Molecular simulations in chemistry Adam Liwo Room B325 [email protected].

32
Molecular simulations in chemistry Adam Liwo Room B325 [email protected]

Transcript of Molecular simulations in chemistry Adam Liwo Room B325 [email protected].

Page 1: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

Molecular simulations in chemistry

Adam Liwo

Room B325

[email protected]

Page 2: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

• 30 lecture hours

• 2 hrs/week; Tuesdays, 8:15 – 10:00 am

• Completion requirements• Project• Exam

Page 3: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

Scope

1. Purpose, time-, and size-scales of molecular simulations.

2. Energy surfaces of molecules.

3. All-atom force fields: purpose, derivation, and parameterization

4. Treatment of solvent in force fields. Models of water.

5. Metropolis Monte Carlo.

6. Molecular dynamics.

7. Calculating ensemble-averages and error estimation in simulations.

8. Umbrella-sampling simulations and the weighted-histogram analysis method.

9. Generalized-ensemble simulations.

10.Enlarging the time- and size-scale of simulations: coarse-grained models. The CABS and UNRES force fields.

11.Thermodynamics and kinetics of protein folding from simulations.

12.QM/MM simulations.

Page 4: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

Literature

Daan Frenkel, Berend Smit, „Understanding Molecular Simulation: From Algorithms to Applications” Academic Press, San Diego, 1996

D.C.A. Rapaport, „The Art of Molecular Dynamics Simulations”, Cambridge University Press, 1998.

A.R. Leach: „Molecular Modeling: Principles and Applications”, Pearson Education EMA, 2001.

Page 5: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

Learning Nature – how does Science work?

Experiment

Model(equations)

Exact solution

Simulations

No model(pysicochemical

tables)

Page 6: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

Equations (approximate) – exact solutions

„I am really longing for those good old times when a theorist didn’t need anything but a piece of paper, a pencil, and own brains”.

Quotation from a late Professor of Physical Chemistry.

Not possible anymore…unless we want to consider spherical horses in vacuo to model horse race.

Feynman’s dream that we will be able to ‘see’ the solutions of equations someday does not seem to ever come true.

Page 7: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

Successful examples of the „exact solution” approach

• Chemical Thermodynamics (phenomenological).

• Chemical Kinetics.

• Modeling electrochemical processess.

• Quantum Chemistry.

• Kinetic theory of gases.

• Application of Statistical Mechanics in Chemistry.

Page 8: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

What are ‘Simulations’?

Modeling (computing) the behavior of complex systems by applying a given description (e.g., Newton’s equations of motion).

‘Das ganze Tschechische Volk ist eine Simulantenbande’ – Dr. Gruenstein of K.u.K military draft office

Page 9: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

Where do the ‘molecular simulations’ enter into play?

- Condensed systems composed of many particles (e.g.,

a protein + solvent).

- Strong interactions between system’s components.

The partition function cannot be separated.

- The time evolution has Lyapunov instability depending

on the initial conditions.

- Therefore, we actually need to compute system’s

behavior for given initial/boundary condition rather than

analyze the solutions in terms of those.

Page 10: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

Are simulations another versionof experiment?

No, we do not deal with a real system but with a ‘virtual’ one.

However, the results depend on starting point and are subject to statistical error as the experiemental results.

Page 11: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

(Pre) History• Lord Kelvin (early 1900’s): hand computations of hard-

sphere collisions.

• Manhattan Project (Ulam; 1940’s – 1950’s): hand and computer simulations of nuclear fission (ENIAC computer).

• J.D. Bernal (1950’s): mechanical models of liquid particles from rubber/styrofoam balls connected with metal rods.

• G. Vineyard (1950’s): computer simulation of radiation damage in crystalline Cu.

• Rosenbluth, Rosenbluth, Metropolis, Teller (1950’s): Formulation of the Metropolis Monte Carlo algorithm.

• Alder and Wainwright (1957): MD simulations of hard-sphere liquids.

Page 12: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

Types of simulations

• Monte Carlo (MC): need only energy).

• Molecular dynamics (MD): time evolution; need forces).

• Combination thereof.

Page 13: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

What systems do we treat and what are the limits?

Page 14: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

Individual components

System level(Networks)

Avera

gin

g o

ver individ

ual co

mp

one

nts

PDEs to describe reaction/diffusion

Network graphs

Fully-detailed

Atomistically-detailed

Coarse-grained

QM

QM/MM

All-atom

United-atom

Residue level

Molecule/domain

level

Avera

gin

g o

ver „less im

porta

nt” deg

rees of

freed

omDescription

level

Page 15: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

10-15

femto10-12

pico10-9

nano10-6

micro10-3

milli100

secondsbond

vibrationloop

closure

helixformation

folding of-hairpins

proteinfolding

all atom MD step

sidechainrotation

Page 16: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

MD Package

Explicit Solvent

Implicit Solvent

AMBERa

1 fs 2 fs

CHARMMb

3 fs 4-5 fs

TINKERc

1 fs 2 fs

Time step t for some standard MD packages

a http://amber.scripps.edu/

b http://www.charmm.org/

c http:// dasher.wustl.edu/tinker/

Page 17: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

Energy surfaces of molecular systems and their properties

Page 18: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

From Schrödinger equation to analytical all-atom potentials

),...,,;,...,,(ˆ

ˆ

2121 nN

EH

HE

rrrRRR

elN

ba ji ijai ai

a

ab

ba

a iia

a

HH

rr

Z

r

ZZ

mH

ˆˆ

11ˆ

Page 19: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

The Born-Oppenheimer approximation

elelelel

NelN

el

elji ijai ai

ael

N

ba ab

ba

NNN

nNelNN

nN

EH

EEE

E

rr

Z

E

r

ZZE

ˆ

),...,,(

1

)()...()(),...,,(

),...,,;,...,,(),...,),(

),...,,;,...,,(

2

22

2122

212

RRR

RRRRRR

rrrRRRRRR

rrrRRR

1

11

11

1

Page 20: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

HNCHCN

Conversion of iso-hydrogen cyanide into hydrogen cyainde

Page 21: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

AM1 energy hypersurface of the conversion of iso-hydrogen cyanide into hydrogen cyanide

Energy [kcal/m

ol]

HCNHNC

Transition structure

Page 22: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

Contour plot of the PES

HCN

HNC

struktura przejściowa

Page 23: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

HNCHCN

H

N -C

E

E╪

reaction coordinate

en

erg

y [kcal/m

ol]

Page 24: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

Jean-Louis David

Napoleon

Page 25: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

Propane PES as a function of the two dihedral angles

Page 26: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

Conformational-energy map of terminally-blocked alanine

(degrees)

(deg

rees

)

Page 27: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

**,

******2

1

****,,

2

2

2222

2

2

yyxxO

yyy

Exxyy

xy

Eyyxx

yx

Exx

x

E

yyy

Exx

x

EyxEyxE

Energy expansion about the stationary point

The derivatives are zero at a stationary point but it need not be a stable point (Coulomb’s egg problem).

2

2

22

22

2

2

***

***

2

1*,

yyy

Exxyy

xy

E

yyxxyx

Exx

x

E

EyxE

Page 28: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

2

22

2

2

2

y

E

yx

Eyx

E

x

E

H Matrix H is termed energy Hessian

22

21

2

1

2

1*,,

*

*

*

***,

2

1*,

EEyxEyy

xx

yy

xxyyxxEyxE

T

T

V

VVH

H

V – eigenvector matrix

Page 29: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

Neighborhood of the minimum corresponding to the HCN molecule

Neighborhood of the transition point

Energy [kcal/mol]

Case study: the układu HCN – HNC system

Page 30: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

2

2

2

2

1

2

2

2

22

2

12

21

2

21

2

21

2

nnn

n

n

x

E

xx

E

xx

E

xx

E

x

E

xx

Exx

E

xx

E

x

E

H

**2

1

*

*

*

*,,*,*2

1*,,,

1 1

22

11

2221121

jj

n

i

n

jiiij

nn

nn

xxxxh

xx

xx

xx

xxxxxxExxxE

H

Generalization on n coordinates

Page 31: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

*

*

*

2

1

*,,,*,,,

22

11

2

1

2

1

2222

211

2121

nn

T

n

T

n

nn

nn

xx

xx

xx

EEExxxE

VVH

Page 32: Molecular simulations in chemistry Adam Liwo Room B325 adam@sun1.chem.univ.gda.pl.

Minimum: all Hessian eigenvalues > 0

Corresponds to a stable state of a system.

First-order saddle point: 1<0, 2, …,n >0

Corresponds to the transition state in a reaction. Higher-order transition points are not interesting.

A maximum: all Hessian eigenvalues < 0.

Summary pf critical points