MONITORING THE COEFFICIENT OF VARIATION USING EWMA ... - PUC · MONITORING THE COEFFICIENT OF...

143
MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS Philippe CASTAGLIOLA 1 , Giovanni CELANO 2 , Stelios PSARAKIS 3 1 Universit´ e de Nantes & IRCCyN UMR CNRS 6597, France 2 Universit` a di Catania, Catania, Italy 3 Athens University of Economics and Business, Athens, Greece ISSPC 2011, July 13–14, Rio de Janeiro, Brazil Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHART

Transcript of MONITORING THE COEFFICIENT OF VARIATION USING EWMA ... - PUC · MONITORING THE COEFFICIENT OF...

MONITORING THE COEFFICIENT OFVARIATION USING EWMA CHARTS

Philippe CASTAGLIOLA 1, Giovanni CELANO 2, Stelios PSARAKIS 3

1Universite de Nantes & IRCCyN UMR CNRS 6597, France2Universita di Catania, Catania, Italy

3Athens University of Economics and Business, Athens, Greece

ISSPC 2011, July 13–14, Rio de Janeiro, Brazil

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

Coefficient of variation

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

Coefficient of variation

Definition

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

Coefficient of variation

Definition

If X > 0 is a random variable with mean µ and standard-deviation σ, bydefinition the coefficient of variation γ is defined as

γ =σ

µ

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

Coefficient of variation

Definition

If X > 0 is a random variable with mean µ and standard-deviation σ, bydefinition the coefficient of variation γ is defined as

γ =σ

µ

Used to compare data sets having different units or widely different means(ex : finance, chemical and biological assays, materials engineering).

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

Coefficient of variation

Definition

If X > 0 is a random variable with mean µ and standard-deviation σ, bydefinition the coefficient of variation γ is defined as

γ =σ

µ

Used to compare data sets having different units or widely different means(ex : finance, chemical and biological assays, materials engineering).

Sample coefficient of variation

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

Coefficient of variation

Definition

If X > 0 is a random variable with mean µ and standard-deviation σ, bydefinition the coefficient of variation γ is defined as

γ =σ

µ

Used to compare data sets having different units or widely different means(ex : finance, chemical and biological assays, materials engineering).

Sample coefficient of variation

If {X1, . . . ,Xn} is a sample of n normal i.i.d. (µ, σ) random variablesthen a “natural” estimator of γ is

γ =S

X

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

Coefficient of variation

Definition

If X > 0 is a random variable with mean µ and standard-deviation σ, bydefinition the coefficient of variation γ is defined as

γ =σ

µ

Used to compare data sets having different units or widely different means(ex : finance, chemical and biological assays, materials engineering).

Sample coefficient of variation

If {X1, . . . ,Xn} is a sample of n normal i.i.d. (µ, σ) random variablesthen a “natural” estimator of γ is

γ =S

X

where

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

Coefficient of variation

Definition

If X > 0 is a random variable with mean µ and standard-deviation σ, bydefinition the coefficient of variation γ is defined as

γ =σ

µ

Used to compare data sets having different units or widely different means(ex : finance, chemical and biological assays, materials engineering).

Sample coefficient of variation

If {X1, . . . ,Xn} is a sample of n normal i.i.d. (µ, σ) random variablesthen a “natural” estimator of γ is

γ =S

X

where X =1

n

n∑

i=1

Xi

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

Coefficient of variation

Definition

If X > 0 is a random variable with mean µ and standard-deviation σ, bydefinition the coefficient of variation γ is defined as

γ =σ

µ

Used to compare data sets having different units or widely different means(ex : finance, chemical and biological assays, materials engineering).

Sample coefficient of variation

If {X1, . . . ,Xn} is a sample of n normal i.i.d. (µ, σ) random variablesthen a “natural” estimator of γ is

γ =S

X

where X =1

n

n∑

i=1

Xi and S =

1

n − 1

n∑

i=1

(Xi − X )2

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

Basic properties of the sample coefficient of variation

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

Basic properties of the sample coefficient of variation

c.d.f and inverse c.d.f. of γ

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

Basic properties of the sample coefficient of variation

c.d.f and inverse c.d.f. of γ

Fγ(x |n, γ) = 1 − Ft

(√n

x

n − 1,

√n

γ

)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

Basic properties of the sample coefficient of variation

c.d.f and inverse c.d.f. of γ

Fγ(x |n, γ) = 1 − Ft

(√n

x

n − 1,

√n

γ

)

F−1γ (α|n, γ) =

√n

F−1t

(

1 − α∣

∣n − 1,√

n

γ

)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

Basic properties of the sample coefficient of variation

c.d.f and inverse c.d.f. of γ

Fγ(x |n, γ) = 1 − Ft

(√n

x

n − 1,

√n

γ

)

F−1γ (α|n, γ) =

√n

F−1t

(

1 − α∣

∣n − 1,√

n

γ

)

where Ft(.) and F−1t (.) are the c.d.f. and the inverse c.d.f. of the

noncentral t distribution.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

Basic properties of the sample coefficient of variation

c.d.f and inverse c.d.f. of γ

Fγ(x |n, γ) = 1 − Ft

(√n

x

n − 1,

√n

γ

)

F−1γ (α|n, γ) =

√n

F−1t

(

1 − α∣

∣n − 1,√

n

γ

)

where Ft(.) and F−1t (.) are the c.d.f. and the inverse c.d.f. of the

noncentral t distribution.

c.d.f and inverse c.d.f. of γ2

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

Basic properties of the sample coefficient of variation

c.d.f and inverse c.d.f. of γ

Fγ(x |n, γ) = 1 − Ft

(√n

x

n − 1,

√n

γ

)

F−1γ (α|n, γ) =

√n

F−1t

(

1 − α∣

∣n − 1,√

n

γ

)

where Ft(.) and F−1t (.) are the c.d.f. and the inverse c.d.f. of the

noncentral t distribution.

c.d.f and inverse c.d.f. of γ2

Fγ2(x |n, γ) = 1 − FF

(

n

x

∣ 1, n − 1,n

γ2

)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

Basic properties of the sample coefficient of variation

c.d.f and inverse c.d.f. of γ

Fγ(x |n, γ) = 1 − Ft

(√n

x

n − 1,

√n

γ

)

F−1γ (α|n, γ) =

√n

F−1t

(

1 − α∣

∣n − 1,√

n

γ

)

where Ft(.) and F−1t (.) are the c.d.f. and the inverse c.d.f. of the

noncentral t distribution.

c.d.f and inverse c.d.f. of γ2

Fγ2(x |n, γ) = 1 − FF

(

n

x

∣ 1, n − 1,n

γ2

)

F−1γ2 (α|n, γ) =

n

F−1F

(

1 − α∣

∣1, n − 1, nγ2

)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

Basic properties of the sample coefficient of variation

c.d.f and inverse c.d.f. of γ

Fγ(x |n, γ) = 1 − Ft

(√n

x

n − 1,

√n

γ

)

F−1γ (α|n, γ) =

√n

F−1t

(

1 − α∣

∣n − 1,√

n

γ

)

where Ft(.) and F−1t (.) are the c.d.f. and the inverse c.d.f. of the

noncentral t distribution.

c.d.f and inverse c.d.f. of γ2

Fγ2(x |n, γ) = 1 − FF

(

n

x

∣ 1, n − 1,n

γ2

)

F−1γ2 (α|n, γ) =

n

F−1F

(

1 − α∣

∣1, n − 1, nγ2

)

where FF (.) and F−1F (.) are the c.d.f. and the inverse c.d.f. of the

noncentral F distribution.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

SH-γ chart (Kang et al., JQT 2007)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

SH-γ chart (Kang et al., JQT 2007)

General assumptions

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

SH-γ chart (Kang et al., JQT 2007)

General assumptions

subgroups {Xk,1,Xk,2, . . . ,Xk,n} of size n are observed at timek = 1, 2, . . ..

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

SH-γ chart (Kang et al., JQT 2007)

General assumptions

subgroups {Xk,1,Xk,2, . . . ,Xk,n} of size n are observed at timek = 1, 2, . . ..

Xk,j ∼ N(µk , σk).

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

SH-γ chart (Kang et al., JQT 2007)

General assumptions

subgroups {Xk,1,Xk,2, . . . ,Xk,n} of size n are observed at timek = 1, 2, . . ..

Xk,j ∼ N(µk , σk).

from one subgroup to another, µk and σk may change, but they areconstrained by the relation γk = σk

µk= γ0 when the process is

in-control.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

SH-γ chart (Kang et al., JQT 2007)

General assumptions

subgroups {Xk,1,Xk,2, . . . ,Xk,n} of size n are observed at timek = 1, 2, . . ..

Xk,j ∼ N(µk , σk).

from one subgroup to another, µk and σk may change, but they areconstrained by the relation γk = σk

µk= γ0 when the process is

in-control.

Control limits

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

SH-γ chart (Kang et al., JQT 2007)

General assumptions

subgroups {Xk,1,Xk,2, . . . ,Xk,n} of size n are observed at timek = 1, 2, . . ..

Xk,j ∼ N(µk , σk).

from one subgroup to another, µk and σk may change, but they areconstrained by the relation γk = σk

µk= γ0 when the process is

in-control.

Control limits

LCLSH = F−1γ

(

α0

2 |n, γ0

)

UCLSH = F−1γ

(

1 − α0

2 |n, γ0

)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

SH-γ chart (Kang et al., JQT 2007)

General assumptions

subgroups {Xk,1,Xk,2, . . . ,Xk,n} of size n are observed at timek = 1, 2, . . ..

Xk,j ∼ N(µk , σk).

from one subgroup to another, µk and σk may change, but they areconstrained by the relation γk = σk

µk= γ0 when the process is

in-control.

Control limits

LCLSH = F−1γ

(

α0

2 |n, γ0

)

UCLSH = F−1γ

(

1 − α0

2 |n, γ0

)

where α0 is the type I error rate (ex : α0 = 0.0027).

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

SH-γ chart (Kang et al., JQT 2007)

General assumptions

subgroups {Xk,1,Xk,2, . . . ,Xk,n} of size n are observed at timek = 1, 2, . . ..

Xk,j ∼ N(µk , σk).

from one subgroup to another, µk and σk may change, but they areconstrained by the relation γk = σk

µk= γ0 when the process is

in-control.

Control limits

LCLSH = F−1γ

(

α0

2 |n, γ0

)

UCLSH = F−1γ

(

1 − α0

2 |n, γ0

)

where α0 is the type I error rate (ex : α0 = 0.0027).

Comments

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

SH-γ chart (Kang et al., JQT 2007)

General assumptions

subgroups {Xk,1,Xk,2, . . . ,Xk,n} of size n are observed at timek = 1, 2, . . ..

Xk,j ∼ N(µk , σk).

from one subgroup to another, µk and σk may change, but they areconstrained by the relation γk = σk

µk= γ0 when the process is

in-control.

Control limits

LCLSH = F−1γ

(

α0

2 |n, γ0

)

UCLSH = F−1γ

(

1 − α0

2 |n, γ0

)

where α0 is the type I error rate (ex : α0 = 0.0027).

Comments

Simple two-sided “Shewhart-type” control chart.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

SH-γ chart (Kang et al., JQT 2007)

General assumptions

subgroups {Xk,1,Xk,2, . . . ,Xk,n} of size n are observed at timek = 1, 2, . . ..

Xk,j ∼ N(µk , σk).

from one subgroup to another, µk and σk may change, but they areconstrained by the relation γk = σk

µk= γ0 when the process is

in-control.

Control limits

LCLSH = F−1γ

(

α0

2 |n, γ0

)

UCLSH = F−1γ

(

1 − α0

2 |n, γ0

)

where α0 is the type I error rate (ex : α0 = 0.0027).

Comments

Simple two-sided “Shewhart-type” control chart.

Unefficient for detecting small change in γ.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

EWMA-γ chart (Hong et al., JSKISE 2008)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

EWMA-γ chart (Hong et al., JSKISE 2008)Monitored statistic

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

EWMA-γ chart (Hong et al., JSKISE 2008)Monitored statistic

Zk = (1 − λ)Zk−1 + λγk

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

EWMA-γ chart (Hong et al., JSKISE 2008)Monitored statistic

Zk = (1 − λ)Zk−1 + λγk

Control limits

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

EWMA-γ chart (Hong et al., JSKISE 2008)Monitored statistic

Zk = (1 − λ)Zk−1 + λγk

Control limits

LCLEWMA−γ = µ0(γ) − K

λ(1 − (1 − λ)2k )

2 − λσ0(γ)

UCLEWMA−γ = µ0(γ) + K

λ(1 − (1 − λ)2k )

2 − λσ0(γ)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

EWMA-γ chart (Hong et al., JSKISE 2008)Monitored statistic

Zk = (1 − λ)Zk−1 + λγk

Control limits

LCLEWMA−γ = µ0(γ) − K

λ(1 − (1 − λ)2k )

2 − λσ0(γ)

UCLEWMA−γ = µ0(γ) + K

λ(1 − (1 − λ)2k )

2 − λσ0(γ)

Approximations for µ0(γ) and σ0(γ)

µ0(γ) ≃ γ0

(

1 +1

n

(

γ20 −

1

4

)

+1

n2

(

3γ40 −

γ20

4−

7

32

)

+1

n3

(

15γ60 −

3γ40

4−

7γ20

32−

19

128

))

σ0(γ) ≃ γ0

1

n

(

γ20 +

1

2

)

+1

n2

(

8γ40 + γ2

0 +3

8

)

+1

n3

(

69γ60 +

7γ40

2+

3γ20

4+

3

16

)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

EWMA-γ chart (Hong et al., JSKISE 2008)Monitored statistic

Zk = (1 − λ)Zk−1 + λγk

Control limits

LCLEWMA−γ = µ0(γ) − K

λ(1 − (1 − λ)2k )

2 − λσ0(γ)

UCLEWMA−γ = µ0(γ) + K

λ(1 − (1 − λ)2k )

2 − λσ0(γ)

Approximations for µ0(γ) and σ0(γ)

µ0(γ) ≃ γ0

(

1 +1

n

(

γ20 −

1

4

)

+1

n2

(

3γ40 −

γ20

4−

7

32

)

+1

n3

(

15γ60 −

3γ40

4−

7γ20

32−

19

128

))

σ0(γ) ≃ γ0

1

n

(

γ20 +

1

2

)

+1

n2

(

8γ40 + γ2

0 +3

8

)

+1

n3

(

69γ60 +

7γ40

2+

3γ20

4+

3

16

)

Comments

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

EWMA-γ chart (Hong et al., JSKISE 2008)Monitored statistic

Zk = (1 − λ)Zk−1 + λγk

Control limits

LCLEWMA−γ = µ0(γ) − K

λ(1 − (1 − λ)2k )

2 − λσ0(γ)

UCLEWMA−γ = µ0(γ) + K

λ(1 − (1 − λ)2k )

2 − λσ0(γ)

Approximations for µ0(γ) and σ0(γ)

µ0(γ) ≃ γ0

(

1 +1

n

(

γ20 −

1

4

)

+1

n2

(

3γ40 −

γ20

4−

7

32

)

+1

n3

(

15γ60 −

3γ40

4−

7γ20

32−

19

128

))

σ0(γ) ≃ γ0

1

n

(

γ20 +

1

2

)

+1

n2

(

8γ40 + γ2

0 +3

8

)

+1

n3

(

69γ60 +

7γ40

2+

3γ20

4+

3

16

)

Comments

More efficient than the SH-γ chart.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

EWMA-γ chart (Hong et al., JSKISE 2008)Monitored statistic

Zk = (1 − λ)Zk−1 + λγk

Control limits

LCLEWMA−γ = µ0(γ) − K

λ(1 − (1 − λ)2k )

2 − λσ0(γ)

UCLEWMA−γ = µ0(γ) + K

λ(1 − (1 − λ)2k )

2 − λσ0(γ)

Approximations for µ0(γ) and σ0(γ)

µ0(γ) ≃ γ0

(

1 +1

n

(

γ20 −

1

4

)

+1

n2

(

3γ40 −

γ20

4−

7

32

)

+1

n3

(

15γ60 −

3γ40

4−

7γ20

32−

19

128

))

σ0(γ) ≃ γ0

1

n

(

γ20 +

1

2

)

+1

n2

(

8γ40 + γ2

0 +3

8

)

+1

n3

(

69γ60 +

7γ40

2+

3γ20

4+

3

16

)

Comments

More efficient than the SH-γ chart.

The paper itself does not provide any thorough investigations(results obtained through simulation only).

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

New one-sided EWMA-γ2 charts

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

New one-sided EWMA-γ2 chartsWe suggest to ...

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

New one-sided EWMA-γ2 chartsWe suggest to ...

1 monitor γ2 instead of γ

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

New one-sided EWMA-γ2 chartsWe suggest to ...

1 monitor γ2 instead of γ (more efficient to monitor S2 than S).

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

New one-sided EWMA-γ2 chartsWe suggest to ...

1 monitor γ2 instead of γ (more efficient to monitor S2 than S).

2 define 2 EWMA one-sided charts

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

New one-sided EWMA-γ2 chartsWe suggest to ...

1 monitor γ2 instead of γ (more efficient to monitor S2 than S).

2 define 2 EWMA one-sided charts (detect shifts more efficiently).

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

New one-sided EWMA-γ2 chartsWe suggest to ...

1 monitor γ2 instead of γ (more efficient to monitor S2 than S).

2 define 2 EWMA one-sided charts (detect shifts more efficiently).

EWMA-γ2 chart

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

New one-sided EWMA-γ2 chartsWe suggest to ...

1 monitor γ2 instead of γ (more efficient to monitor S2 than S).

2 define 2 EWMA one-sided charts (detect shifts more efficiently).

EWMA-γ2 chart

Upward EWMA-γ2 chart

Z+k = max(µ0(γ

2), (1 − λ

+)Z

+k−1 + λ

2k )

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

New one-sided EWMA-γ2 chartsWe suggest to ...

1 monitor γ2 instead of γ (more efficient to monitor S2 than S).

2 define 2 EWMA one-sided charts (detect shifts more efficiently).

EWMA-γ2 chart

Upward EWMA-γ2 chart

Z+k = max(µ0(γ

2), (1 − λ

+)Z

+k−1 + λ

2k ), Z

+0 = µ0(γ

2)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

New one-sided EWMA-γ2 chartsWe suggest to ...

1 monitor γ2 instead of γ (more efficient to monitor S2 than S).

2 define 2 EWMA one-sided charts (detect shifts more efficiently).

EWMA-γ2 chart

Upward EWMA-γ2 chart

Z+k = max(µ0(γ

2), (1 − λ

+)Z

+k−1 + λ

2k ), Z

+0 = µ0(γ

2)

UCLEWMA−γ2 = µ0(γ

2) + K

+

λ+

2 − λ+σ0(γ

2)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

New one-sided EWMA-γ2 chartsWe suggest to ...

1 monitor γ2 instead of γ (more efficient to monitor S2 than S).

2 define 2 EWMA one-sided charts (detect shifts more efficiently).

EWMA-γ2 chart

Upward EWMA-γ2 chart

Z+k = max(µ0(γ

2), (1 − λ

+)Z

+k−1 + λ

2k ), Z

+0 = µ0(γ

2)

UCLEWMA−γ2 = µ0(γ

2) + K

+

λ+

2 − λ+σ0(γ

2)

Downward EWMA-γ2 chart

Z−

k = min(µ0(γ2), (1 − λ

)Z−

k−1 + λ−

γ2k )

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

New one-sided EWMA-γ2 chartsWe suggest to ...

1 monitor γ2 instead of γ (more efficient to monitor S2 than S).

2 define 2 EWMA one-sided charts (detect shifts more efficiently).

EWMA-γ2 chart

Upward EWMA-γ2 chart

Z+k = max(µ0(γ

2), (1 − λ

+)Z

+k−1 + λ

2k ), Z

+0 = µ0(γ

2)

UCLEWMA−γ2 = µ0(γ

2) + K

+

λ+

2 − λ+σ0(γ

2)

Downward EWMA-γ2 chart

Z−

k = min(µ0(γ2), (1 − λ

)Z−

k−1 + λ−

γ2k ), Z

0 = µ0(γ2)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

New one-sided EWMA-γ2 chartsWe suggest to ...

1 monitor γ2 instead of γ (more efficient to monitor S2 than S).

2 define 2 EWMA one-sided charts (detect shifts more efficiently).

EWMA-γ2 chart

Upward EWMA-γ2 chart

Z+k = max(µ0(γ

2), (1 − λ

+)Z

+k−1 + λ

2k ), Z

+0 = µ0(γ

2)

UCLEWMA−γ2 = µ0(γ

2) + K

+

λ+

2 − λ+σ0(γ

2)

Downward EWMA-γ2 chart

Z−

k = min(µ0(γ2), (1 − λ

)Z−

k−1 + λ−

γ2k ), Z

0 = µ0(γ2)

LCLEWMA−γ2 = µ0(γ

2) − K

λ−

2 − λ−

σ0(γ2)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

New one-sided EWMA-γ2 chartsWe suggest to ...

1 monitor γ2 instead of γ (more efficient to monitor S2 than S).

2 define 2 EWMA one-sided charts (detect shifts more efficiently).

EWMA-γ2 chart

Upward EWMA-γ2 chart

Z+k = max(µ0(γ

2), (1 − λ

+)Z

+k−1 + λ

2k ), Z

+0 = µ0(γ

2)

UCLEWMA−γ2 = µ0(γ

2) + K

+

λ+

2 − λ+σ0(γ

2)

Downward EWMA-γ2 chart

Z−

k = min(µ0(γ2), (1 − λ

)Z−

k−1 + λ−

γ2k ), Z

0 = µ0(γ2)

LCLEWMA−γ2 = µ0(γ

2) − K

λ−

2 − λ−

σ0(γ2)

Approximations for µ0(γ2) and σ0(γ

2)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

New one-sided EWMA-γ2 chartsWe suggest to ...

1 monitor γ2 instead of γ (more efficient to monitor S2 than S).

2 define 2 EWMA one-sided charts (detect shifts more efficiently).

EWMA-γ2 chart

Upward EWMA-γ2 chart

Z+k = max(µ0(γ

2), (1 − λ

+)Z

+k−1 + λ

2k ), Z

+0 = µ0(γ

2)

UCLEWMA−γ2 = µ0(γ

2) + K

+

λ+

2 − λ+σ0(γ

2)

Downward EWMA-γ2 chart

Z−

k = min(µ0(γ2), (1 − λ

)Z−

k−1 + λ−

γ2k ), Z

0 = µ0(γ2)

LCLEWMA−γ2 = µ0(γ

2) − K

λ−

2 − λ−

σ0(γ2)

Approximations for µ0(γ2) and σ0(γ

2)

µ0(γ2) ≃ γ2

0

(

1 −3γ

20

n

)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

New one-sided EWMA-γ2 chartsWe suggest to ...

1 monitor γ2 instead of γ (more efficient to monitor S2 than S).

2 define 2 EWMA one-sided charts (detect shifts more efficiently).

EWMA-γ2 chart

Upward EWMA-γ2 chart

Z+k = max(µ0(γ

2), (1 − λ

+)Z

+k−1 + λ

2k ), Z

+0 = µ0(γ

2)

UCLEWMA−γ2 = µ0(γ

2) + K

+

λ+

2 − λ+σ0(γ

2)

Downward EWMA-γ2 chart

Z−

k = min(µ0(γ2), (1 − λ

)Z−

k−1 + λ−

γ2k ), Z

0 = µ0(γ2)

LCLEWMA−γ2 = µ0(γ

2) − K

λ−

2 − λ−

σ0(γ2)

Approximations for µ0(γ2) and σ0(γ

2)

µ0(γ2) ≃ γ2

0

(

1 −3γ

20

n

)

, σ0(γ2) ≃

γ40

(

2n−1 + γ2

0

(

4n

+ 20n(n−1)

+75γ

20

n2

))

− (µ0(γ2) − γ20 )2

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “local” optimization

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “local” optimizationShift τ

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “local” optimizationShift τ

γ0 = in-control/nominal coefficient of variation.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “local” optimizationShift τ

γ0 = in-control/nominal coefficient of variation.

γ1 = out-of-control coefficient of variation.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “local” optimizationShift τ

γ0 = in-control/nominal coefficient of variation.

γ1 = out-of-control coefficient of variation.

τ = γ1

γ0denotes the shift size.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “local” optimizationShift τ

γ0 = in-control/nominal coefficient of variation.

γ1 = out-of-control coefficient of variation.

τ = γ1

γ0denotes the shift size.

τ ∈ (0, 1) → decrease of the nominal coefficient of variation.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “local” optimizationShift τ

γ0 = in-control/nominal coefficient of variation.

γ1 = out-of-control coefficient of variation.

τ = γ1

γ0denotes the shift size.

τ ∈ (0, 1) → decrease of the nominal coefficient of variation.

τ > 1 → increase of the nominal coefficient of variation.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “local” optimizationShift τ

γ0 = in-control/nominal coefficient of variation.

γ1 = out-of-control coefficient of variation.

τ = γ1

γ0denotes the shift size.

τ ∈ (0, 1) → decrease of the nominal coefficient of variation.

τ > 1 → increase of the nominal coefficient of variation.

Optimization

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “local” optimizationShift τ

γ0 = in-control/nominal coefficient of variation.

γ1 = out-of-control coefficient of variation.

τ = γ1

γ0denotes the shift size.

τ ∈ (0, 1) → decrease of the nominal coefficient of variation.

τ > 1 → increase of the nominal coefficient of variation.

Optimization

ARL = average number of samples before a control chart signals an“out-of-control” condition or issues a false alarm.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “local” optimizationShift τ

γ0 = in-control/nominal coefficient of variation.

γ1 = out-of-control coefficient of variation.

τ = γ1

γ0denotes the shift size.

τ ∈ (0, 1) → decrease of the nominal coefficient of variation.

τ > 1 → increase of the nominal coefficient of variation.

Optimization

ARL = average number of samples before a control chart signals an“out-of-control” condition or issues a false alarm.

Find out the optimal couples (λ∗,K∗) such that :

(λ∗,K∗) = argmin(λ,K)

ARL(γ0, τγ0, λ,K , n),

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “local” optimizationShift τ

γ0 = in-control/nominal coefficient of variation.

γ1 = out-of-control coefficient of variation.

τ = γ1

γ0denotes the shift size.

τ ∈ (0, 1) → decrease of the nominal coefficient of variation.

τ > 1 → increase of the nominal coefficient of variation.

Optimization

ARL = average number of samples before a control chart signals an“out-of-control” condition or issues a false alarm.

Find out the optimal couples (λ∗,K∗) such that :

(λ∗,K∗) = argmin(λ,K)

ARL(γ0, τγ0, λ,K , n),

subject to the constraint :

ARL(γ0, γ0, λ∗,K∗, n) = ARL0 = 370.4.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “local” optimizationShift τ

γ0 = in-control/nominal coefficient of variation.

γ1 = out-of-control coefficient of variation.

τ = γ1

γ0denotes the shift size.

τ ∈ (0, 1) → decrease of the nominal coefficient of variation.

τ > 1 → increase of the nominal coefficient of variation.

Optimization

ARL = average number of samples before a control chart signals an“out-of-control” condition or issues a false alarm.

Find out the optimal couples (λ∗,K∗) such that :

(λ∗,K∗) = argmin(λ,K)

ARL(γ0, τγ0, λ,K , n),

subject to the constraint :

ARL(γ0, γ0, λ∗,K∗, n) = ARL0 = 370.4.

ARL is evaluated using a Brook & Evans’s type Markov chainapproach.Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “local” optimization (Markov chain)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “local” optimization (Markov chain)

Divide the interval between LCL = µ0(γ2) and UCL into p

subintervals of width 2δ, where δ = (UCL − µ0(γ2))/(2p).

Hi

Hi−1

Hi+1

H1

Hp

µ0(γ2)

UCL

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “local” optimization (Markov chain)

Divide the interval between LCL = µ0(γ2) and UCL into p

subintervals of width 2δ, where δ = (UCL − µ0(γ2))/(2p).

Hi

Hi−1

Hi+1

H1

Hp

µ0(γ2)

UCL

Hj , j = 1, . . . , p, represents the midpoint of the jth subinterval.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “local” optimization (Markov chain)

Divide the interval between LCL = µ0(γ2) and UCL into p

subintervals of width 2δ, where δ = (UCL − µ0(γ2))/(2p).

Hi

Hi−1

Hi+1

H1

Hp

µ0(γ2)

UCL

Hj , j = 1, . . . , p, represents the midpoint of the jth subinterval.

H0 = µ0(γ2) corresponds to the “restart state” feature.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “local” optimization (Markov chain)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “local” optimization (Markov chain)

The transition probability matrix

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “local” optimization (Markov chain)

The transition probability matrix

P =

Q r

0T 1

=

Q0,0 Q0,1 · · · Q0,p r0Q1,0 Q1,1 · · · Q1,p r1

......

......

Qp,0 Qp,1 · · · Qp,p rp0 0 · · · 0 1

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “local” optimization (Markov chain)

The transition probability matrix

P =

Q r

0T 1

=

Q0,0 Q0,1 · · · Q0,p r0Q1,0 Q1,1 · · · Q1,p r1

......

......

Qp,0 Qp,1 · · · Qp,p rp0 0 · · · 0 1

Transient probabilities

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “local” optimization (Markov chain)

The transition probability matrix

P =

Q r

0T 1

=

Q0,0 Q0,1 · · · Q0,p r0Q1,0 Q1,1 · · · Q1,p r1

......

......

Qp,0 Qp,1 · · · Qp,p rp0 0 · · · 0 1

Transient probabilities

Q+i,0 = Fγ2

(

µ0(γ2) − (1 − λ+)Hi

λ+

n, γ1

)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “local” optimization (Markov chain)

The transition probability matrix

P =

Q r

0T 1

=

Q0,0 Q0,1 · · · Q0,p r0Q1,0 Q1,1 · · · Q1,p r1

......

......

Qp,0 Qp,1 · · · Qp,p rp0 0 · · · 0 1

Transient probabilities

Q+i,0 = Fγ2

(

µ0(γ2) − (1 − λ+)Hi

λ+

n, γ1

)

Q−

i,0 = 1 − Fγ2

(

µ0(γ2) − (1 − λ−)Hi

λ−

n, γ1

)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “local” optimization (Markov chain)

The transition probability matrix

P =

Q r

0T 1

=

Q0,0 Q0,1 · · · Q0,p r0Q1,0 Q1,1 · · · Q1,p r1

......

......

Qp,0 Qp,1 · · · Qp,p rp0 0 · · · 0 1

Transient probabilities

Q+i,0 = Fγ2

(

µ0(γ2) − (1 − λ+)Hi

λ+

n, γ1

)

Q−

i,0 = 1 − Fγ2

(

µ0(γ2) − (1 − λ−)Hi

λ−

n, γ1

)

Qi,j = Fγ2

(

Hj + δ − (1 − λ)Hi

λ

n, γ1

)

− Fγ2

(

Hj − δ − (1 − λ)Hi

λ

n, γ1

)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “local” optimization (Markov chain)

The transition probability matrix

P =

Q r

0T 1

=

Q0,0 Q0,1 · · · Q0,p r0Q1,0 Q1,1 · · · Q1,p r1

......

......

Qp,0 Qp,1 · · · Qp,p rp0 0 · · · 0 1

Transient probabilities

Q+i,0 = Fγ2

(

µ0(γ2) − (1 − λ+)Hi

λ+

n, γ1

)

Q−

i,0 = 1 − Fγ2

(

µ0(γ2) − (1 − λ−)Hi

λ−

n, γ1

)

Qi,j = Fγ2

(

Hj + δ − (1 − λ)Hi

λ

n, γ1

)

− Fγ2

(

Hj − δ − (1 − λ)Hi

λ

n, γ1

)

Vector of initial probabilities q = (1, 0, . . . , 0)T .

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “local” optimization (Markov chain)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “local” optimization (Markov chain)

Definition

The number of steps L until the process reaches the absorbing state is aDiscrete PHase-type (or DPH) random variable of parameters (Q,q).

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “local” optimization (Markov chain)

Definition

The number of steps L until the process reaches the absorbing state is aDiscrete PHase-type (or DPH) random variable of parameters (Q,q).

ARL, SRDL

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “local” optimization (Markov chain)

Definition

The number of steps L until the process reaches the absorbing state is aDiscrete PHase-type (or DPH) random variable of parameters (Q,q).

ARL, SRDL

ν1(L) = qT (I − Q)−11

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “local” optimization (Markov chain)

Definition

The number of steps L until the process reaches the absorbing state is aDiscrete PHase-type (or DPH) random variable of parameters (Q,q).

ARL, SRDL

ν1(L) = qT (I − Q)−11

ν2(L) = 2qT (I − Q)−2Q1

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “local” optimization (Markov chain)

Definition

The number of steps L until the process reaches the absorbing state is aDiscrete PHase-type (or DPH) random variable of parameters (Q,q).

ARL, SRDL

ν1(L) = qT (I − Q)−11

ν2(L) = 2qT (I − Q)−2Q1

and

ARL = ν1(L)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “local” optimization (Markov chain)

Definition

The number of steps L until the process reaches the absorbing state is aDiscrete PHase-type (or DPH) random variable of parameters (Q,q).

ARL, SRDL

ν1(L) = qT (I − Q)−11

ν2(L) = 2qT (I − Q)−2Q1

and

ARL = ν1(L)

SDRL =√

ν2(L) − ν21(L) + ν1(L)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

Optimal (λ∗, K ∗) and ARL for EWMA-γ2 and SH-γ charts

n = 7, ARL0 = 370.4τ γ0 = 0.05 γ0 = 0.1 γ0 = 0.15 γ0 = 0.2

0.50 (0.5671, 1.8734) (0.5637, 1.8480) (0.5608, 1.8043) (0.5539, 1.7474)(3.4, 18.4) (3.4, 18.6) (3.5, 18.9) (3.5, 19.3)

0.65 (0.2951, 2.1229) (0.2902, 2.0932) (0.2854, 2.0416) (0.2792, 1.9709)(6.4, 69.3) (6.4, 69.9) (6.4, 70.8) (6.5, 72.1)

0.80 (0.1104, 2.2582) (0.1088, 2.2142) (0.1032, 2.1413) (0.0976, 2.0414)(15.3, 212.1) (15.4, 213.2) (15.5, 215.0) (15.6, 217.5)

1.25 (0.1092, 3.0381) (0.1101, 3.0831) (0.1097, 3.1504) (0.1087, 3.2443)(11.3, 32.4) (11.4, 32.9) (11.7, 33.8) (12.0, 35.1)

1.50 (0.2646, 3.5219) (0.2603, 3.5538) (0.2531, 3.6078) (0.2443, 3.6873)(4.3, 7.2) (4.3, 7.4) (4.4, 7.6) (4.6, 8.0)

2.00 (0.5852, 3.9768) (0.5725, 4.0146) (0.5520, 4.0781) (0.5212, 4.1644)(1.8, 2.1) (1.8, 2.1) (1.9, 2.2) (2.0, 2.3)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

(λ∗, K ∗) nomograms

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.6 0.8 1 1.2 1.4 1.6 1.8 2

n=5n=7

n=10n=15

λ

τ

γ0 = 0.05

λ−∗ λ+∗

1.5

2

2.5

3

3.5

4

4.5

0.6 0.8 1 1.2 1.4 1.6 1.8 2

n=5n=7

n=10n=15

K

τ

γ0 = 0.05

K−∗ K+∗

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.6 0.8 1 1.2 1.4 1.6 1.8 2

n=5n=7

n=10n=15

λ

τ

λ−∗ λ+∗

γ0 = 0.1

1.5

2

2.5

3

3.5

4

4.5

0.6 0.8 1 1.2 1.4 1.6 1.8 2

n=5n=7

n=10n=15

K

τ

K−∗ K+∗

γ0 = 0.1

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

(λ∗, K ∗) nomograms

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.6 0.8 1 1.2 1.4 1.6 1.8 2

n=5n=7

n=10n=15

λ

τ

γ0 = 0.15

λ−∗ λ+∗

1.5

2

2.5

3

3.5

4

4.5

0.6 0.8 1 1.2 1.4 1.6 1.8 2

n=5n=7

n=10n=15

K

τ

γ0 = 0.15

K−∗ K+∗

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.6 0.8 1 1.2 1.4 1.6 1.8 2

n=5n=7

n=10n=15

λ

τ

λ−∗ λ+∗

γ0 = 0.2

1.5

2

2.5

3

3.5

4

4.5

0.6 0.8 1 1.2 1.4 1.6 1.8 2

n=5n=7

n=10n=15

K

τ

K−∗ K+∗

γ0 = 0.2

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

EWMA-γ2 chart v.s. EWMA-γ (Hong et al., 2008) chart

n = 5τ γ0 = 0.05 γ0 = 0.1 γ0 = 0.15 γ0 = 0.2

0.50 (4.8, 4.7) (4.8, 4.7) (4.8, 4.8) (4.8, 4.8)0.65 (8.7, 8.8) (8.8, 8.9) (8.8, 8.9) (8.8, 9.0)0.80 (20.6, 21.1) (20.6, 21.2) (20.7, 21.3) (20.9, 21.5)0.90 (53.2, 56.2) (53.7, 56.4) (54.5, 56.8) (55.8, 57.3)1.10 (51.0, 51.5) (51.2, 51.8) (51.7, 52.3) (52.4, 52.9)1.25 (15.0, 15.5) (15.2, 15.6) (15.4, 15.8) (15.9, 16.0)1.50 (5.7, 5.9) (5.8, 5.9) (5.9, 6.0) (6.1, 6.2)2.00 (2.4, 2.4) (2.4, 2.4) (2.5, 2.5) (2.6, 2.6)

n = 7τ γ0 = 0.05 γ0 = 0.1 γ0 = 0.15 γ0 = 0.2

0.50 (3.4, 3.4) (3.4, 3.4) (3.5, 3.4) (3.5, 3.5)0.65 (6.4, 6.4) (6.4, 6.4) (6.4, 6.5) (6.5, 6.5)0.80 (15.3, 15.6) (15.4, 15.6) (15.5, 15.8) (15.6, 16.0)0.90 (40.4, 41.8) (40.7, 42.0) (41.2, 42.4) (42.0, 42.9)1.10 (39.2, 39.7) (39.5, 40.0) (40.1, 40.4) (40.9, 41.1)1.25 (11.3, 11.5) (11.4, 11.6) (11.7, 11.8) (12.0, 12.1)1.50 (4.3, 4.3) (4.3, 4.4) (4.4, 4.5) (4.6, 4.6)2.00 (1.8, 1.8) (1.8, 1.8) (1.9, 1.9) (2.0, 2.0)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “global” optimization

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “global” optimization

Drawback of “local” optimization

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “global” optimization

Drawback of “local” optimization

Usually the quality practitioner does not know in advance the entityof the next shift size because of the lack of related historical data.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “global” optimization

Drawback of “local” optimization

Usually the quality practitioner does not know in advance the entityof the next shift size because of the lack of related historical data.

The shift size is not deterministic and varies accordingly to someunknown stochastic model.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “global” optimization

Drawback of “local” optimization

Usually the quality practitioner does not know in advance the entityof the next shift size because of the lack of related historical data.

The shift size is not deterministic and varies accordingly to someunknown stochastic model.

New objective function and constraint

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “global” optimization

Drawback of “local” optimization

Usually the quality practitioner does not know in advance the entityof the next shift size because of the lack of related historical data.

The shift size is not deterministic and varies accordingly to someunknown stochastic model.

New objective function and constraint

Find out the optimal couples (λ∗,K∗) such that :

(λ∗,K∗) = argmin(λ,K)

EARL(γ0, τγ0, λ,K , n)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “global” optimization

Drawback of “local” optimization

Usually the quality practitioner does not know in advance the entityof the next shift size because of the lack of related historical data.

The shift size is not deterministic and varies accordingly to someunknown stochastic model.

New objective function and constraint

Find out the optimal couples (λ∗,K∗) such that :

(λ∗,K∗) = argmin(λ,K)

EARL(γ0, τγ0, λ,K , n)

withEARL =

fτ (τ)ARL(γ0, τγ0, λ,K , n)dτ.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “global” optimization

Drawback of “local” optimization

Usually the quality practitioner does not know in advance the entityof the next shift size because of the lack of related historical data.

The shift size is not deterministic and varies accordingly to someunknown stochastic model.

New objective function and constraint

Find out the optimal couples (λ∗,K∗) such that :

(λ∗,K∗) = argmin(λ,K)

EARL(γ0, τγ0, λ,K , n)

withEARL =

fτ (τ)ARL(γ0, τγ0, λ,K , n)dτ.

subject to the constraint

EARL(γ0, γ0, λ,K , n) = ARL(γ0, γ0, λ,K , n) = ARL0,

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “global” optimization

Drawback of “local” optimization

Usually the quality practitioner does not know in advance the entityof the next shift size because of the lack of related historical data.

The shift size is not deterministic and varies accordingly to someunknown stochastic model.

New objective function and constraint

Find out the optimal couples (λ∗,K∗) such that :

(λ∗,K∗) = argmin(λ,K)

EARL(γ0, τγ0, λ,K , n)

withEARL =

fτ (τ)ARL(γ0, τγ0, λ,K , n)dτ.

subject to the constraint

EARL(γ0, γ0, λ,K , n) = ARL(γ0, γ0, λ,K , n) = ARL0,

fτ (τ) is the p.d.f. of the shift τ

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “global” optimization

Drawback of “local” optimization

Usually the quality practitioner does not know in advance the entityof the next shift size because of the lack of related historical data.

The shift size is not deterministic and varies accordingly to someunknown stochastic model.

New objective function and constraint

Find out the optimal couples (λ∗,K∗) such that :

(λ∗,K∗) = argmin(λ,K)

EARL(γ0, τγ0, λ,K , n)

withEARL =

fτ (τ)ARL(γ0, τγ0, λ,K , n)dτ.

subject to the constraint

EARL(γ0, γ0, λ,K , n) = ARL(γ0, γ0, λ,K , n) = ARL0,

fτ (τ) is the p.d.f. of the shift τ → uniform distribution over [0.5, 1)(decreasing case)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “global” optimization

Drawback of “local” optimization

Usually the quality practitioner does not know in advance the entityof the next shift size because of the lack of related historical data.

The shift size is not deterministic and varies accordingly to someunknown stochastic model.

New objective function and constraint

Find out the optimal couples (λ∗,K∗) such that :

(λ∗,K∗) = argmin(λ,K)

EARL(γ0, τγ0, λ,K , n)

withEARL =

fτ (τ)ARL(γ0, τγ0, λ,K , n)dτ.

subject to the constraint

EARL(γ0, γ0, λ,K , n) = ARL(γ0, γ0, λ,K , n) = ARL0,

fτ (τ) is the p.d.f. of the shift τ → uniform distribution over [0.5, 1)(decreasing case) and over (1, 2] (increasing case).

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “global” optimization

n = 7, ARL0 = 370.4γ0 = 0.05 γ0 = 0.1 γ0 = 0.15 γ0 = 0.2

DECREASING(0.0502, 2.1940) (0.0500, 2.1392) (0.0500, 2.0530) (0.0500, 1.9401)

(23.2) (23.3) (23.5) (23.7)0.50 6.7 (3.4) 6.6 (3.4) 6.5 (3.5) 6.4 (3.5)0.65 9.1 (6.4) 9.0 (6.4) 8.9 (6.4) 8.8 (6.5)0.80 16.5 (15.3) 16.4 (15.4) 16.4 (15.5) 16.3 (15.6)

INCREASING(0.0500, 2.6456) (0.0513, 2.7059) (0.0529, 2.7999) (0.0556, 2.9342)

(12.5) (12.7) (12.8) (13.1)1.25 11.9 (11.3) 12.0 (11.4) 12.3 (11.7) 12.6 (12.0)1.50 5.2 (4.3) 5.3 (4.3) 5.4 (4.4) 5.5 (4.6)2.00 2.5 (1.8) 2.5 (1.8) 2.5 (1.9) 2.6 (2.0)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “global” optimization

n = 7, ARL0 = 370.4γ0 = 0.05 γ0 = 0.1 γ0 = 0.15 γ0 = 0.2

DECREASING(0.0502, 2.1940) (0.0500, 2.1392) (0.0500, 2.0530) (0.0500, 1.9401)

(23.2) (23.3) (23.5) (23.7)0.50 6.7 (3.4) 6.6 (3.4) 6.5 (3.5) 6.4 (3.5)0.65 9.1 (6.4) 9.0 (6.4) 8.9 (6.4) 8.8 (6.5)0.80 16.5 (15.3) 16.4 (15.4) 16.4 (15.5) 16.3 (15.6)

INCREASING(0.0500, 2.6456) (0.0513, 2.7059) (0.0529, 2.7999) (0.0556, 2.9342)

(12.5) (12.7) (12.8) (13.1)1.25 11.9 (11.3) 12.0 (11.4) 12.3 (11.7) 12.6 (12.0)1.50 5.2 (4.3) 5.3 (4.3) 5.4 (4.4) 5.5 (4.6)2.00 2.5 (1.8) 2.5 (1.8) 2.5 (1.9) 2.6 (2.0)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “global” optimization

n = 7, ARL0 = 370.4γ0 = 0.05 γ0 = 0.1 γ0 = 0.15 γ0 = 0.2

DECREASING(0.0502, 2.1940) (0.0500, 2.1392) (0.0500, 2.0530) (0.0500, 1.9401)

(23.2) (23.3) (23.5) (23.7)0.50 6.7 (3.4) 6.6 (3.4) 6.5 (3.5) 6.4 (3.5)0.65 9.1 (6.4) 9.0 (6.4) 8.9 (6.4) 8.8 (6.5)0.80 16.5 (15.3) 16.4 (15.4) 16.4 (15.5) 16.3 (15.6)

INCREASING(0.0500, 2.6456) (0.0513, 2.7059) (0.0529, 2.7999) (0.0556, 2.9342)

(12.5) (12.7) (12.8) (13.1)1.25 11.9 (11.3) 12.0 (11.4) 12.3 (11.7) 12.6 (12.0)1.50 5.2 (4.3) 5.3 (4.3) 5.4 (4.4) 5.5 (4.6)2.00 2.5 (1.8) 2.5 (1.8) 2.5 (1.9) 2.6 (2.0)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

ARL “global” optimization

n = 7, ARL0 = 370.4γ0 = 0.05 γ0 = 0.1 γ0 = 0.15 γ0 = 0.2

DECREASING(0.0502, 2.1940) (0.0500, 2.1392) (0.0500, 2.0530) (0.0500, 1.9401)

(23.2) (23.3) (23.5) (23.7)0.50 6.7 (3.4) 6.6 (3.4) 6.5 (3.5) 6.4 (3.5)0.65 9.1 (6.4) 9.0 (6.4) 8.9 (6.4) 8.8 (6.5)0.80 16.5 (15.3) 16.4 (15.4) 16.4 (15.5) 16.3 (15.6)

INCREASING(0.0500, 2.6456) (0.0513, 2.7059) (0.0529, 2.7999) (0.0556, 2.9342)

(12.5) (12.7) (12.8) (13.1)1.25 11.9 (11.3) 12.0 (11.4) 12.3 (11.7) 12.6 (12.0)1.50 5.2 (4.3) 5.3 (4.3) 5.4 (4.4) 5.5 (4.6)2.00 2.5 (1.8) 2.5 (1.8) 2.5 (1.9) 2.6 (2.0)

Conclusion : EARL based parameters seem robust alternatives.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

An illustrative example

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

An illustrative example

A sintering (frittage) process manufacturing mechanical parts

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

An illustrative example

A sintering (frittage) process manufacturing mechanical parts

Produced parts are required to guarantee a pressure test drop timeTpd from 2 bar to 1.5 bar larger than 30 sec.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

An illustrative example

A sintering (frittage) process manufacturing mechanical parts

Produced parts are required to guarantee a pressure test drop timeTpd from 2 bar to 1.5 bar larger than 30 sec.

A Regression study demonstrated the presence of a constantproportionality σpd = γpd × µpd between the standard deviation ofthe pressure drop time and its mean.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

An illustrative example

A sintering (frittage) process manufacturing mechanical parts

Produced parts are required to guarantee a pressure test drop timeTpd from 2 bar to 1.5 bar larger than 30 sec.

A Regression study demonstrated the presence of a constantproportionality σpd = γpd × µpd between the standard deviation ofthe pressure drop time and its mean.⇒ the coefficient of variation γpd will be monitored.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

An illustrative example

A sintering (frittage) process manufacturing mechanical parts

Produced parts are required to guarantee a pressure test drop timeTpd from 2 bar to 1.5 bar larger than 30 sec.

A Regression study demonstrated the presence of a constantproportionality σpd = γpd × µpd between the standard deviation ofthe pressure drop time and its mean.⇒ the coefficient of variation γpd will be monitored.

Phase I dataset

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

An illustrative example

A sintering (frittage) process manufacturing mechanical parts

Produced parts are required to guarantee a pressure test drop timeTpd from 2 bar to 1.5 bar larger than 30 sec.

A Regression study demonstrated the presence of a constantproportionality σpd = γpd × µpd between the standard deviation ofthe pressure drop time and its mean.⇒ the coefficient of variation γpd will be monitored.

Phase I dataset

m = 20 sample data, each having sample size n = 5.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

An illustrative example

A sintering (frittage) process manufacturing mechanical parts

Produced parts are required to guarantee a pressure test drop timeTpd from 2 bar to 1.5 bar larger than 30 sec.

A Regression study demonstrated the presence of a constantproportionality σpd = γpd × µpd between the standard deviation ofthe pressure drop time and its mean.⇒ the coefficient of variation γpd will be monitored.

Phase I dataset

m = 20 sample data, each having sample size n = 5.

Estimation of the nominal coefficient of variation γ0 = 0.417.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

An illustrative example

A sintering (frittage) process manufacturing mechanical parts

Produced parts are required to guarantee a pressure test drop timeTpd from 2 bar to 1.5 bar larger than 30 sec.

A Regression study demonstrated the presence of a constantproportionality σpd = γpd × µpd between the standard deviation ofthe pressure drop time and its mean.⇒ the coefficient of variation γpd will be monitored.

Phase I dataset

m = 20 sample data, each having sample size n = 5.

Estimation of the nominal coefficient of variation γ0 = 0.417.

Control limits of the SH-γ chart

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

An illustrative example

A sintering (frittage) process manufacturing mechanical parts

Produced parts are required to guarantee a pressure test drop timeTpd from 2 bar to 1.5 bar larger than 30 sec.

A Regression study demonstrated the presence of a constantproportionality σpd = γpd × µpd between the standard deviation ofthe pressure drop time and its mean.⇒ the coefficient of variation γpd will be monitored.

Phase I dataset

m = 20 sample data, each having sample size n = 5.

Estimation of the nominal coefficient of variation γ0 = 0.417.

Control limits of the SH-γ chart

LCLSH = F−1γ

(

0.00272 |5, 0.417

)

= 0.064725,

UCLSH = F−1γ

(

1 − 0.00272 |5, 0.417

)

= 1.216527.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

An illustrative example (SH-γ chart, Phase I)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20

Sample Number

LCL=0.0647

UCL=1.2165

γ0 = 0.417

γk

SH-γ chart

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

An illustrative example (SH-γ chart, Phase I)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20

Sample Number

LCL=0.0647

UCL=1.2165

γ0 = 0.417

γk

SH-γ chart, The sintering process seems in-control.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

An illustrative example (EWMA-γ2 chart)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

An illustrative example (EWMA-γ2 chart)

Optimal parameters

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

An illustrative example (EWMA-γ2 chart)

Optimal parameters

Accordingly to the process engineer experience, an increase of 25%in the coefficient of variation should be interpreted as a signal thatsomething is going wrong.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

An illustrative example (EWMA-γ2 chart)

Optimal parameters

Accordingly to the process engineer experience, an increase of 25%in the coefficient of variation should be interpreted as a signal thatsomething is going wrong.⇒ τ = 1.25.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

An illustrative example (EWMA-γ2 chart)

Optimal parameters

Accordingly to the process engineer experience, an increase of 25%in the coefficient of variation should be interpreted as a signal thatsomething is going wrong.⇒ τ = 1.25.

Optimizing algorithm yields λ+∗ = 0.0793 and K+∗ = 4.3699.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

An illustrative example (EWMA-γ2 chart)

Optimal parameters

Accordingly to the process engineer experience, an increase of 25%in the coefficient of variation should be interpreted as a signal thatsomething is going wrong.⇒ τ = 1.25.

Optimizing algorithm yields λ+∗ = 0.0793 and K+∗ = 4.3699.

Upper Control Limit of the EWMA-γ2 chart

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

An illustrative example (EWMA-γ2 chart)

Optimal parameters

Accordingly to the process engineer experience, an increase of 25%in the coefficient of variation should be interpreted as a signal thatsomething is going wrong.⇒ τ = 1.25.

Optimizing algorithm yields λ+∗ = 0.0793 and K+∗ = 4.3699.

Upper Control Limit of the EWMA-γ2 chart

Approximations yield µ0(γ2) = 0.1557 and σ0(γ

2) = 0.1643.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

An illustrative example (EWMA-γ2 chart)

Optimal parameters

Accordingly to the process engineer experience, an increase of 25%in the coefficient of variation should be interpreted as a signal thatsomething is going wrong.⇒ τ = 1.25.

Optimizing algorithm yields λ+∗ = 0.0793 and K+∗ = 4.3699.

Upper Control Limit of the EWMA-γ2 chart

Approximations yield µ0(γ2) = 0.1557 and σ0(γ

2) = 0.1643.

UCLEWMA−γ2 = 0.1557 + 4.3699 ×√

0.0793

2 − 0.0793× 0.1643 = 0.3016.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

An illustrative example (EWMA-γ chart, Phase I)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20

Sample Number

UCL=0.3016

γ2 k

EWMA-γ2 chart

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

An illustrative example (EWMA-γ chart, Phase I)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20

Sample Number

UCL=0.3016

γ2 k

EWMA-γ2 chart, The sintering process seems in-control too.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

An illustrative example (SH-γ chart, Phase II)

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

An illustrative example (SH-γ chart, Phase II)

Phase II : 20 new samples of size n = 5 taken from the process after theoccurrence of a special cause increasing process variability.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

An illustrative example (SH-γ chart, Phase II)

Phase II : 20 new samples of size n = 5 taken from the process after theoccurrence of a special cause increasing process variability.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20

Sample Number

LCL=0.0647

UCL=1.2165

γ0 = 0.417

γk

SH-γ chart

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

An illustrative example (SH-γ chart, Phase II)

Phase II : 20 new samples of size n = 5 taken from the process after theoccurrence of a special cause increasing process variability.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20

Sample Number

LCL=0.0647

UCL=1.2165

γ0 = 0.417

γk

SH-γ chart, The sintering process seems in-control...

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

An illustrative example (EWMA-γ2 chart, Phase II)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20

Sample Number

UCL=0.3016

γ2 k

EWMA-γ2 chart

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

An illustrative example (EWMA-γ2 chart, Phase II)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20

Sample Number

UCL=0.3016

γ2 k

EWMA-γ2 chart, ... but in fact it is not !

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

An illustrative example (Xk , Phase II)

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20

Sample Number

823.55

X

Xk

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

An illustrative example (Sk , Phase II)

0

200

400

600

800

1000

1200

1400

1600

1800

0 5 10 15 20

Sample Number

331.5

Abnormal pattern

S

Sk

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

Conclusions

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

Conclusions

Many situations in which the sample mean and standard deviationvary naturally in a proportional manner when the process isin-control

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

Conclusions

Many situations in which the sample mean and standard deviationvary naturally in a proportional manner when the process isin-control → X and S control charts cannot be implemented !

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

Conclusions

Many situations in which the sample mean and standard deviationvary naturally in a proportional manner when the process isin-control → X and S control charts cannot be implemented !

Alternative : monitor the coefficient of variation.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

Conclusions

Many situations in which the sample mean and standard deviationvary naturally in a proportional manner when the process isin-control → X and S control charts cannot be implemented !

Alternative : monitor the coefficient of variation.

Proposition of the EWMA-γ2 chart (two one-sided EWMA charts).

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

Conclusions

Many situations in which the sample mean and standard deviationvary naturally in a proportional manner when the process isin-control → X and S control charts cannot be implemented !

Alternative : monitor the coefficient of variation.

Proposition of the EWMA-γ2 chart (two one-sided EWMA charts).

Outperforms both the SH-γ and EWMA − γ charts.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

Conclusions

Many situations in which the sample mean and standard deviationvary naturally in a proportional manner when the process isin-control → X and S control charts cannot be implemented !

Alternative : monitor the coefficient of variation.

Proposition of the EWMA-γ2 chart (two one-sided EWMA charts).

Outperforms both the SH-γ and EWMA − γ charts.

We provide tables and nomograms in order to select the optimalchart parameters.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS

Conclusions

Many situations in which the sample mean and standard deviationvary naturally in a proportional manner when the process isin-control → X and S control charts cannot be implemented !

Alternative : monitor the coefficient of variation.

Proposition of the EWMA-γ2 chart (two one-sided EWMA charts).

Outperforms both the SH-γ and EWMA − γ charts.

We provide tables and nomograms in order to select the optimalchart parameters.

Application on real industrial data.

To be published in Journal of Quality Technology.

Philippe CASTAGLIOLA , Giovanni CELANO , Stelios PSARAKIS MONITORING THE COEFFICIENT OF VARIATION USING EWMA CHARTS