MolecularThermodynamics_StatisticalThermodynamics

download MolecularThermodynamics_StatisticalThermodynamics

of 40

Transcript of MolecularThermodynamics_StatisticalThermodynamics

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    1/95

    15 Statistical thermodynamics 1:

    the concepts

    Statistical thermodynamics provides the link between the microscopic

    properties of matter and its bulk properties.

    Two key ideas:

    First: Boltzmann distribution

    Second: Ensemble

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    2/95

    Statistical thermodynamics:

    The crucial step in going from the uantum mechanics of individual

    molecules to the thermodynamics of bulk samples is to recognize that

    the latter deals with the average behavior of large numbers of

    molecules.

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    3/95

    The distribution of molecular states

    !opulation

    !rinciple of eual a priori   probabilities

    "ssumption: "ll possibilities for the distribution of energy are eually

    probable.

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    4/95

    15.1 Configurations and weights

    #a$ %nstantaneous configurations&onfiguration {3,2,0,…}  in '( ways:

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    5/95

    &onfiguration { N 0 , N 1, …}  in W   different ways

    W =  N !

     N 0 ! N 1! N 2 ! …

    The weight of a configuration

    ln W =ln N !−∑i

    ln N i !

     N i ln N i(¿− N i)

    ¿ ( N  ln N − N )−∑i

    ¿

    ¿ N  ln N −∑i

     N i ln N i

    )sing Stirling*s appro+imation:

    ln x != x ln x− x

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    6/95

    #b$ The Boltzmann distribution

    )nder the two restrictions:

    &onstant total energy:

    ∑i

     N i εi= E

    &onstant total number of molecules:

    ∑i

     N i= N 

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    7/95

    The populations in the configuration of greatest weight depend on the

    energy of the state according to the Boltzmann distribution:

     N i N  =   e

    − βε i

    ∑i

    e− β εi

     β=  1

    k T 

    , The thermodynamic temperature is the uniue parameter that governs

    the most probable populations of states at thermal euilibrium.

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    8/95

    15.2 The molecular partition function

    !opulation of state:

     pi=e− β εi

    q

    -efinition of molecular partition function:

    q=∑i

    e− β εi

    q=∑level I 

    g I e− βε  I 

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    9/95

    #a$ "n interpretation of the partition function

    limT →0 q=g0

    That is at T =0 the partition function is eual to the degeneracy of the

    ground state.

    %n general.

    limT → ∞

    q=∞

    /owever when the molecules have only a finite number of states the upper

    limit of q  is eual to the number of states.

    "t T =0 only the ground state level is accessible and q=g0 .

    "t very high temperature virtually all states are accessible and q  is

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    10/95

    correspondingly large.

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    11/95

    !artition function of a uniform array of states:

    q=  1

    1−e− βε

     

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    12/95

     pi=e− β εi

    q  =(1−e− βε) e− βε i

    !opulation of two0state system:

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    13/95

     p0=

      1

    (1+e− βε )

     p1=  e

    − βε

    (1+e− βε )

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    14/95

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    15/95

    #b$ "ppro+imations and factorizations

    !opulation function for translation in one dimension:

    q X =( 2πmh2 β )1/2

     X =( 2πmkT h2 )1/2

     X 

    εn1

    , n2

    ,n3

    =εn1

    ( X )+εn2

    (Y )+εn3

    (Z )

    q=∑alln

    e− β εn

    1

    ( X )− βε n2

    (Y )− βε n3

    (Z )

    =∑alln

    e− βε n

    1

    ( X  )

    e− βε n

    2

    ( Y )

    e− β εn

    3

    (Z )

    ¿(∑n1 e− βε n1

    ( X )

    )(∑n2 e− β εn2

    (Y )

    )(∑n3 e− β εn3

    (Z )

    )=q X qY qZ 

    q=( 2πmh2 β )3 /2

     XYZ =(2πmh2 β )3 /2

    !artition function for translation in three dimension:

    q= V 

     Λ3 Λ=h(   β2πm )

    1 /2

    =  h

    (2πmkT )1 /2

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    16/95

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    17/95

    The nternal energy and the entropy

    15.! The internal energy 

    The importance of the molecular partition function is that it contains all the

    information needed to calculate the thermodynamic properties of a system

    of independent molecules.

    Statistical thermodynamics: q

    1, 2uantum mechanics: wavefunction

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    18/95

    #a$ The relation between )  and  

     E (T )=∑i  N i εi

     E (T )= N 

    q∑

    i

    εi e− βε i

    εi e− β εi=

    − β

     e− βε i

     E (T )=− N q ∑

    i

    β e− βε i=

    − N q

    β∑

    i

    e− β εi=

    − N q

    q

    β

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    19/95

     

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    20/95

    !  (T )=! (0 )+ E (T )

    %nternal energy in terms of the partition function:

    !  (T )=! (0 )− N q ( " q" β )V 

    %n an alternative version:

    !  (T )=! ( 0 )− N ( " lnq" β )V 

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    21/95

    #b$ The value of β 

    Fundamentals F.3:

      (T )= (0 )+ 32

     n#T 

    4ustification '3.5:

      (T )= (0 )+ 3 N 2 β

     β=  N 

    n#T  =

      n N  $

    n N  $ kT  =

      1

    kT 

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    22/95

    15." The statistical entropy

    Boltzmann formula of the entropy:%=k lnW 

    Entropy in terms of partition function:

    % (T )=  (T )−  (0)

    T   + Nk  ln q

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    23/95

    The temperature #ariation of the entropy of an e$ually spaced energy system

     

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    24/95

    The temperature #ariation of the entropy of a two%le#el system

     

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    25/95

    The canonical partition function

    15.5 The canonical ensemble

    The crucial new concept we need when treating systems of interacting

    particles is the 6ensemble*.

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    26/95

    &a' The concept of ensemble

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    27/95

    The total energy of all the systems is  E  and because they are in thermal

    euilibrium with one another they all have the same temperature T  . This

    imaginary collection of replications of the actual system with a common

    temperature is called the canonical ensemble.

    (efinitions of ensembles:

    7icrocanonical ensemble: 8  9  E  common

    &anonical ensemble: 8  9  T  common

    rand canonical ensemble:  µ  9  T  common

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    28/95

    &b' (ominating configurations

    ~ E  : the total energy of the ensemble~

     N   : the number of imaginary replications

     Ei  : the energy state of each member

    ~

     N i  : the number of members with energy  Ei

     N   : the number of molecules in the actual system

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    29/95

    W   : the total weigh of a configuration of the ensemble

    ~W =

      N !~ N 0!~ N 1 !~ N 2! …

    -efinition of canonical partition function:

     N i~ N 

    =e− β Ei

    &  &=∑

    i

    e− β Ei

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    30/95

    #c$Fluctuations from the most probable distribution

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    31/95

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    32/95

    distinct from being in a specified state$ is given by N i~ N 

    =e− β Ei

    & a sharply

    decreasing function multiplied by a sharply increasing function.

    Therefore the overall distribution is a sharply peaked function. ;e conclude

    that most members of the ensemble have an energy very close to the mean

    value.

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    33/95

    15.) The thermodynamic information in the partition function

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    34/95

    The internal energy 

      (T )= (0 )+ E (T )=  (0 )+~ E(T )/

    ~

     N    as  N → ∞

    Because ~ pi=e− βE i

    &

      (T )= (0 )+∑i

    ~ pi E i=  (0 )+ 1

    &∑

    i

     Ei e− β Ei

    %nternal energy in terms of the canonical ensemble:

      (T )= (0 )−  1& ( " &" β )V =  (0 )−(

    " ln &

    " β  )V 

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    35/95

    #a$ The entropy  

    The total weight of~

    W  of a configuration of the ensemble is theproduct of the average weight W   of each member of the ensemble

    ~W =W  N 

    /ence

    %=k lnW =k ln~W 1/~ N = k ~

     N ln~W 

    Entropy in terms of the canonical partition function:

    % (T )=  (T )−  (0)

    T   +k ln &

    ndependent molecules

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    36/95

    #a$ -istinguishable and indistinguishable molecules

    =elation between &  and q :For indistinguishable independent molecules>

    &=q N / N !

    For distinguishable independent molecules>

    &=q N 

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    37/95

    #b$ The entropy of a monatomic gas

    Sackur0Tetrode euation for the entropy of a monatomic gas:

    % (T )=n# ln(   e5/2

    n N  $ Λ3 ) Λ=(   h(2πmkT  )1 /2 )

    %n terms of pressure

    % (T )=n#ln

    (e

    5/2kT 

     p Λ3

    )

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    38/95

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    39/95

    The Sackur0Tetrode euation implies that when a monatomic perfect gas

    e+pands isothermally from V i  to V '  its entropy changes by 

     ( %=n# ln (a V '  )−n# ln (a V i )=n# ln(V ' 

    V i )

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    40/95

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    41/95

    1) Statistical thermodynamics 2: applications

    "pply the concepts of statistical thermodynamics to the calculation of chemically significant uantities:

    '. Establish the relation between thermodynamic functions and partition functions.

    ?. The molecular partition function can be factorized into contributions from each mode of motion and

    establish the formulas for the partition functions for translational rotational vibrational modes of the

    motion and the contribution of electronic e+citation.

    5. Specific applications: the mean energies of modes of motion the heat capacities of substances and

    residual entropies.

    @. &alculate the euilibrium constant of a reaction and through that calculation understand some of the

    molecular features that determine the magnitudes of euilibrium constants and their variation with

    temperature.

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    42/95

    *undamental relations

    1).1 The thermodynamic functions

     −  (0 )=−( " ln &" β  )V %=

     − (0 )T 

      +k ln&

    #c$ /elmholtz energy 

     $= −T%

     $− $ (0 )=−kT  ln&

    #d$ The pressure

     $= −T%

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    43/95

    $= pV −%T 

    Because  p=−( " $" V  )T  !ressure in terms of &

     p=kT ( " ln &" V  )T 

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    44/95

    #e$ The enthalpy 

     ) = + pV 

    Enthalpy in terms of &

     ) − )  (0 )=−( " ln&" β  )V +kTV (" ln &

    "V  )T 

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    45/95

    #f$The ibbs energy 

    *= ) −T%= $+ pV 

    ibbs energy in terms of &

    *−* (0)=−kT ln &+kTV ( " ln&" V  )T 

    *−* (0 )=−kT ln &+n#T 

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    46/95

    Because &=q N / N !

    *−* (0)=− NkT  ln q+kT  ln N !+n#T 

    ¿−n#T  ln q+kT ( N  ln N − N )+n#T 

    ¿−n#T  ln   q N 

    ibbs energy of independent molecules:

    *−* (0)=−n#T  lnqm

     N  $

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    47/95

    1).2 The molecular partition function

    The energy of a molecule is the sum of contributions from its different modes of motion:

    ε i=εiT +εi

     #+εiV +ε i

     E

    The electronic contribution is not actually a 6mode of motion* but it is convenient to

    include it here.

    The separation of terms in the euation above is only appro+imate #e+cept for translation$

    because all modes are not completely independent but in most cases it is satisfactory.

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    48/95

    The separation of the electronic and vibrational motions is Austified provided only the ground

    electronic state is occupied #for otherwise the vibrational characteristics depend on the

    electronic state$ and for the electronic ground state and the Born0ppenheimer

    appro+imation is valid.

    The separation of the vibrational and rotational modes is Austified to the e+tent that the

    rotational constant is independent of the vibrational state.

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    49/95

    iven that the energy is a sum of independent contributions the partition function factorizes

    into a product of contributions:

    q=∑i

    e− β εi=   ∑

    i(all +ae+

    )

    e− βε i

    T − β ε i #− β εi

    V − βε i E

    ¿qT 

    q #

    qV 

    q E

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    50/95

    #c$ The translational contribution

    Translational contribution toq

    :q

    T = V 

     Λ3 Λ=h(   β2 πm)

    1 /2

    =  h

    (2 πmkT )1/2

    qT 

    → ∞ a + T → ∞

    "t room temperature qT  -2.1028  for an ? molecule in a vessel of volume

    '(( cm5.

    The thermal wavelength  Λ should be much less than the average

    separation of the molecules in the sample in order for the appro+imations

    that led to the e+pression of qT   are valid.

    #d$ The rotational contribution

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    51/95

    The partition function of a nonsymmetrical #"B$ linear rotor:

    q #=∑

    (2/ +1)e− βh0 1/ (/ +1)

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    52/95

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    53/95

    =otational contribution to q  in the high temperature limit #linear rotors$:

    q #=

      T 

    2 3 #

    2 :+4mme5i0 n6m7e5

    8ha5a0e5i+i059ai9nal empe5a65e   3 # :

    3 #=h0

    ~1

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    54/95

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    55/95

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    56/95

    =otational contribution to q  in the high temperature limit #nonlinear

    molecules$:

    q #=

    1

    2  ( kT h0 )3 /2

    (   π ~ $~1~8  )1 /2

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    57/95

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    58/95

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    59/95

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    60/95

    #e$ The vibrational contribution

    The vibrational energy levels:

     E:=(:+12 )h0~; :=0,1,2,…

    9ibrational contribution to q :

    The partition function:

    qV =∑

    :

    e− β:h0~;=∑

    :

    (e− βh0~; ):

    qV =

      1

    1−e− βh0~;

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    61/95

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    62/95

    9ibrational contribution to q  in the high temperature limit:

    qV =

      1

     βh0~;=

     kT 

    h0~;

    q

    =

     T 

    3V 

    8ha5a0e5i+i0 vi75ai9nal empe5a65e   3V  :

    3V =h0~;

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    63/95

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    64/95

    #f$The electronic contribution

    %f we denote the energies of two levels as  E1 /2=0  and  E3 /2=ε the partition

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    65/95

    function is:

    q E=   ∑

    ene5g4level+

    g > e− βε  >=2+2e

    − βε

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    66/95

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    67/95

    #g$ The overall partition function

    The overall partition function for a diatomic molecule with no low0lying

    electronically e+cited states and T ≫3 #

    q=g E( V  Λ3 )(  T 

    2 3 # )(  1

    1−e−3V /T  )ne5he a++6mpi9n+ :

    he 59ai9nallevel+ a5e ve5 4 0l9+e 9gehe5

    he vi75ai9nallevel+a5eha5m9ni0

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    68/95

    +sing statistical thermodynamics

    &alculate partition functions

    , "ny thermodynamic uantities

    , aining insight into a variety of physical chemical biological processes

    Four important properties:

    '. 7ean energies

    ?. /eat capacities

    5. Euations of state

    @. 7olecular interactions in liuids

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    69/95

    1).! ,ean energies

     

    The mean energy is the sum of contributions from:

    i. Translation

    ii. =otation

    iii. 9ibration

    7ean energy of a mode of motion:

    ⟨ ε ? ⟩=−1q

     ?  ( " q ? 

    " β )V  ? =T , # , V ,∨ E

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    70/95

    #c$ The mean translational energy 

    For a one0dimensional system of length  X 

    qT =

     X 

     Λ 

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    71/95

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    72/95

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    73/95

    "t high temperature (T ≫3 # )

    q #=

      T 

    2 3 #

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    74/95

    qV =

      1

    1−e− βh0~;

    qV 

    β =

     

    β (   11−e− βh0~; )=−h0~; e− βh0

    ~;

    (1−e− βh0~; )2

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    75/95

    7ean vibrational energy:

    ⟨ εV  ⟩=−1q

    qV 

    β =−(1−e− βh0

    ~; ){−h0~; e− βh0~;

    (1−e− βh0~; )2 }=h0

    ~; e− βh0~;

    1−e− βh0~;

    ⟨ εV  ⟩=   h0~

    ;e

     βh0~;−1

    The zero0point energy1

    2 h0~; can be added to the right side if the mean energy

    is to be measured from ( rather than the lowest attainable level #the zero0point

    level$.

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    76/95

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    77/95

    "t high temperature when T ≫3V   or  βh0~;≪1 the e+ponential functions can be

    e+panded   (e x -1+ x+…)  and all but the leading terms discarded.

    7ean vibrational energy #high temperature limit$

    ⟨ εV  ⟩=   h0~;

    e βh0~;−1

    =  h0~;

    (1+ βh0~;+…)−1- 1

     β=kT 

    , "grees to the classical euipartition theorem too.

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    78/95

    1)." -eat capacities

    #a$ The individual contributions

    The constant0volume heat capacity:

    8 V =( " "T  )V 

    T  =

    β

    β=−1

    kT 2

    β=−kβ2

     

    β

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    79/95

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    80/95

    Translational contribution to 8 V 

    8 V ,mT  = N  $( ⟨ ε

     ?  ⟩ T  )V = N  $

    ( 32 kT ) T 

      =3

    2 #

    %n the same way when T ≫3 #

    rotational contribution to 8 V 

    8 V ,m # = # '95 a linea5 59a5

    8 V ,m # =

    3

    2 # '95 a n9nlinea5 m9le06le+

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    81/95

     

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    82/95

    9ibrational contribution to 8 V 

    8 V ,mV  = #'  ( T ) '  (T )=(3V T  )

    2

    (   e−3V /2T 

    1−e−3

    V /2T  )

    2

    ;here 3V =h0~

    ; /k 

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    83/95

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    84/95

    #b$ The overall heat capacity 

    ;hen euipartition is valid #when the temperature is well above the

    characteristic temperature of the mode T ≫3 ?  $ we can estimate the heat

    capacity by counting the numbers of modes that are active.

    Total heat capacity #at high temperatures$

    8 V ,m❑ =12 (3+; #

    +2;V ⋆

    ) #

    where ; ? ⋆  is the number of active modes for each 7 mode

    %n most case ;V ⋆ -0 .

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    85/95

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    86/95

    1).5 $uations of state

    1).) ,olecular interpretations in li$uids

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    87/95

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    88/95

    "n  A8lB3  molecule can adopt four orientation with the same energy #with the F

    atom at any of the four corners of a tetrahedron$:%m (0 )= # ln 4=11.5/ C 

    −1m9l

    −1  is in good agreement with the e+periment value #

    10.1/ C −1

    m9l−1 $

    For 8B the measured residual entropy is 5/ C −1 m9l−1 which is very close to  # ln 2

    the value e+pected for a random structure of the form = = =8B8BB88BB8B8===

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    89/95

     

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    90/95

    1). $uilibrium constants

    ibbs energy of independent molecules:

    *−* (0)=−n#T  lnqm

     N  $

    #a$ The relation between C  and the partition function

    *mϑ (/ )−*m

    ϑ  (/ , 0 )=− #T  ln   qmϑ 

     N  $

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    91/95

    The euilibrium constant for the reaction a $+7 1 → 0 8  + D  in terms of partition

    function:

     C =(q8 ,m

    ϑ 

     N  $

    )

    0

    (q D ,m

    ϑ 

     N  $

    )

    ( q $ ,mϑ 

     N  $ )a

    ( q1 ,mϑ 

     N  $ )7

    e− (5 E 0/ #T 

     C ={∏/  ( q/ ,m

    ϑ 

     N  $ ); / 

    }e− (5 E 0/ #T 

     (5 E0=0 mϑ 

    (8 ,0)+ mϑ 

    ( D ,0 )−a mϑ 

    ( $ ,0 )−7 mϑ 

    ( 1 ,0 ),

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    92/95

    #b$ " dissociation euilibrium

    "n euilibrium in which a diatomic molecule:

     X 2 (g )⇌2 X  (g ) C =

      p X 2

     p X 2

     pϑ 

     C =( q X, m

    ϑ 

     N  $ )2

    q X 

    2, m

    ϑ 

     N  $

    e

    − (5 E 0 #T 

    = ( q X ,m

    ϑ  )2

    q X 

    2,m

    ϑ  N  $

    e

    − (5 E0 #T 

    ¿ C =( q8 , m

    ϑ 

     N  $ )0

    ( q D, mϑ 

     N  $ )

    ( q $, mϑ 

     N  $ )a

    ( q1, mϑ 

     N  $ )7

    e

    − (5 E0 #T 

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    93/95

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    94/95

    #c$ &ontributions to the euilibrium constant

    &onsider a simple  #⇌   gas0phase euilibrium:

     N  p

     N  #=

    q #e− (5 E0 / #T 

     C =q 

    q #e− (5 E0 / #T 

  • 8/9/2019 MolecularThermodynamics_StatisticalThermodynamics

    95/95