Molecular Simulation Strategies for Large Scale Thermodynamic … · 2017. 2. 6. · PROF. DR.-ING....

28
PROF. DR.-ING. HABIL. JADRAN VRABEC ThET Molecular Simulation Strategies for Large Scale Thermodynamic Data Generation Minneapolis, 18. Oct. 2011 Gábor Rutkai Monika Thol Roland Span Rolf Lustig Jadran Vrabec

Transcript of Molecular Simulation Strategies for Large Scale Thermodynamic … · 2017. 2. 6. · PROF. DR.-ING....

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Molecular Simulation Strategies for

    Large Scale Thermodynamic Data

    Generation Minneapolis, 18. Oct. 2011

    Gábor Rutkai

    Monika Thol

    Roland Span

    Rolf Lustig

    Jadran Vrabec

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    R. Span, “Multiparameter Equations of State”, Springer, Berlin (2000)

    complete thermodynamic knowledge : ~10 substances

    For pure chemical substances…

    satisfactory knowledge :

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Equations of state for CO2 (Span and Wagner, 1996)

    0 ResF , , ,R T

    70 0 0 0 0

    1 2 3 i i

    i 4

    , ln a a a ln a ln 1 exp n

    i i i i i

    7 34t d t d cRes

    i i

    i 1 i 8

    , a a exp

    i i

    39t d 2 2

    i i i i i

    i 35

    a exp ( ) ( )

    Ideal part:

    Residual part:

    Helmholtz Energy: T = 216 … 1100 K, p = 0 … 800 MPa

    i

    42b 2 2

    i i i

    i 40

    a exp C ( 1) D ( 1)

    Total:

    49 Parameters

    153 Exponents

    5 013 exp. Data

    τ =Tc / T δ = ρ / ρc

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Contribution of molecular simulation

    • powerful predictive capabilities (thermodynamic data)

    • works under any physical conditions

    • low cost

    Why is molecular simulation not a mainstream solution for

    thermodynamic data retrieval?

    • suitable molecular models

    • today’s MS software: only a few independent properties

    • new properties require implementation

    • development is impossible for an inexperienced user

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    • Cv

    Equilibrium thermodynamic properties

    particular thermodynamic property

    specific statistical mechanical ensembles or special techniques

    NVT NpT • Cp

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Approach

    For any thermodynamic property the underlying statistical

    mechanical ensemble is in principle irrelevant*.

    * H.W. Graben, J.R. Ray, Mol. Phys., 80, 1183-1193 (1993)

    NVT • Cp • Cv

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Project with ms2*(www.ms-2.de):

    • large set of thermodynamic properties from one NVT simulation

    • truly independent thermodynamic information

    • generation of an extensive dataset in an automatized fashion

    * S. Deublein et al., Comp. Phys. Comm., 182, 2350-2367 (2011).

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    The fundamental equation

    (Helmholtz representation) (Massieu-Planck representation)

    dnpdVTdSdU dnT

    dVT

    pdU

    TdS

    1

    Legendre transformation

    dnpdVSdTdF dnT

    dVT

    p

    TUdd

    1

    (Energy representation) (Entropy representation)

    TF /

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Derivatives of the Massieu-Planck potential

    EV

    E

    2E2

    2

    V

    E

    3E3

    3

    V

    E

    TF / mn

    nmmn

    nmT

    T/1

    /1

    2

    2

    V

    EnE

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    ......n

    iajb

    iajb

    n

    n

    iajbn

    n

    r

    er

    V

    E

    K. Meier and S. Kabelac, J. Chem. Phys., 124, 064104 (2006)

    How to Calculate ? nn VU /

    iajbiajb re

    2

    )(

    1

    )(

    11

    1

    13

    1

    iajb

    ijiajb

    iajb

    iajb

    iajb

    jM

    b

    iM

    a

    N

    ij

    N

    i

    resrr

    er

    VV

    Ep

    rr

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Derivatives of the Massieu-Planck potential

    TF / mn

    nmmn

    nmT

    T/1

    /1

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Derivatives of the Massieu-Planck potential

    011Tp 10TU 10011TH

    20vC

    0201

    2

    110120

    1

    1pC

    20

    2

    11010201

    2 121Tw

    2

    1101

    2

    2002

    110102

    //

    /

    TT

    TVJT

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    *T. Merker, J. Vrabec and H. Hasse, Fluid Phase Equilib., submitted (2011)

    Rigid 6CLJ united-atom model*

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    EOSEOSsim HHH /100

    EoS: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    • ms2 (MD, MC)

    • 20 h (8 “nehalem” core) per simulation

    • automatized (no user interaction)

    • T = 500 K and ρ = 6.35 – 8.0 mol L-1

    • ρ = 7.0 mol L-1 and T = 470 – 590 K

    • 2 x 40 state points

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    EoS1: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

    EoS2: S.G. Penoncello, et. al., Int. J. Thermophys., 16, 519-531 (1995).

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    EoS1: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

    EoS2: S.G. Penoncello, et. al., Int. J. Thermophys., 16, 519-531 (1995).

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    EoS1: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

    EoS2: S.G. Penoncello, et. al., Int. J. Thermophys., 16, 519-531 (1995).

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    EoS1: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

    EoS2: S.G. Penoncello, et. al., Int. J. Thermophys., 16, 519-531 (1995).

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    EoS1: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

    EoS2: S.G. Penoncello, et. al., Int. J. Thermophys., 16, 519-531 (1995).

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    EoS1: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

    EoS2: S.G. Penoncello, et. al., Int. J. Thermophys., 16, 519-531 (1995).

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    EoS1: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

    EoS2: S.G. Penoncello, et. al., Int. J. Thermophys., 16, 519-531 (1995).

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    EoS1: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

    EoS2: S.G. Penoncello, et. al., Int. J. Thermophys., 16, 519-531 (1995).

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    EoS1: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

    EoS2: S.G. Penoncello, et. al., Int. J. Thermophys., 16, 519-531 (1995).

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    EoS1: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

    EoS2: S.G. Penoncello, et. al., Int. J. Thermophys., 16, 519-531 (1995).

    Cyclohexane

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    ...,,,,/100 pvEOSEOSsim CCHXXXX

    H %5.1

    EoS: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

    U %6.1

    VC %8.0

    pC %8.2

    w %3.5

    p %0.2

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Conclusion

    • Good cyclohexane potential model

    • Approach is feasible for EoS development

    • Large set of independent thermodynamic properties

    • From a single NVT simulation per state point

    • Automatized execution for NVT simulations

    • Computational cost is an additional pair potential evaluation

    for each volume derivative order

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Thank you for listening!

    This project is funded by