MOMENTUMConservation of Momentum Perfectly Elastic Collision Momentum Conserved...

19
LINEAR MOMENTUM Momentum Impulse Conservation of Momentum Inelastic Collisions Elastic Collisions Momentum In 2 Dimensions

Transcript of MOMENTUMConservation of Momentum Perfectly Elastic Collision Momentum Conserved...

Page 1: MOMENTUMConservation of Momentum Perfectly Elastic Collision Momentum Conserved β€’π‘š1𝑣1+π‘š2𝑣2=π‘š1𝑣 β€² 1+π‘š2𝑣2β€² Kinetic Energy Conserved β€’1 2 π‘šπ‘£1 2+1

LINEAR MOMENTUMMomentum

Impulse

Conservation of Momentum

Inelastic Collisions

Elastic Collisions

Momentum In 2 Dimensions

Page 2: MOMENTUMConservation of Momentum Perfectly Elastic Collision Momentum Conserved β€’π‘š1𝑣1+π‘š2𝑣2=π‘š1𝑣 β€² 1+π‘š2𝑣2β€² Kinetic Energy Conserved β€’1 2 π‘šπ‘£1 2+1

MOMENTUM

β€’ Quantity of Motion

β€’ Product of Mass and Velocity

β€’ 𝑝 = π‘šπ‘£ = kg βˆ—m

s

β€’ Vector Quantity

Page 3: MOMENTUMConservation of Momentum Perfectly Elastic Collision Momentum Conserved β€’π‘š1𝑣1+π‘š2𝑣2=π‘š1𝑣 β€² 1+π‘š2𝑣2β€² Kinetic Energy Conserved β€’1 2 π‘šπ‘£1 2+1

IMPULSE

β€’ Change in Momentum

β€’ To change momentum, apply a force for a period of time.

β€’ 𝐽 = βˆ†π‘ = π‘šπ‘£2 βˆ’π‘šπ‘£1 = π‘šβˆ†π‘£ = 𝐹 βˆ— 𝑑 = (𝑁 βˆ— 𝑠)

Page 4: MOMENTUMConservation of Momentum Perfectly Elastic Collision Momentum Conserved β€’π‘š1𝑣1+π‘š2𝑣2=π‘š1𝑣 β€² 1+π‘š2𝑣2β€² Kinetic Energy Conserved β€’1 2 π‘šπ‘£1 2+1

IMPULSEβ€’ Follow Through Example (Bunt vs. Swing)

β€’ Apply force for longer period of time = larger momentum change

Page 5: MOMENTUMConservation of Momentum Perfectly Elastic Collision Momentum Conserved β€’π‘š1𝑣1+π‘š2𝑣2=π‘š1𝑣 β€² 1+π‘š2𝑣2β€² Kinetic Energy Conserved β€’1 2 π‘šπ‘£1 2+1

Impulse (Follow Through)

Nordic Ski Racing Slap shot

Page 6: MOMENTUMConservation of Momentum Perfectly Elastic Collision Momentum Conserved β€’π‘š1𝑣1+π‘š2𝑣2=π‘š1𝑣 β€² 1+π‘š2𝑣2β€² Kinetic Energy Conserved β€’1 2 π‘šπ‘£1 2+1

Impulse (reduce force)

F*t = mΞ”v = F*tβ€’Helmets

β€’Padding

Page 7: MOMENTUMConservation of Momentum Perfectly Elastic Collision Momentum Conserved β€’π‘š1𝑣1+π‘š2𝑣2=π‘š1𝑣 β€² 1+π‘š2𝑣2β€² Kinetic Energy Conserved β€’1 2 π‘šπ‘£1 2+1

Impulse (reduce force) F*t = mΞ”v = F*tβ€’ Air Bag β€’ Crumple Zone

Page 8: MOMENTUMConservation of Momentum Perfectly Elastic Collision Momentum Conserved β€’π‘š1𝑣1+π‘š2𝑣2=π‘š1𝑣 β€² 1+π‘š2𝑣2β€² Kinetic Energy Conserved β€’1 2 π‘šπ‘£1 2+1

Impulse Examplesβ€’ A soccer player kicks a 0.43 kg ball with a force of 50N

for a time of 0.15s. What is the final velocity of the ball?

Page 9: MOMENTUMConservation of Momentum Perfectly Elastic Collision Momentum Conserved β€’π‘š1𝑣1+π‘š2𝑣2=π‘š1𝑣 β€² 1+π‘š2𝑣2β€² Kinetic Energy Conserved β€’1 2 π‘šπ‘£1 2+1

Impulse Examplesβ€’ A Car is moving at 15 m/s, when it collides with a tree.

The 75 kg driver comes to rest in a time of 0.3 seconds. What is the force exerted on the driver.

β€’ What if he was not wearing a seat belt and came to rest in a time of 0.05s?

β€’ What distance is required to stop?

Page 10: MOMENTUMConservation of Momentum Perfectly Elastic Collision Momentum Conserved β€’π‘š1𝑣1+π‘š2𝑣2=π‘š1𝑣 β€² 1+π‘š2𝑣2β€² Kinetic Energy Conserved β€’1 2 π‘šπ‘£1 2+1

Impulse Examples

β€’ A baseball moving at 40 m/s is hit back towards the pitcher with a speed of 35m/s. If the force exerted on the ball is 350N. What is the force exerted on the ball?

Page 11: MOMENTUMConservation of Momentum Perfectly Elastic Collision Momentum Conserved β€’π‘š1𝑣1+π‘š2𝑣2=π‘š1𝑣 β€² 1+π‘š2𝑣2β€² Kinetic Energy Conserved β€’1 2 π‘šπ‘£1 2+1

Conservation of Momentumβ€’ Total momentum of a closed system remain constant

β€’ Closed System: no net external forces

β€’ p1 = p2 mv1+mv2 = mv’1 + mv’2

β€’ Kick back or explosions

Page 12: MOMENTUMConservation of Momentum Perfectly Elastic Collision Momentum Conserved β€’π‘š1𝑣1+π‘š2𝑣2=π‘š1𝑣 β€² 1+π‘š2𝑣2β€² Kinetic Energy Conserved β€’1 2 π‘šπ‘£1 2+1

Conservation of Momentumβ€’ p1 = p2 mv1+mv2 = mv’1 + mv’2

β€’ Mass of Bullet = 50 g

β€’ Mass of gun = 4kg

β€’ Both start from rest

β€’ Bullet velocity =500m/s

β€’ Velocity of Gun =?

Page 13: MOMENTUMConservation of Momentum Perfectly Elastic Collision Momentum Conserved β€’π‘š1𝑣1+π‘š2𝑣2=π‘š1𝑣 β€² 1+π‘š2𝑣2β€² Kinetic Energy Conserved β€’1 2 π‘šπ‘£1 2+1

Conservation of Momentum

p1 = p2 mv1+mv2 = mv’1 + mv’2

Before Collisionβ€’ Mass of receiver = 75kg

β€’ Velocity of Receiver = -5m/s

β€’ Mass of defender = 85kg

β€’ Velocity of Defender = +8m/s

After Collision β€’ Velocity of Receiver = ? m/s

β€’ Velocity of Defender = +2m/s

Page 14: MOMENTUMConservation of Momentum Perfectly Elastic Collision Momentum Conserved β€’π‘š1𝑣1+π‘š2𝑣2=π‘š1𝑣 β€² 1+π‘š2𝑣2β€² Kinetic Energy Conserved β€’1 2 π‘šπ‘£1 2+1

Conservation of MomentumPerfectly Inelastic Collision

β€’ Objects stick together and travel at same velocity after collision

β€’ Momentum Conserved

β€’ π‘š1𝑣1 +π‘š2𝑣2 = π‘š1 +π‘š2 𝑣′2β€’ Mass of QB= 85kg

β€’ Velocity of QB = -0m/s

β€’ Mass of defender = 110kg

β€’ Velocity of Defender = +6m/s

β€’ Velocity of Both After = ? m/s

Page 15: MOMENTUMConservation of Momentum Perfectly Elastic Collision Momentum Conserved β€’π‘š1𝑣1+π‘š2𝑣2=π‘š1𝑣 β€² 1+π‘š2𝑣2β€² Kinetic Energy Conserved β€’1 2 π‘šπ‘£1 2+1

Conservation of MomentumPerfectly Elastic CollisionMomentum Conserved

β€’ π‘š1𝑣1+π‘š2𝑣2 = π‘š1𝑣′1+π‘š2𝑣2β€²

Kinetic Energy Conserved

β€’1

2π‘šπ‘£1

2+1

2π‘šπ‘£1

2 =1

2π‘šπ‘£β€²12 +

1

2π‘šπ‘£β€²12

Relative Velocity same before and after collision, but in opposite direction

β€’ 𝑣2βˆ’ 𝑣1 = 𝑣′1βˆ’ 𝑣′2

Page 16: MOMENTUMConservation of Momentum Perfectly Elastic Collision Momentum Conserved β€’π‘š1𝑣1+π‘š2𝑣2=π‘š1𝑣 β€² 1+π‘š2𝑣2β€² Kinetic Energy Conserved β€’1 2 π‘šπ‘£1 2+1

Perfectly Elastic CollisionBefore Collision

β€’ m1 = 1.0kg, v1 = 3m/s

β€’ m2 = 2.0kg, v2 = -2 m/s

Velocity of Each ball After Collision?

π‘š1𝑣1 +π‘š2𝑣2 = π‘š1𝑣′1+π‘š2𝑣2β€² 𝑣2βˆ’ 𝑣1 = 𝑣′1βˆ’ 𝑣′2

m1 = 1.0kg

v1 = 3m/s

m2 = 2.0kg

v2 = -2m/s

v1 = ? v2= ?

Page 17: MOMENTUMConservation of Momentum Perfectly Elastic Collision Momentum Conserved β€’π‘š1𝑣1+π‘š2𝑣2=π‘š1𝑣 β€² 1+π‘š2𝑣2β€² Kinetic Energy Conserved β€’1 2 π‘šπ‘£1 2+1

Before Collision

β€’ m1 = 2.0kg, v1 = 3m/s

β€’ m2 = 2.0kg, v2 = -6 m/s

Velocity of Each ball After Collision?

π‘š1𝑣1 +π‘š2𝑣2 = π‘š1𝑣′1+π‘š2𝑣2β€² 𝑣2βˆ’ 𝑣1 = 𝑣′1βˆ’ 𝑣′2

m1 =2.0kg m2 = 2.0kg

v1 = 3m/s v2 = -6m/s

v1 = ? v2= ?

Page 18: MOMENTUMConservation of Momentum Perfectly Elastic Collision Momentum Conserved β€’π‘š1𝑣1+π‘š2𝑣2=π‘š1𝑣 β€² 1+π‘š2𝑣2β€² Kinetic Energy Conserved β€’1 2 π‘šπ‘£1 2+1

Collisions in 2Dβ€’ Vector Sum of momentum before collision is equal to vector sum after collision.

m=750kgv=15 m/s

m=650kgv=20m/s

v= ? m/s

Page 19: MOMENTUMConservation of Momentum Perfectly Elastic Collision Momentum Conserved β€’π‘š1𝑣1+π‘š2𝑣2=π‘š1𝑣 β€² 1+π‘š2𝑣2β€² Kinetic Energy Conserved β€’1 2 π‘šπ‘£1 2+1

Collisions in 2Dβ€’ Vector Sum of momentum before collision is equal to vector sum after collision.

m = 3kgv=5m/s

m = 2kgv=0m/s m = 2kg

ΞΈ = 30o

v= 1.5m/s

m = 2kgΞΈ = ?o

v= ? m/s