralized approach: ground station and no communication issues

Aircraft dynamics:

Constant airspeedConstrained control inputs: turn radius R and power input Pin

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 18 / 32

Page 21: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Trajectory generation Problem Formulation

From an objective to an optimization function

Three criteria to optimize during the mission:Energy:

U(j)E (t0,∆T ) = 1 − 1

Pmaxin ∆T

t0+∆T�

t=t0

P(j)in (t)dt

Information Gain:

UI(v) = max�

0, min�

1,v + vTb − 2vTp

2(vTb − vTp)

��

Region of Interest:

UjG(t0,∆T ) =

db(X jt0+∆T )− db(X j

t0)

Vzmax∆T

Total Utility Function:

Utot = wEUE + wIUI + wGUG

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 19 / 32

Page 22: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Trajectory generation Optimization Method

Approach

Finite (short) horizon ∆T ∼ 20sModel reliabilityComputational complexity

Planning in control spaceCurrents strongly affect navigation (unfeasible movements,unreachable areas, etc.)

The trajectories are discretized and defined as a sequence ofcontrol inputs {u0,udt , ...,u∆T−dt}

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 20 / 32

Page 23: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Trajectory generation Optimization Method

Approach

Two-step optimization scheme:

Blind random sampling fortrajectories initializations

Constrained stochastic gradientascent algorithm (SPSA) withlocal convergence guarantee

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 21 / 32

Page 24: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Trajectory generation Optimization Method

Stochastic Gradient Approximation

Stochastic Gradient Approximation by Simultaneous PerturbationStochastic Approximation (SPSA) algorithm:

uk+1 = Π(uk + ak g(uk ))

gk (uk ) =

U(uk+ck∆k )−U(uk−ck∆k )2ck∆k1

...U(uk+ck∆k )−U(uk )−ck∆k

2ck∆kN

ak > 0, ck > 0, ak → 0, ck → 0,∞�

k=0

ak = ∞,∞�

k=0

a2k

c2k< ∞

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 22 / 32

Page 25: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Trajectory generation Optimization Method

An illustrative example

Artificial 2D wind field

Fictitious utility function

The goal is to maximize theutility collected along thepath

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 23 / 32

Page 26: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Experiments & Results

Outline

1 Introduction: the SkyScanner project

2 Modeling the environmentProblem StatementGaussian processes: an introductionLinks between models and planning

3 Trajectory generationProblem FormulationOptimization Method

4 Experiments & ResultsMeso-NH simulations: a realistic environmentPath planning: preliminary results

5 Summary and prospects

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 24 / 32

Page 27: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Experiments & Results Meso-NH simulations: a realistic environment

Meso-NH simulation: example

Still frame from a simulation. In shades of grey the liquid water

content, in orange the +0.5 m.s−1 upwind isometric curves

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 25 / 32

Page 28: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Experiments & Results Meso-NH simulations: a realistic environment

Meso-NH simulations

Meso-NH: Large scale simulations, model created and validated bymeteorologists. Simulations provided by the CNRM.

Scenario = cumulus cloud field arising from daily convectionSimulates all micro-physical properties (incl. wind)...700 MB per frameat one frame per secondOne hour → 2.5 TB...weeks of computing on the meteo-france cluster

→ Statistical study of the environmental model (pending)

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 26 / 32

Page 29: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Experiments & Results Path planning: preliminary results

One agent in a static wind field

UAV trajectoryAltitude of the UAV

during the flight

A. Renzaglia, C. Reymann, and S. Lacroix, “Monitoring the evolution of clouds with UAVs“, ICRA 2016

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 27 / 32

Page 30: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Experiments & Results Path planning: preliminary results

Three agents in a dynamic wind field

x(km

)

2.0

2.1

2.2

2.3

2.4

2.5 y (km)2.0

2.12.2

2.32.4

2.5z

(km

)0.80

0.85

0.90

0.95

1.00

x(km

)

2.0

2.1

2.2

2.3

2.4

2.5 y (km)2.0

2.12.2

2.32.4

2.5

z(k

m)

0.80

0.85

0.90

0.95

1.00

x(km

)2.0

2.1

2.2

2.3

2.4

2.5 y (km)2.0

2.12.2

2.32.4

2.5

z(k

m)

0.80

0.85

0.90

0.95

1.00

−1.6 −0.8 0.0 0.8 1.6 2.4 3.2 4.0

Vertical wind velocity in m.s−1

0 50 100 150 200 250 300

Time (seconds)

800

850

900

950

1000

1050

Alti

tude

(met

ers)

AllNo informationNo energy

All No information No energy74

76

78

80

82

84

86

88

90

Bat

tery

leve

l(%

)

Trajectories, altitude profilesand battery levels for threeUAVs flying simultaneously

C. Reymann, A. Renzaglia, F. Lamraoui, M. Bronz and S. Lacroix, ”Adaptive Sampling of Cumulus Clouds with a Fleet of UAVs“,

Autonomous Robots, under review

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 28 / 32

Page 31: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Summary and prospects

Outline

1 Introduction: the SkyScanner project

2 Modeling the environmentProblem StatementGaussian processes: an introductionLinks between models and planning

3 Trajectory generationProblem FormulationOptimization Method

4 Experiments & ResultsMeso-NH simulations: a realistic environmentPath planning: preliminary results

5 Summary and prospects

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 29 / 32

Page 32: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Summary and prospects

Summary

SkyScanner@LAAS, today:

A realistic meteorological simulationA stochastic environmental model using GPRA simple utility function integrating energy and IG criteriaA stochastic path planning algorithm

⇒ The first iteration of a complete simulation environment

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 30 / 32

Page 33: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Summary and prospects

Prospects

Environment model:better handling of the time dimensiondeveloping a conceptual cloud modelembedding prior knowledge into the GP model

Planning:proper multi-criteria utility functionusing Paparazzi which integrates a realistic FDMtask planning

Real experiments

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 31 / 32

Page 34: Monitoring the Evolution of Cumulus Clouds with a Fleet of ... the... · Monitoring the Evolution of Cumulus Clouds with a Fleet of UAVs Alessandro Renzaglia, Christophe Reymann and

Summary and prospects

Questions ?

Thank you for your attention

More information about the SkyScanner project at:https://www.laas.fr/projects/skyscanner/

A. Renzaglia (LAAS-CNRS) SkyScanner@LAAS 9 Mar. 2016 32 / 32