Molecules at surfaces and mechanism of...

37
Molecules at surfaces and mechanism of catalysis Gerhard Ertl Fritz Haber Institut der Max Planck Gesellschaft Berlin, Germany

Transcript of Molecules at surfaces and mechanism of...

  • Molecules at surfaces and mechanism of catalysis

    Gerhard Ertl

    Fritz Haber Institut der Max Planck GesellschaftBerlin, Germany

  • Transformation of energy and matter

    The Sun:

    nuclear fusion

    Photosynthesis

    Fossil fuels “Renewable energies”(wind, water, solar, etc.)

    Fuel processing(catalysis)

    Chemicals(catalysis)

    Fuel cell(electrocatalysis)

    Nuclearreactor

    Electrical energy

    Mechanical energy

    + O2Heat Environment

    (catalysis)

  • Catalytic synthesis of ammoniaN2 + 3 H2 Æ 2 NH3(Haber-Bosch process)

  • Steady-state reaction rate:

    = v = f (pi, pj, T, catalyst)dnjdt

    Reactor

    dnidt

    dnidt

    dnjdt

    ¢

    i: reactantsj: products

    Heterogeneous catalysis

  • Progress of a chemical reaction

    withoutcatalyst

    with catalyst

    Energy

    E

    D E

    *

  • E*

    E

    initial

    final state

    |=

    reaction coordinate

    Transition state theory

    kr = e · ekBTh

    DS /R|= –E*/RT

  • DG‡

    DG‡ – azFei

    zFeiazFei

    G

    x x

    +

    r+ ∞ exp – r+ ∞ j+ ∞ exp – DG‡ – azFei

    RT RT

    DG‡

    Heterogeneous catalysis Electrocatalysis

  • 2 H2 + O2 Æ 2 H2O / PtHeterogeneous catalysis Electrocatalysis

    O2 + 4 Haq + 4 e- 2 H2O

    +

    Æ̈ Æ̈H2 2 Haq + 2 e-+

    U0 = 1.23 V U0 = 0 V DU = U1 – U2 DG0 = –nFDU

    1 2

  • E*

    E

    initial

    final state

    |=

    reaction coordinate

    Transition state theory

    kr = e · ekBTh

    relaxation times for energy exchangebetween adsorbate and heat bath of solid(= phonons + electrons)

    DS /R|= –E*/RT

    time scale >>

  • Associative desorption of hydrogen from Ru(0001)D2

    D

    H2HDD2

    /2kBH2:(2110±450) K

    D2:(1720±290) K

    200 250 300 350 400 450 500 0 20 40 60 80

    TDS-

    sign

    al [a

    .u.]

    flux

    [a.u

    .]

    temperature [K] flight time [ms]

    A BThermal desorption spectroscopy (TDS) fs-laser induced ToF spectra

  • 3000

    2500

    2000

    1500

    1000

    500

    0

    0 1 2 3

    time [10-12 s]

    surfa

    ce te

    mpe

    ratu

    re [ K

    ]rate [a.u.]

    TelTph

    Tads : D layer Tads : H layer

    D2 yield H2 yield

    DtDDtH

    D. Denzler, C. Frischkorn, C. Hess, M. Wolf, G. Ertl,Phys.Rev.Lett. 91 (2003), 226102; J.Phys.Chem. B 108 (2004), 14503

  • O / Pt (111)

    J. Wintterlin, R. Schuster, and G. Ertl, Phys.Rev.Lett. 77 (1996), 123.

  • z

    x

    z xE*

    EE

    Ead

    tsurf = t0·eEad/RT tsite = t0 ·e

    E*/RT¢

  • O/Ru (0001)

    T = 300 K

  • OC

    260

    ~ 21

    DH = 283 kJ/mol

    ELH = 100*

    CO + 2 O21

    CO2ad

    COad + Oad CO2

    2CO + O2 2CO2

    Oad + COad CO2 + 2* O2 + 2* O2,ad 2Oad

    CO + * COad

    I––

    Pt

    Catalytic oxidation of CO

    Pt at low coverages( )

  • Oad + COad CO2 Pt 111( )/

    Density Functional Theory Study

    GGA

    1.0 2.0 3.0 4.0

    1.0

    0.5

    0.0

    C – O (a) separation / Å

    E –

    E 0 / e

    V

    A. Alavi, P. Hu, T. Deutsch, P.L. Silvestrelli, J. Hutter,Phys. Rev. Lett. 80 (1998), 3650

  • 2 H2 + O2 Æ 2 H2O Pt/

    Mechanism (?) :

    (1) O2 + * Æ 2 Oad(2) H2 + * Æ 2 Had(3) Oad + Had Æ OHad(4) OHad + Had Æ H2Oad(5) H2Oad Æ H2Og + * (T ≥ 170 K)

    But :

    Important :

    T < 170 KInduction period

    ~ 12 kJ/mol

    T > 230 KNo induction period

    > 50 kJ/molE* :

    (6) H2Oad + Oad Æ 2 OHad

    S. Völkening, K. Bedürftig, K. Jacobi, J. Wintterlin and G. Ertl,Phys. Rev. Lett. 83 (1999), 2672.

  • Oad + Had T = 131 K; p(H2) = 8 ·10-9 mbar

    625 s 1000 s

    1175 s 1250 s170 ¥ 170 Å2

  • Oad + Had T = 131 K; p(H2) = 8 ·10-9 mbar

    1300 s 1350 s

    1400 s 1450 s170 ¥ 170 Å2

  • OH-frontsT = 111 K; p(H2) = 8 ·10-9 mbar; 2100¥1760 Å2

    q

    x

    fi

    H2O O

    H2O + O Æ 2 OH

    OH

    2 OH + 2 H Æ 2 H2O

    500 s

    t = 0

    625 s

    250 s

  • 0.3

    0.2

    0.10

    0 20 40 60 80 100

    0.3

    0.2

    0.10

    0 20 40 60 80 100

    0.3

    0.2

    0.10

    0 20 40 60 80 100

    0.3

    0.2

    0.10

    0 20 40 60 80 100

    0.6

    0.4

    0.20

    0 20 40 60 80 100

    0.3

    0.2

    0.10

    0 20 40 60 80 100

    H2OO

    OHconc

    entr

    atio

    nxnum LD/

    C. Sachs, M. Hildebrand, S. Völkening,J. Wintterlin, and G. Ertl, Science 293 (2001), 1635;

    J. Chem. Phys. 116 (2002), 5759

  • Reaction-diffusion systems

    — Diffusion— Heat conductance— Variation of partial pressures— Electric field

    Coupling between different parts of the surface via

    Spatio-temporal self-organization

    Temporal and spatial variation of state variables (surface concentrations) xi

  • Heartbeats of ultra thin catalyst

    Ultra thin (200 nm thick) Pt(110) catalyst during CO oxidation, 5 mmsample diameter, T"="528 K, pO2 = 1 x 10-2 mbar, pCO = 1.85 x 10-3 mbar

    F. Cirak, J.E. Cisternas, A.M. Cuitino,G. Ertl, P.Holmes, I. Kevrekidis, M.Ortiz,H.H. Rotermund, M.Schunack, J. Wolff,

    Science 300 (2003), 1932

  • 1845 1855 18751865 1885 1895 1905 1915 1925 1935

    160

    140

    120

    100

    80

    60

    20

    40

    Year

    Num

    ber

    ( thou

    sand

    s)

    HaresLynxes

  • PEEM images with 500 µm diameter, steady-state conditions: pO2!=!4!x!10

    -4!mbar, pCO!=!4.3!x!10-5!mbar, T!=!448!K

    Spiral waves during CO-oxidation on Pt(110)

    S. Nettesheim, A. von Oertzen, H.H. Rotermund, G. Ertl, J.Chem.Phys. 98 (1993), 9977

  • Hurricane Bret over the coast of Texas,August 1999 (photo: NASA, GOES)

  • Chemical turbulence

    Photoemission electron microscope(PEEM) imaging. Dark regions arepredominantly oxygen covered, brightregions are mainly CO covered.

    Real time, image size 360 x 360 mm

    Temperature T = 548 K, oxygen partialpressure po2 = 4 x 10

    -4 mbar, COpartial pressure pco = 1.2 x10-4 mbar.

  • Global delayed feedback

    O2 CO

    UHVChamber

    PEEM

    Delay

    Amplifier

    Integrator

    sample

    M. Kim, M. Bertram, M. Pollmann, A. von Oertzen;A.S. Mikhailov, H.H. Rotermund, and G. Ertl,

    Science 292 2001 , 1357( )

  • CO oxidation reaction on Pt(110)

    • Suppression of spiral-wave turbulence anddevelopment ofintermittent turbulencewith cascades ofreproducing bubbles

  • CO oxidation on Pt(110)with delayed global feedback

    uniform oscillations

    phase turbulence

    cellular structures

    turbulence

    intermittent turbulence

    clusters

  • Retina

    10mm

  • Quantumlevel

    Atomiclevel

    Heterogeneous catalysis :Dynamics of surface reactions

    Spatio- temporalself- organization

    Micro-kinetics

    Macroscopickinetics

    1 Å 100 Å 10 mm 1 cm10-15 sec

    10-12 sec

    10-6 sec

    1 sec

    102 sec

    Microscopic Mesoscopic Macroscopic