Molecular Simulation Strategies for Large Scale Thermodynamic … · 2017. 2. 6. ·...

32
PROF. DR.-ING. HABIL. JADRAN VRABEC ThET Molecular Simulation Strategies for Large Scale Thermodynamic Data Generation Athens, 2. Sept. 2011 Gábor Rutkai Rolf Lustig Jadran Vrabec

Transcript of Molecular Simulation Strategies for Large Scale Thermodynamic … · 2017. 2. 6. ·...

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Molecular Simulation Strategies for

    Large Scale Thermodynamic Data

    Generation

    Athens, 2. Sept. 2011

    Gábor Rutkai

    Rolf Lustig

    Jadran Vrabec

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    R. Span, “Multiparameter Equations of State”, Springer, Berlin (2000)

    complete thermodynamic knowledge : ~10 substances

    For pure chemical substances…

    satisfactory knowledge :

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Equations of state for CO2 (Span and Wagner, 1996)

    0 ResF , , ,R T

    7

    0 0 0 0 0

    1 2 3 i i

    i 4

    , ln a a a ln a ln 1 exp n

    i i i i i7 34

    t d t d cRes

    i i

    i 1 i 8

    , a a exp

    i i39

    t d 2 2

    i i i i i

    i 35

    a exp ( ) ( )

    Ideal part:

    Residual part:

    Helmholtz Energy: T = 216 … 1100 K, p = 0 … 800 MPa

    i42

    b 2 2

    i i i

    i 40

    a exp C ( 1) D ( 1)

    Total:

    49 Parameters

    153 Exponents

    5 013 exp. Data

    TTc / c /

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Contribution of molecular simulation

    • powerful predictive capabilities (thermodynamic data)

    • works under any physical conditions

    • low cost

    Why is molecular simulation not a mainstream solution for

    thermodynamic data retrieval?

    • suitable molecular models

    • today’s MS software: only a few independent properties

    • new properties require implementation

    • development is impossible for an inexperienced user

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    • Cv

    Equilibrium thermodynamic properties

    particular thermodynamic property

    specific statistical mechanical ensembles or special techniques

    NVT NpT • Cp

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Approach

    For any thermodynamic property the underlying statistical

    mechanical ensemble is in principle irrelevant*.

    * H.W. Graben, J.R. Ray, Mol. Phys., 80, 1183-1193 (1993)

    NVT • Cp • Cv

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Project with ms2*(www.ms-2.de):

    • large set of thermodynamic properties from one NVT simulation

    • truly independent thermodynamic information

    • generation of an extensive dataset in an automatizable fashion

    * S. Deublein et al., Comp. Phys. Comm., 182, 2350-2367 (2011).

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    The fundamental equation

    (Helmholtz representation) (Massieu-Planck representation)

    dnpdVTdSdU dnT

    dVT

    pdU

    TdS

    1

    Legendre transformation

    dnpdVSdTdF dnT

    dVT

    p

    TUdd

    1

    (Energy representation) (Entropy representation)

    TF /

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Derivatives of the Massieu-Planck potential

    UV

    U

    2U2

    2

    V

    U

    3U3

    3

    V

    U

    TF /

    mn

    nmmn

    nmT

    T

    /1/1

    2

    2

    V

    U

    nU

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    ......n

    iajb

    iajb

    n

    n

    iajbn

    n

    r

    ur

    V

    U

    K. Meier and S. Kabelac, J. Chem. Phys., 124, 064104 (2006)

    How to Calculate ? nn VU /

    iajbiajb ru

    2

    )(

    1

    )(

    11

    1

    13

    1

    iajb

    ijiajb

    iajb

    iajb

    iajb

    jM

    b

    iM

    a

    N

    ij

    N

    i rr

    ur

    VV

    Up

    rr

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Derivatives of the Massieu-Planck potential

    TF /

    mn

    nmmn

    nmT

    T

    /1/1

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Derivatives of the Massieu-Planck potential

    011 Tp 10TU 10011 TH

    20vC

    0201

    2

    110120

    1

    1

    pC

    20

    2

    11010201

    2 121Tw

    21101

    2

    2002

    110102

    //

    /

    TT

    TVJT

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    *T. Merker, J. Vrabec and H. Hasse, Fluid Phase Equilib., submitted (2011)

    6CLJ united-atom model*

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    EOSEOSsim HHH /100

    EoS: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    • ms2 (MD, MC)

    • 20 h (8 “nehalem” core per simulation)

    • automatized (no user interaction)

    • T = 500 K

    • ρ = 6.35 – 8.0 mol L-1

    • 40 state points

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane T = 500 K

    EoS: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    EoS: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

    T = 500 K

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    EoS: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

    T = 500 K

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    EoS: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

    T = 500 K

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    EoS: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

    T = 500 K

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    EoS: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

    T = 500 K

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    EoS: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

    T = 500 K

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    EoS: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

    T = 500 K

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    EoS: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

    T = 500 K

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    EoS: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

    T = 500 K

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    ...,,,,/100 pvEOSEOSsim CCHXXXX

    H %5.1

    EoS: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

    U %6.1

    VC %8.0

    pC %2.3

    w %7.5

    p %8.2

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Conclusion

    • Good cyclohexane potential model

    • Apporach is feasible for EoS development

    • Large set of independent thermodynamic properties

    • From a single NVT simulation per state point

    • Execution of NVT simulations is well automatizable

    • Computational cost is an additional pair potential evaluation

    for each volume derivative order

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Thank you for listening!

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Derivative with respect to the Temperature

    NVTZTF ln

    V

    NVT

    NVT

    NVT

    V

    NVT

    V T

    Z

    ZTZ

    T

    ZT

    T

    FS

    1ln

    ln

    2T

    UTNVTZln

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Derivative with respect to the Temperature

    NVTZTTF ln NVTZln

    V

    NVT

    NVTV

    NVT

    V

    Z

    Z

    Z

    1ln

    NN

    NN

    V

    NVT

    NVTV dUVN

    dUUVNZ

    Zr

    r

    exp

    !

    1

    exp!

    1

    1

    NNNVT dUVN

    Z r exp!1

    NNNVT dUUVN

    Zr

    exp

    !

    1

    U

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Derivative with respect to the Temperature

    NVTZTF ln NVTZln

    V

    NVT

    VT

    Z

    T

    )/1(

    ln

    )/1(

    U

    V

    NVTNVT

    V T

    ZTZ

    T

    F

    lnln

    2T

    U

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Pair potentials

    612

    4iajbiajb

    iajbrr

    u

    LJ LRC (site-site cutoff):

    drr

    ur

    VN

    V

    U iajb

    rc

    3

    LRC

    3

    12 .........

    LRC

    n

    iajb

    n

    n

    r

    n

    n

    r

    ur

    V

    U

    c

    3

    RF

    RF

    12

    11

    c

    iajb

    iajb

    jbia

    iajbr

    r

    r

    qqu

    (Lennard-Jones potential) (reaction-field correction)