Molecular phylogenetics and biogeography of the eastern .../menu/standa… · Molecular...

18
Molecular phylogenetics and biogeography of the eastern Asian–eastern North American disjunct Mitchella and its close relative Damnacanthus (Rubiaceae, Mitchelleae) WEI-PING HUANG 1,2 , HANG SUN 1 , TAO DENG 1 , SYLVAIN G. RAZAFIMANDIMBISON 4 , ZE-LONG NIE 1 * and JUN WEN 3 * 1 Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650204, China 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington DC, 20013-7012, USA 4 Bergius Foundation, The Royal Swedish Academy of Sciences and Department of Botany, Stockholm University, SE-10691, Stockholm, Sweden Received 25 April 2012; revised 23 July 2012; accepted for publication 12 September 2012 Mitchella is a small genus of the Rubiaceae with only two species. It is the only herbaceous semishrub of the family showing a disjunct distribution in eastern Asia and eastern North America, extending to Central America. Its phylogeny and biogeographical diversification remain poorly understood. In this study, we conducted phylogenetic and biogeographical analyses for Mitchella and its close relative Damnacanthus based on sequences of the nuclear internal transcribed spacer (ITS) and four plastid markers (rbcL, atpB-rbcL, rps16 and trnL-F). Mitchella is monophyletic, consisting of an eastern Asian M. undulata clade and a New World M. repens clade. Our results also support Michella as the closest relative to the eastern Asian Damnacanthus. The divergence time between the two intercontinental disjunct Mitchella species was dated to 7.73 Mya, with a 95% highest posterior density (HPD) of 3.14-12.53 Mya, using the Bayesian relaxed clock estimation. Ancestral area reconstructions suggest that the genus originated in eastern Asia. The semishrub Mitchella appears to have arisen from its woody ancestor in eastern Asia and then migrated to North America via the Bering land bridge in the late Miocene. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 171, 395–412. ADDITIONAL KEYWORDS: Bering land bridge – intercontinental disjunction. INTRODUCTION The well-known biogeographical disjunction between eastern Asia and eastern North America has attracted much attention from plant biologists not only because it exhibits a unique distribution pattern, but also because it offers an excellent opportunity to explore plant differentiation and evolution in allopatry (Bouf- ford & Spongberg, 1983; Hong, 1993; Wen, 1999, 2001; Wen et al., 2010). Fossil, molecular phylogenetic and geological data all indicate that this disjunct pattern originated multiple times in multiple areas throughout the Tertiary (Tiffney, 1985a, b; Wen, 1999). Much progress has been made concerning the evolution of this pattern (Wen, 1998, 2001; von Dohlen, Kurosu & Aoki, 2002; Dane et al., 2003; Fu et al., 2005; Wen et al., 2010). Molecular data have been employed extensively to estimate divergence times (Xiang et al., 2000; Nie et al., 2006a, 2010; Meng et al., 2008; Bremer & Eriksson, 2009) and to infer ancestral areas of the disjunct groups (Wen, 2000; Xiang & Soltis, 2001). However, few studies have examined the evolution of the disjunct pattern *Corresponding authors. E-mail: [email protected]; [email protected] Botanical Journal of the Linnean Society, 2013, 171, 395–412. With 4 figures © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 171, 395–412 395

Transcript of Molecular phylogenetics and biogeography of the eastern .../menu/standa… · Molecular...

Page 1: Molecular phylogenetics and biogeography of the eastern .../menu/standa… · Molecular phylogenetics and biogeography of the eastern Asian–eastern North American disjunct Mitchella

Molecular phylogenetics and biogeography of theeastern Asian–eastern North American disjunctMitchella and its close relative Damnacanthus(Rubiaceae, Mitchelleae)

WEI-PING HUANG1,2, HANG SUN1, TAO DENG1, SYLVAIN G. RAZAFIMANDIMBISON4,ZE-LONG NIE1* and JUN WEN3*

1Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy ofSciences, Kunming, Yunnan 650204, China2University of Chinese Academy of Sciences, Beijing 100049, China3Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution,Washington DC, 20013-7012, USA4Bergius Foundation, The Royal Swedish Academy of Sciences and Department of Botany, StockholmUniversity, SE-10691, Stockholm, Sweden

Received 25 April 2012; revised 23 July 2012; accepted for publication 12 September 2012

Mitchella is a small genus of the Rubiaceae with only two species. It is the only herbaceous semishrub of the familyshowing a disjunct distribution in eastern Asia and eastern North America, extending to Central America. Itsphylogeny and biogeographical diversification remain poorly understood. In this study, we conducted phylogeneticand biogeographical analyses for Mitchella and its close relative Damnacanthus based on sequences of the nuclearinternal transcribed spacer (ITS) and four plastid markers (rbcL, atpB-rbcL, rps16 and trnL-F). Mitchella ismonophyletic, consisting of an eastern Asian M. undulata clade and a New World M. repens clade. Our results alsosupport Michella as the closest relative to the eastern Asian Damnacanthus. The divergence time between the twointercontinental disjunct Mitchella species was dated to 7.73 Mya, with a 95% highest posterior density (HPD) of3.14-12.53 Mya, using the Bayesian relaxed clock estimation. Ancestral area reconstructions suggest that thegenus originated in eastern Asia. The semishrub Mitchella appears to have arisen from its woody ancestor ineastern Asia and then migrated to North America via the Bering land bridge in the late Miocene. © 2013 TheLinnean Society of London, Botanical Journal of the Linnean Society, 2013, 171, 395–412.

ADDITIONAL KEYWORDS: Bering land bridge – intercontinental disjunction.

INTRODUCTION

The well-known biogeographical disjunction betweeneastern Asia and eastern North America has attractedmuch attention from plant biologists not only becauseit exhibits a unique distribution pattern, but alsobecause it offers an excellent opportunity to exploreplant differentiation and evolution in allopatry (Bouf-ford & Spongberg, 1983; Hong, 1993; Wen, 1999,2001; Wen et al., 2010). Fossil, molecular phylogenetic

and geological data all indicate that this disjunctpattern originated multiple times in multiple areasthroughout the Tertiary (Tiffney, 1985a, b; Wen,1999). Much progress has been made concerning theevolution of this pattern (Wen, 1998, 2001; vonDohlen, Kurosu & Aoki, 2002; Dane et al., 2003; Fuet al., 2005; Wen et al., 2010). Molecular data havebeen employed extensively to estimate divergencetimes (Xiang et al., 2000; Nie et al., 2006a, 2010;Meng et al., 2008; Bremer & Eriksson, 2009) and toinfer ancestral areas of the disjunct groups (Wen,2000; Xiang & Soltis, 2001). However, few studieshave examined the evolution of the disjunct pattern

*Corresponding authors. E-mail: [email protected];[email protected]

bs_bs_banner

Botanical Journal of the Linnean Society, 2013, 171, 395–412. With 4 figures

© 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 171, 395–412 395

Page 2: Molecular phylogenetics and biogeography of the eastern .../menu/standa… · Molecular phylogenetics and biogeography of the eastern Asian–eastern North American disjunct Mitchella

in herbaceous taxa (Tiffney, 1985a, b; Wen, 1999; Nieet al., 2005).

Mitchella L. is a herbaceous semishrub genus in themostly tropical and woody family Rubiaceae thatexhibits the classical intercontinental disjunctionbetween eastern Asia and eastern North America (Li,1952). Mitchella is composed of only two species: theeastern Asian M. undulata Siebold & Zucc. and theeastern North American M. repens L., which extends toCentral America (Li, 1952; Rogers, 2005; Chen et al.,2011). This genus can be distinguished from theherbaceous genera of Rubiaceae by a combinationof several characters, including its rather longunbranched primary shoots, paired flowers on a shortpeduncle with the base of the calyx fused and two reddrupaceous fused fruits with campylotropous ovulesinserted in the upper part of the septum (Robbrecht,Puff & Igersheim, 1991; Yamazaki, 1993; Rogers, 2005;Chen et al., 2011). Both species are evergreen. TheAsian M. undulata grows mostly on forest floors inTaiwan, Korea, Japan and southeastern China (Yama-zaki, 1993; Liu & Yang, 1998; Chen et al., 2011), andthe eastern North American M. repens occurs in moistor dry woods, along stream banks and on sandy slopesthroughout eastern North America southwards toMartin County, Florida, with disjunct extensions toCentral America (Li, 1952; Rogers, 2005) (Fig. 1).

Although the generic status of Mitchella hasnever been questioned, its phylogenetic position in

Rubiaceae has been controversial. Mitchella has beenplaced in various tribes, such as ‘Guettardidae’(Lindley, 1846), Anthospermeae (Hooker, 1873), Chio-cocceae (Baillon, 1880) and Paederieae (Puff, 1982).Based on a detailed morphological study, Robbrechtet al. (1991) pointed out that Mitchella is close toDamnacanthus Gaertn.f., a shrubby genus compris-ing about 13 species with evergreen leaves and awide distribution in the understorey of natural laurelforests of south China, Taiwan, Japan, Korea,Vietnam, Laos, Myanmar and Assam, India (Yama-zaki, 1993; Liu & Yang, 1998; Chen et al., 2011). Aunique characteristic of Damnacanthus is hetero-phylly associated with sympodial growth and pairedthorns (Robbrecht et al., 1991; Naiki & Nagamasu,2003, 2004). Recent molecular phylogenetic studiesalso support the close relationships between Mitchellaand Damnacanthus (Andersson & Rova, 1999;Bremer & Manen, 2000; Razafimandimbison, Rydin &Bremer, 2008). A new tribe Mitchelleae Razafim. &B.Bremer, including only these two genera, wasestablished by Razafimandimbison et al. (2008),which belongs to the subfamily Rubioideae.

The New World M. repens and the eastern AsianM. undulata are morphologically similar (Robbrechtet al., 1991). No molecular studies have focusedparticularly on this genus and almost all previousmolecular analyses have included only one speciesof Mitchella. Xiang et al. (2000) suggested the

Mitchella undulata Mitchella repens

Figure 1. Distribution map of Mitchella showing disjunction between eastern Asia and eastern North America (includingCentral America).

396 W-P. HUANG ET AL.

© 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 171, 395–412

Page 3: Molecular phylogenetics and biogeography of the eastern .../menu/standa… · Molecular phylogenetics and biogeography of the eastern Asian–eastern North American disjunct Mitchella

divergence between eastern Asian and easternNorth American species of Mitchella at about5.89 ± 2.38 Mya based on rbcL sequences. Becausetaxa once suspected as sister disjunct species basedon morphological similarities may not represent realsister species (Wen, 1999), whether the two species ofMitchella are phylogenetically closest to each other orgenetically distant from each other needs to be exam-ined in a broader phylogenetic framework, especiallywith a comprehensive sampling scheme including itsclose relative Damnacanthus.

Here, we used four plastid fragments (atpB-rbcL,rbcL, trnL-F and rps16) and the nuclear ribosomalinternal transcribed spacer (ITS) region to addressthe following questions. (1) Is Mitchella a mono-phyletic genus? (2) What is the phylogenetic relation-ship between Mitchella and Damnacanthus? (3) Whatare the most likely hypotheses to explain the biogeo-graphical disjunction of Mitchella between easternAsia and the New World? The molecular markersselected and most sequences in the dating analysishave been used widely in previous studies inRubiaceae (e.g. Bremer, Andreasen & Olsson, 1995;Andersson & Rova, 1999; Rova et al., 2002; Church,2003; Razafimandimbison, Kellogg & Bremer, 2004;Nie et al., 2005; Razafimandimbison et al., 2008,2009; Bremer & Eriksson, 2009).

MATERIAL AND METHODSTAXON SAMPLING

The voucher information for all the materials andGenBank accessions are presented in Table 1. Oursampling included both species of Mitchella:M. repens from North and Central America (sevenaccessions) and M. undulata from eastern Asia (threeaccessions). Damnacanthus is supported to be theclosest relative of Mitchella (Robbrecht et al., 1991;Razafimandimbison et al., 2008) and eight of the 13species were sampled in this study. To test the mono-phyly of Mitchella with all available data, sequencesof two Mitchella accessions from GenBank were com-bined with our dataset (Table 1). Based on Razafi-mandimbison et al. (2008), five species of Morindeaeand three species from Gaertnereae (sequences fromGenBank) were chosen as outgroup taxa in the phy-logenetic analysis (Table 1).

DNA EXTRACTION, AMPLIFICATION AND SEQUENCING

Total DNA of field-collected material was extractedfrom silica gel-dried leaf tissue using the Plant TotalDNA Extraction Kit (BioTeKe, Beijing, China). Iso-lated DNA was amplified and sequenced followingRydin et al. (2008) for the atpB-rbcL spacer, Bremeret al. (1995) for rbcL, Oxelman et al. (1997) for rps16,

Razafimandimbison & Bremer (2002) and Razafi-mandimbison, Kellogg & Bremer (2004) for ITS andRazafimandimbison & Bremer (2002) for trnL-F. Allpolymerase chain reactions (PCRs) were run in aPTC-100 thermocycler (MJ Research, Ramsey, MN,USA). PCR products were purified using an agarosegel DNA purification kit (Takara, Shiga, Japan), fol-lowing the manufacturer’s instructions. Sequencingwas performed with BigDye Terminator 3.1 (AppliedBiosystems, Foster City, CA, USA) on an ABI PRISM3730 Sequencer using the same primers as employedfor the PCR amplifications. All sequences were ana-lysed and assembled with Sequencher ver.4.14 (GeneCode, Ann Arbor, MI, USA).

PHYLOGENETIC ANALYSES

The computer program CLUSTALX (Thompson et al.,1997) was used for an initial alignment of all thesequences, followed by manual alignment usingBioEdit (Hall, 1999). All datasets were analysedunder maximum parsimony (MP) with PAUP 4.0b10(Swofford, 2003) and Bayesian inference (BI) withMrBayes 3.1.2 (Huelsenbeck & Ronquist, 2001). Forthe MP analyses, we used heuristic searches withtree bisection–reconnection (TBR) branch swapping,MULTREES option on and 1000 replicates of randomtaxon addition. All characters were unordered andequally weighted, and gaps were treated as missingdata in the analyses. Bootstrap tests of the data used1000 pseudoreplicates to evaluate clade support.

For the Bayesian analyses, the best-fitting modelsof sequence evolution for the plastid and ITS datasetswere chosen by MrModeltest v. 3.7 (Nylander, 2004)under the Akaike information criterion (Akaike,1973). Bayesian analyses were conducted underfour independent Markov chain runs for 10 millionMetropolis-coupled generations, sampling trees every1000 generations. The first 10% of trees were dis-carded as burn-in (average split deviations betweenparallel runs < 0.01). In the combined plastid and ITSanalyses, we set the matrices into two unlinked par-titions (the plastid data and the ITS data). All Baye-sian analyses were run twice with random startingtrees, and a consensus tree was constructed using thesaved trees by the two independent runs. Clades withposterior probabilities (PPs) over 95% were regardedas strongly supported.

DIVERGENCE TIME ESTIMATION

After assessing the sequences generated, and thoseavailable from GenBank, we chose to use the com-bined ITS, atpB-rbcL, rbcL, rps16 and trnL-F data toestimate the divergence time of Mitchella between theNew World and eastern Asia. A likelihood ratio test

PHYLOGENY AND BIOGEOGRAPHY OF MITCHELLA 397

© 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 171, 395–412

Page 4: Molecular phylogenetics and biogeography of the eastern .../menu/standa… · Molecular phylogenetics and biogeography of the eastern Asian–eastern North American disjunct Mitchella

Tab

le1.

Vou

cher

info

rmat

ion

and

Gen

Ban

kac

cess

ion

sof

the

taxa

use

din

the

phyl

ogen

etic

stu

dy

Taxo

nL

ocal

ity

Vou

cher

info

rmat

ion

rbcL

rps1

6at

pB-r

bcL

trn

L-F

ITS

App

un

iagu

atem

alen

sis

Don

n.S

m.

––

AJ2

8859

31A

M94

5306

2A

J234

0091

AM

9453

322

AM

9451

912

Cae

losp

erm

um

mon

tico

laB

aill

.ex

Gu

illa

um

in–

–A

F33

1644

3A

F00

1438

4A

M94

5221

2A

M94

5334

2A

M94

5194

2

Dam

nac

anth

us

giga

nte

us

(Mak

.)N

akai

Ch

ina,

Sic

hu

anN

ie20

93(K

UN

)JX

4124

57JX

4124

37JX

4123

95JX

4123

74JX

4124

16C

hin

a,Ji

angx

iX

ie42

8(K

UN

)JX

4124

58JX

4124

38JX

4123

96JX

4123

75JX

4124

17D

amn

acan

thu

sh

enry

i(H

.Lév

.)H

.S.L

oC

hin

a,Y

un

nan

Nie

3546

(KU

N)

JX41

2459

JX41

2439

JX41

2397

JX41

2376

JX41

2418

Ch

ina,

Yu

nn

anN

ie39

41(K

UN

)JX

4124

60–

JX41

2398

JX41

2377

JX41

2419

Dam

nac

anth

us

ind

icu

sC

.F.G

aert

nC

hin

a,Ji

angx

iH

uan

g05

4(K

UN

)JX

4124

61JX

4124

40JX

4123

99JX

4123

78JX

4124

20C

hin

a,Ji

angx

iH

uan

g04

2(K

UN

)JX

4124

62JX

4124

41JX

4124

00JX

4123

79JX

4124

21D

amn

acan

thu

sla

bord

ei(H

.Lév

.)H

.S.L

oC

hin

a,H

un

anZ

han

g48

4(K

UN

)JX

4124

63JX

4124

42JX

4124

01JX

4123

80JX

4124

22D

amn

acan

thu

sm

acro

phyl

lus

Sie

bold

exM

iq.

Ch

ina,

Gu

izh

ouN

ie22

41(K

UN

)JX

4124

64JX

4124

43JX

4124

02JX

4123

81JX

4124

23

Ch

ina,

Zh

ejia

ng

Den

g10

9(K

UN

)JX

4124

65JX

4124

44JX

4124

03JX

4123

82JX

4124

24C

hin

a,Z

hej

ian

gN

ie22

40(K

UN

)JX

4124

66JX

4124

45JX

4124

04JX

4123

83JX

4124

25D

amn

acan

thu

sm

ajor

Sie

b.&

Zu

cc.

Ch

ina,

Zh

ejia

ng

Den

g10

8(K

UN

)JX

4124

67JX

4124

46JX

4124

05JX

4123

84JX

4124

26D

amn

acan

thu

sof

fici

nar

um

C.C

.Hu

ang

Ch

ina,

Sic

hu

anX

ie42

6(K

UN

)JX

4124

68JX

4124

47JX

4124

06JX

4123

85JX

4124

27D

amn

nca

nth

us

han

anen

sis

(Lo)

Lo

exY.

Z.

Ru

anC

hin

a,H

ain

anN

ie39

67(K

UN

)JX

4124

69JX

4124

48JX

4124

07JX

4123

86JX

4124

28

Gae

rtn

era

phyl

lose

pala

Bak

er–

–A

M11

7227

5A

M11

7307

5A

M94

5226

2D

Q66

2139

6A

M94

5199

2

Gae

rtn

era

sp.

––

AM

9452

882

AM

9453

112

AM

9452

272

AM

9453

402

AM

9452

002

Gyn

och

thod

esco

riac

eaB

lum

e–

–A

J288

6031

AM

1173

115

AM

9452

192

AJ8

4740

77A

M94

5192

2

Gyn

och

thod

essp

.–

–A

M94

5284

2A

M94

5307

2A

M94

5220

2A

M94

5333

2A

M94

5193

2

Mit

chel

lare

pen

sL

.U

SA

,S

outh

Car

olin

aW

en10

020

(US

)JX

4124

70JX

4124

49JX

4124

08JX

4123

87JX

4124

29U

SA

,M

aryl

and

Wen

1010

2(U

S)

JX41

2471

JX41

2450

JX41

2409

JX41

2388

JX41

2430

US

A,

Del

awar

eW

en10

421

(US

)JX

4124

72JX

4124

51JX

4124

10JX

4123

89JX

4124

31C

anad

a,Q

ueb

ecW

en10

478

(US

)JX

4124

73JX

4124

52JX

4124

11JX

4123

90JX

4124

32M

exic

oB

reed

love

etal

.32

460

(ME

XU

)JX

4124

74JX

4124

53JX

4124

12JX

4123

91JX

4124

33

Mex

ico

Pat

ters

onan

dM

ayfi

eld

7369

(ME

XU

)JX

4124

75JX

4124

54JX

4124

13JX

4123

92JX

4124

34

––

Z68

8058

AF

0014

414

AM

9452

232

AM

9453

372

AF

0720

199

Mit

chel

lau

nd

ula

taS

ieb.

&Z

ucc

.C

hin

a,Z

hej

ian

gD

eng

081

(KU

N)

JX41

2476

JX41

2455

JX41

2414

JX41

2393

JX41

2435

Ch

ina,

Zh

ejia

ng

Den

g08

5(K

UN

)JX

4124

77JX

4124

56JX

4124

15JX

4123

94JX

4124

36–

–A

F19

0445

10–

AJ2

3401

61–

AB

1035

3311

AB

1035

3211

Mor

ind

aci

trif

olia

L.

––

AJ3

1844

812A

J320

07812

AJ2

3401

31A

F15

2616

13A

Y76

2843

14

Pag

amea

guia

nen

sis

Au

bl.

––

AM

9452

902

AF

0027

444

AM

9452

292

AM

9453

422

AF

3338

4615

ITS

,in

tern

altr

ansc

ribe

dsp

acer

.S

equ

ence

sob

tain

edfr

omot

her

stu

dies

:1 B

rem

er&

Man

en,

2000

;2 R

azafi

man

dim

biso

net

al.,

2008

;3 L

.A

nde

rsso

n,

un

publ

ish

ed;

4 An

ders

son

&R

ova,

1999

;5 B

rem

er&

Eri

ksso

n,2

009;

6 Bac

klu

nd,

Bre

mer

&T

hu

lin

,200

7;7 A

leja

ndr

o,R

azafi

man

dim

biso

n&

Lie

de-S

chu

man

n,2

005;

8 Bre

mer

,199

6;9 N

epok

roef

f,B

rem

er&

Syt

sma,

1999

;10X

ian

get

al.,

2000

;11

Yoko

yam

a,F

uku

da&

Tsu

kaya

,20

03;

12N

ovot

ny

etal

.,20

02;

13R

ova

etal

.,20

02;

14A

.D

.P

rou

jan

sky

and

D.

L.

Ste

rn,

un

publ

ish

ed;

15M

alco

mbe

r,20

02

398 W-P. HUANG ET AL.

© 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 171, 395–412

Page 5: Molecular phylogenetics and biogeography of the eastern .../menu/standa… · Molecular phylogenetics and biogeography of the eastern Asian–eastern North American disjunct Mitchella

rejected the molecular clock hypothesis (P < 0.05). Wethus used a Bayesian relaxed method implementedin BEAST 1.7.1 (Drummond & Rambaut, 2007) toestimate the divergence times. With our focus onthe divergence time of genus Mitchella, and with theconsideration of minimizing the influence from topo-logical uncertainties in our analyses on dating ofthe phylogeny, we excluded some Damnacanthustaxa. To allow multiple fossil calibrations in a broadphylogenetic framework of Rubiaceae, sequences of63 additional taxa were obtained from GenBank(see Appendix). Gelsemium sempervirens (L.) J.St.-Hil. (Gelsemiaceae) was selected as the outgroup inour dating analysis.

We used the GTR model of nuclear substitution,gamma distribution for four rate categories, uncorre-lated log-normal relaxed clock model and Yule processtree prior in the Bayesian dating analyses. Two sepa-rate BEAST runs were set to perform 50 milliongenerations with 10% burn-in, and each run waschecked for convergence with Tracer v1.5 (http://tree.bio.ed.ac.uk/software/tracer/).

Fossils of Rubiaceae have been widely used to esti-mate the divergence time of the family or certainclades in the family (Nie et al., 2005; Antonelli et al.,2009; Bremer & Eriksson, 2009; Smedmark, Eriksson& Bremer, 2010). Although there have been manydescribed leaves and pollen fossils of Rubiaceae sincethe Cretaceous and Palaeocene (Graham, 2009), themost convincing fossil of Rubiaceae is from Cephalan-thus L., which was reported from the late Eocene tothe Pliocene in almost 20 fossil sites (Dorofeev, 1960,1963; Friis, 1985; Mai & Walther, 1985; Antonelliet al., 2009). We followed Antonelli et al. (2009) inusing the oldest fossil of this genus to place aminimum age constraint of 33.9 Ma, which was fixedby using the ending point of the geological epoch towhich the fossil belongs as the stem age of Cephalan-thus. The pollen fossils of Faramea Aubl. have beenreported from the late Eocene (~34–40 Ma) inPanama to the Pliocene in Veracruz, Mexico (Graham,2009); we thus used 37Ma, the mean age of the lateEocene, to set a minimum age of the Faramea stemnode. Saenger (1998) reported two pollen fossil ages ofScyphiphora C.F.Gaertn.: 16 Ma from Japan and23 Ma from the Marshall Islands. Scyphiphora is theonly extant genus of Rubiaceae that belongs to man-grove vegetation (Bremer & Eriksson, 2009), and itspollen characters are well defined and unique inRubiaceae. We thus used 23 Ma as a minimum ageprior for the Scyphiphora stem node.

Morinda chinensis Shi, Liu & Jin was recentlydescribed as a well-preserved fossil dated back to thelate early to the early late Eocene (Shi et al., 2012).This fossil has a head-shaped infructescence (multiplefruits or syncarps), which is developed from a capitu-

lum composed of about 20–30 flowers, the fruits ofwhich are fused into one unit (Shi et al., 2012), andthese characters fit well with Morinda. Shi et al.(2012) argued that, based on its shape and number ofsimple fruits of the infructescence, the fossil fruitshould be placed in Morinda section Roioc DC.However, the authors also point out that its infruct-escence contains fewer simple fruits than otherspecies of this section. Molecular phylogenetic analy-sis also suggests that Morinda is paraphyletic(Razafimandimbison et al., 2009). As the phylogeneticposition of this species is unclear, we used this fossilto calibrate the stem age of Morinda with the priorset to 44.5 + 3 Ma, between 40.6 and 48.4 Ma (lateearly Eocene–early late Eocene).

Four fossils were selected as calibration points inour analyses, three of which (Cephalanthus, Farameaand Scyphiphora) were the same as in Bremer &Eriksson (2009). We used the new fossil to calibratethe stem age of Morinda to enhance the accuracy forthe dating of Mitchella, because these two generabelong to the sister tribes Morindeae and Mitchelleae,respectively (Razafimandimbison et al., 2009). To rootthe tree, 78 Ma was enforced as the split timebetween Rubiaceae and other Gentianales, based onBremer, Friis & Bremer (2004), who used a broadsampling of asterids and multiple fossils.

BIOGEOGRAPHICAL ANALYSES

We defined two areas of endemism to assess thehistorical biogeography of the Mitchella clade, easternAsia (A) and North America to Central America (B),based on the extant distributions of the species in theBayesian tree and geological history. Although manyanalyses on the disjunct taxa (Baird et al., 2010; Nieet al., 2010; Xu et al., 2010) have used dispersal–vicariance analysis (DIVA; Ronquist, 1996) to inferancestral distributions, DIVA requires fully bifurcatedtrees. Because our Bayesian trees were not fullyresolved, we used RASP 1.1 (Yu, Harris & He, 2011),which implements the S-DIVA (statistical dispersal–vicariance analysis) method (Yu, Harris & He, 2010)and allows uncertainties in the phylogenetic trees. Weused Bayesian trees from the phylogenetic analyses(10 000 trees, excluding the remote outgroup of Gaer-tnereae) as input for S-DIVA. The condensed tree wascomputed using these 9000 trees (excluding theburn-in 1000 trees); the ‘maxarea’ was set to two andstate frequencies were estimated.

RESULTS

The statistics of the sequences are shown in Table 2.The ITS dataset had the highest percentage of poten-tially parsimony informative (PI) sites (21.16%),

PHYLOGENY AND BIOGEOGRAPHY OF MITCHELLA 399

© 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 171, 395–412

Page 6: Molecular phylogenetics and biogeography of the eastern .../menu/standa… · Molecular phylogenetics and biogeography of the eastern Asian–eastern North American disjunct Mitchella

although ITS was the shortest of the fragments. Asthe individual plastid markers had limited PI (5.31%–6.05%, Table 2) and generated unresolved trees in ourseparate analyses, we combined these four regions toreconstruct a combined plastid phylogeny. As therewere no statistically supported conflicts of the ITSand plastid trees, our discussion is based on resultsfrom concatenated plastid and ITS data. The MP andBI analyses produced similar results, and only theBayesian tree, with parsimony bootstrap (PB) andBayesian PPs, is presented in Fig 2.

Mitchella was strongly supported as monophyletic(PP = 1.00, PB = 87%; Fig. 2) with two well-supportedgroups: the New World M. repens (PP = 1.00, PB =98%) and the eastern Asian M. undulata (PP = 1.00,PB = 92%). In all analyses, tribe Mitchelleae (Mitch-ella and Damnacanthus) was supported as mono-phyletic (PP = 1.00, PB = 100%). In Damnacanthus,four lineages were recognizable with strong support(Fig. 2): (1) D. giganteus Nakai, D. labordei (H.Lév.)H.S.Lo, D. officinarum C.C.Huang and D. macrophyl-lus Siebold ex Miq. (accessions of Nie2241 andNie2240); (2) D. henryi (H.Lév.) H.S.Lo and D. hain-anensis (H.S.Lo) Y.Z.Ruan (PP = 1.00, PB = 100%); (3)D. macrophyllus Deng109 and D. major Siebold &Zucc. (PP = 1.00, PB = 100%); and (4) the two acces-sions of D. indicus C.F.Gaertn.

The chronogram and estimated divergence timesfrom the dating analyses at the family level areshown in Fig. 3. The combined tree resolvedRubiaceae into three major lineages, formally recog-nized as subfamilies Cinchonoideae, Ixoroideae andRubioideae. The divergence between the easternNorth American and the eastern Asian species wasestimated at 7.33 Ma in the late Miocene, with a 95%highest posterior density (HPD) of 3.14-12.53 Ma,covering a period from the late–middle Miocene tothe Pliocene. The S-DIVA analyses clearly inferred

eastern Asia as the ancestral area of Mitchella(Fig. 4).

DISCUSSIONPHYLOGENETIC RELATIONSHIPS

Our results based on the combined analysis of plastidand nuclear data support the monophyly of Mitchella(Fig 2), which comprises two widely disjunct species:M. undulata from eastern Asia and M. repens fromeastern North America extending to Central America.These two species share many features, such as acreeping habit with dark evergreen leaves and rootingat the nodes (Rogers, 2005; Chen et al., 2011), andusually heterostylous flowers (i.e. some individualshave exserted stamens and an included style,whereas others possess included stamens and anexserted style) (Blaser, 1954; Ganders, 1975; Hicks,Wyatt & Meagher, 1985; Yamazaki, 1993; Chen et al.,2011). These two species are morphologically sosimilar that M. undulata has sometimes been reducedto infraspecific rank as M. repens var. undulata (Sieb.& Zucc.) Makino (Makino, 1909; Robbrecht et al.,1991). In spite of the low level of morphological vari-ation, molecular results support a clear separation ofthe eastern Asian and the New World clades (Fig. 2).Nevertheless, minor morphological and phenologicaldifferences can be observed between them. Mitchellarepens usually has leaves obtuse at the apex andentire margins, and flowers in April to June (Miller &Miller, 2005; Rogers, 2005), whereas M. undulata hasleaves acuminate to rounded at the apex and some-times undulate at the margins, and usually flowers inJune to August (Makino, 1909; Yamazaki, 1993; Liu &Yang, 1998; Chen et al., 2011).

Our results also strongly support Mitchella asthe closest relative of Damnacanthus (PP = 1.00,

Table 2. Sequence characteristics of Mitchella and its relatives used in this study

ITS rbcL rps16 atpB-rbcL trnL-F Plastid Plastid + ITS

Length of aligned matrices(bp)

534 1318 985 694 1103 4100 4634

Number of potentiallyparsimony-informativecharacters (PICs)

113 70 59 42 59 230 343

Percentage of potentiallyparsimony-informativesites

21.16 5.31 5.99 6.05 5.35 5.61 7.40

Retention index 0.7789 0.8079 0.9160 0.8968 0.9167 0.8466 0.8098Consistency index 0.7500 0.7706 0.9346 0.8807 0.9353 0.8500 0.8100Best tree length 352 170 153 109 170 618 979

ITS, internal transcribed spacer.

400 W-P. HUANG ET AL.

© 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 171, 395–412

Page 7: Molecular phylogenetics and biogeography of the eastern .../menu/standa… · Molecular phylogenetics and biogeography of the eastern Asian–eastern North American disjunct Mitchella

PB = 100%, Fig. 2) and confirm the monophyly of tribeMitchelleae as proposed by Razafimandimbison et al.(2008). Baillon (1880) first suggested the close affini-ties between Damnacanthus and Mitchella. Robbre-cht et al. (1991) further pointed out that Mitchellaand Damnacanthus were closely related based on adetailed morphological study. Recently, moleculardata supported the close relationship of Mitchella andDamnacanthus (Bremer, 1996; Andersson & Rova,1999; Bremer & Manen, 2000; Razafimandimbisonet al., 2008, 2009). The two genera share a numberof morphological characters: campylotropous (rarelyseen in other genera of Rubiaceae), pitted endocarp,

red syncarpous fruits, fused two flowers with eachsole flower having four carpels, placenta inserted inthe upper part of the septum and chromosomenumber of 2n = 22 (Robbrecht et al., 1991).

Robbrecht et al. (1991) also stressed differences invarious important character states which support theseparation of Damnacanthus and Mitchella as twodistinct genera. Damnacanthus is a shrubby genuswith conspicuously heterophyllous evergreen leaves,whereas Mitchella spp. are small creeping semi-shrubs (herbaceous-like) with green uniform leaves.In Mitchella, lateral branches originate on older partsof rather long unbranched primary shoots, whereas a

Gynochthodes coriacea

Damnacanthus henryi Nie3941

Damnacanthus henryi Nie3546

Appunia guatemalensis

Mitchella undulata

Morinda citrifolia

Mitchella repens Wen10102

Damnacanthus indicus Huang042

Mitchella undulata Deng081

Gaertnera sp.

Gynochthodes sp.

Caelospermum monticola

Mitchella repens Wen10421

Damnacanthus giganteus Nie2093

Damnacanthus macrophyllus Nie2241

Mitchella repens Wen10020

Mitchella repens Patterson and Mayfield 7369

Damnacanthus officinarum Xie426

Pagamea guianensis

Damnacanthus macrophyllus Deng109

Damnacanthus major Deng108

Mitchella repens

Damnncanthus hananensis Nie3967

Damnacanthus indicus Huang054

Mitchella undulata Deng085

Mitchella repens Breedlove et al. 32460

Mitchella repens Wen10478

Damnacanthus labordei Zhang484

Damnacanthus giganteus Xie428

Gaertnera phyllosepala

Damnacanthus macrophyllus Nie2240

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.81

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

100

60

75

100

100

100

88

97

100

99

89 98

100

57

5392

100

10073

100

100

59

98

87

92

outgroup

easternNorth America

and Mexico

easternAsia

Figure 2. Bayesian majority-rule consensus tree of Mitchella, inferred from combined sequence data of four plastidmarkers (rbcL, atpB-rbcL, rps16 and trnL-F) and internal transcribed spacer (ITS). Bayesian posterior probabilities areshown above the branches and maximum parsimony (MP) bootstrap values are shown below.

PHYLOGENY AND BIOGEOGRAPHY OF MITCHELLA 401

© 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 171, 395–412

Page 8: Molecular phylogenetics and biogeography of the eastern .../menu/standa… · Molecular phylogenetics and biogeography of the eastern Asian–eastern North American disjunct Mitchella

0 Ma1020304050607080

Manostachya ternifolia

Exostema lineatum

Lasianthus lanceolatus

Damnacanthus indicus Huang054Damnacanthus giganteus Nie2093

Nauclea orientalis

Arcytophyllum aristatum

Mitchella repens Wen10020

Cinchona calisaya

Damnacanthus officinarum Xie426

Paederia bojeriana

Triainolepis_mandrarensis

Parapentas silvatica

Saprosma foetens

Joosia umbellifera

Scyphiphora hydrophyllacea

Ophiorrhiza elmeri

Theligonum cynocrambe

Mitchella undulata Deng081

Coussarea macrophylla

Faramea multiflora

Mitchella repens

Damnacanthus labordei Zhang484

Neurocalyx championii

Normandia neocaledonica

Jaubertia aucheri

Crossopteryx febrifuga

Anthospermum herbaceum

Damnacanthus henryi Nie3546

Gelsemium sempervirvens

Coccocypselum condalia

Kraussia floribunda

Cremaspora triflora

Sabicea diversifolia

Damnacanthus macrophyllus Nie2240

Sipanea biflora

Pavetta abyssinica

Cinchonopsis amazonica

Mitchella undulata

Psychotria amboniana

Cruckshanksia hymencodon

Colletoecema dewevrei

Hamelia papillosa

Mitchella repens Breedlove et al. 32460

Morinda citrifolia

Mitchella repens Wen10478

Gynochthodes coriacea

Prismatomeris beccariana

Cephalanthus salicifolius

Rondeletia odorata

Isertia occinea

Serissa foetida

Posoqueria latifolia

Mitchella repens Wen10421

Condaminea corymbosa

Damnncanthus hananensis Nie3967

Alberta magna

Emmenopterys henryi

Coussarea hydrangeifolia

Stilpnophyllum grandifolium

Mitchella repens Patterson & Mayfield 7369

Cosmibuena grandiflora

Knoxia platycarpa

Spermacoce hispida

Guettarda speciosa

Mitchella undulata Deng085

Mitchella repens Wen10102

Hymenodictyon floribundum

Kerianthera praeclara

Chiococca alba

Xanthophytum borneense

Placopoda virgata

Geophila obvallata

Ladenbergia amazonensis

Vangueria madagascariensis

Aulacocalyx asminiflora

Spiradiclis bifida

Cubanola domingensis

Dunnia sinensis

Declieuxia cordigera

Mitchelleae

Cinchonoideae

Ixoroideae

Rubioideae

Figure 3. Chronogram of Mitchella and its relatives from Rubiaceae based on the combined internal transcribed spacer(ITS), atpB-rbcL, rbcL, rps16 and trnL-F data estimated from BEAST. Calibration points are indicated with black stars.Node bars represent 95% highest posterior distribution of node age estimates.

402 W-P. HUANG ET AL.

© 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 171, 395–412

Page 9: Molecular phylogenetics and biogeography of the eastern .../menu/standa… · Molecular phylogenetics and biogeography of the eastern Asian–eastern North American disjunct Mitchella

regular sympodial branching pattern prevails inDamnacanthus. The two neighbouring flowers arefused by their ovaries in Mitchella, but separate inDamnacanthus. Mitchella has ‘compound’ drupes,whereas fruits of Damnacanthus are mostly paired,but have separate pedicels. The morphological dif-ferences mentioned above are consistent with ourmolecular results of the clear separation of Damna-canthus and Mitchella (Fig. 2). However, Razafimand-imbison et al. (2008) suggested that Damnacanthus isparaphyletic with Mitchella nested in it. Furtherstudies with complete sampling of Damnacanthusand further molecular data are needed to test therelationships between these two genera and tocircumscribe species of Damnacanthus.

BIOGEOGRAPHICAL DIVERSIFICATION OF MITCHELLA

Our dating results, calibrated with four fossils, aresimilar to those of Antonelli et al. (2009), but muchyounger than those of Bremer & Eriksson (2009). The

difference in the root age set may explain the differ-ence, as we set the root of the family at 78 Ma,whereas Bremer & Eriksson (2009) set 45 Ma as theminimum age prior for the family. The divergencetime between the New World M. repens and theeastern Asian M. undulata was estimated to be about7.33 Ma (95% HPD, 3.14-12.53 Ma) in the lateMiocene (Fig. 3). This estimate is similar to that ofXiang et al. (2000), which was 5.89 ± 2.38 Ma basedon the rbcL gene using an average synonymous sub-stitution rate of 22 species belonging to 11 plantgroups [Rs = (1.23 ± 0.128) ¥ 10-9 substitutions persite per year].

Wen et al. (2010) reported that the divergence timeof most Asian–North American temperate disjunctlineages is between 3 and 25 Ma. The divergence timeof Mitchella in our study is consistent with results ofother studies on eastern Asian and eastern NorthAmerican disjunct taxa dating back to the late Terti-ary to early Pleistocene (Wen, 2000; Dane et al., 2003;Nie et al., 2005; Baird et al., 2010).

AB

AB

Gynochthodes coriacea

Damnacanthus henryi Nie3941

Damnacanthus henryi Nie3546

Appunia guatemalensis

Mitchella undulata

Morinda citrifolia

Mitchella repens Wen10102

Damnacanthus indicus Huang042

Mitchella undulata Deng081

Gynochthodes sp.

Caelospermum monticola

Mitchella repens Wen10421

Damnacanthus giganteus Nie2093

Damnacanthus macrophyllus Nie2241

Mitchella repens Wen10020

Mitchella repens Patterson and Mayfield 7369

Damnacanthus officinarum Xie426

Damnacanthus macrophyllus Deng109

Damnacanthus major Deng108

Mitchella repens

Damnncanthus hananensis Nie3967

Damnacanthus indicus Huang054

Mitchella undulata Deng085

Mitchella repens Breedlove et al. 32460

Mitchella repens Wen10478

Damnacanthus labordei Zhang484

Damnacanthus giganteus Xie428

Damnacanthus macrophyllus Nie2240

Figure 4. Ancestral area reconstruction of Mitchella using statistical dispersal–vicariance (S-DIVA) in RASP: A, easternAsia; B, eastern North America and Central America.

PHYLOGENY AND BIOGEOGRAPHY OF MITCHELLA 403

© 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 171, 395–412

Page 10: Molecular phylogenetics and biogeography of the eastern .../menu/standa… · Molecular phylogenetics and biogeography of the eastern Asian–eastern North American disjunct Mitchella

The ancestors of modern eastern Asian–easternNorth American disjunct genera have been hypoth-esized to have originated in various areas andattained their present distribution via multiple path-ways. At least three hypotheses have been proposed:migration through the North Atlantic land bridges(Tiffney, 1985a); migration across the Bering landbridge (Tiffney, 1985b); and long-distance dispersal(Tiffney, 1985b; Wen, 1999; Wen et al., 2010). Ourbiogeographical analyses inferred the ancestral areaof Mitchella as eastern Asia (Fig. 2) with a divergencetime of the disjunction in the late Miocene (Fig. 3).The intercontinental disjunction of Mitchella is mostlikely to be explained as a migration from Asia toNorth America via the Bering land bridge. During thelate Miocene and early Pliocene, the Bering landbridge was available for floristic exchanges of temper-ate plants until about 3.5 Ma (Hopkins, 1967; Wen,1999).

The North Atlantic land bridge is a less likely routefor the Mitchella disjunction, because this routemostly contributed to the dispersal of more tropicalelements, and this floristic connection was no longerviable by the middle Miocene (Parks & Wendel, 1990;Tiffney & Manchester, 2001). Mitchella is a smallsemishrub with red drupes, which are often dispersedby small mammals over only short distances (Eriks-son & Bremer, 1991; Willson, 1993; Bremer & Eriks-son, 1992). Long-distance dispersal is thus consideredquite unlikely to explain the intercontinental disjunc-tion in Mitchella. We favour a hypothesis based on amigration scenario across the Bering land bridge,which has been proposed in a number of other tem-perate groups in the late Miocene and the Pliocene.For instance, Phryma L. (Phrymaceae) shows a clas-sical intercontinental disjunction between easternAsia and eastern North America, and was explainedby the Beringian migration in the late Miocenewith the divergence time estimated as 3.68 ± 2.25–5.23 ± 1.37 Ma (Nie et al., 2006a). Similar cases canalso be found in Penthorum L. (Xiang et al., 2000),Circaea L. (Xie et al., 2009), Saxifraga rivularis L.(Westergaard et al., 2010), Symplocarpus Salisb. (Nieet al., 2006b) and Astilbe Buch.-Ham. ex D.Don (Kimet al., 2009; Zhu et al., in press).

Mitchella mostly occupies the subtropical to tem-perate region, whereas most genera of Rubiaceae aredistributed in tropical regions (Ehrendorfer, Manen &Natali, 1994; Manen, Natali & Ehrendorfer, 1994;Bremer & Eriksson, 2009). However, some popula-tions of M. repens are found in Central America,which can be explained by a southward expansionfrom eastern North America, as accessions fromMexico are nested in the eastern North Americanclade (Fig. 2), although they are sister to the easternNorth American samples in the BEAST phylogenetic

tree, as shown in Fig. 4. Except for some M. repenspopulations from Central America, Mitchella has amore northern distribution than most Damnacanthusspp. (Chen et al., 2011). Our phylogenetic resultssuggest that Mitchella may have adapted to a coldclimate and evolved to the herbaceous life form fromits woody Damnacanthus-like ancestor (Fig. 2), asindicated by the woody basal stem of Mitchella. Pal-aeontological evidence suggests that, in the earlyTertiary, the Boreotropical flora was continuously dis-tributed across the north temperate zone (Leopold &MacGinitie, 1972; Wolfe, 1972; Hong, 1993; Graham,1972). With the global cooling in the late Tertiary,thermophilic plants, including Rubiaceae, movedsouthwards, except a few taxa, such as Mitchella,which most probably survived as relict herbaceouselements in the temperate regions of the NorthernHemisphere. This type of adaptation has also beenreported in other taxa, such as ParthenocissusPlanch., one of the few temperate genera of Vitaceae,which was most likely a derivative of the EoceneBoreotropical element (Nie et al., 2010).

ACKNOWLEDGEMENTS

This study was supported by grants from the NaturalSciences Foundation of China (NSFC 30970193 toZ.-L. Nie, 30828001 and 30625004 to J. Wen and T. Yi,40930209 and 31061160184 to H. Sun), the OneHundred Talents Program of the Chinese Academy ofSciences (2011312D11022 to H. Sun), the UnitedFund of the NSFC and Yunnan Natural Science Foun-dation (U1136601 to H. Sun) and the John D. andCatherine T. MacArthur Foundation to J. Wen, R. Reeand G. Mueller. Laboratory work was performed atand partially supported by the Laboratory of Analyti-cal Biology of the National Museum of NaturalHistory, Smithsonian Institution. Fieldwork in NorthAmerica was supported by the Small Grants Programof the National Museum of Natural History, theSmithsonian Institution. We thank the MEXU her-barium for loaning the sampled Mexican Mitchellarepens used in this study.

REFERENCES

Akaike H. 1973. Information theory and an extension ofthe maximum likelihood principle. In: Petrov BN, Csáki F,eds. Second International Symposium on InformationTheory, Vol. 1. Budapest: Akademiai Kiado Press, 267–281.

Alejandro GD, Razafimandimbison SG, Liede-Schumann S. 2005. Polyphyly of Mussaenda inferred fromITS and trnT-F data and its implication for generic limits inMussaendeae (Rubiaceae). American Journal of Botany 92:544–557.

404 W-P. HUANG ET AL.

© 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 171, 395–412

Page 11: Molecular phylogenetics and biogeography of the eastern .../menu/standa… · Molecular phylogenetics and biogeography of the eastern Asian–eastern North American disjunct Mitchella

Andersson L, Antonelli A. 2005. Phylogeny of the tribeCinchoneae (Rubiaceae), its position in Cinchonoideae, anddescription of a new genus, Ciliosemina. Taxon 54: 17–28.

Andersson L, Rova JHE. 1999. The rps16 intron and thephylogeny of the Rubioideae (Rubiaceae). Plant Systematicsand Evolution 214: 161–186.

Andersson L, Rova JHE, Guarin FA. 2002. Relationships,circumscription, and biogeography of Arcytophyllum(Rubiaceae) based on evidence from cpDNA. Brittonia 54:40–49.

Andreasen K, Baldwin BG, Bremer B. 1999. Phylogeneticutility of the nuclear rDNA ITS region in subfamily Ixoroi-deae (Rubiaceae): comparisons with cpDNA rbcL sequencedata. Plant Systematics and Evolution 217: 119–135.

Andreasen K, Bremer B. 1996. Phylogeny of the subfamilyIxoroideae (Rubiaceae). Opera Botanica Belgica 7: 119–138.

Antonelli A, Nylander JAA, Persson C, Sanmartín I.2009. Tracing the impact of the Andean uplift on Neotropi-cal plant evolution. Proceedings of the National Academy ofSciences 106: 9749.

Backlund M, Bremer B, Thulin M. 2007. Paraphyly ofPaederieae, recognition of Putorieae and expansion ofPlocama (Rubiaceae-Rubioideae). Taxon 56: 315–328.

Baillon H. 1880. Histoire des plantes 7. Paris: Hachette.Baird KE, Funk VA, Wen J, Weeks A. 2010. Molecular

phylogenetic analysis of Leibnitzia Cass.(Asteraceae: Mut-isieae: Gerbera-complex), an Asian–North American disjunctgenus. Journal of Systematics and Evolution 48: 161–174.

Blaser JLeC. 1954. The morphology of the flower and inflo-rescence of Mitchella repens. American Journal of Botany41: 533–539.

Boufford DE, Spongberg SA. 1983. Eastern Asian–easternNorth American phytogeographical relationships—a historyfrom the time of Linnaeus to the twentieth century. Annalsof the Missouri Botanical Garden 70: 423–439.

Bremer B. 1996. Phylogenetic studies within Rubiaceae andrelationships to other families based on molecular data.Opera Botanica Belgica 7: 33–50.

Bremer B, Andreasen K, Olsson D. 1995. Subfamilial andtribal relationships in the Rubiaceae based on rbcLsequence data. Annals of the Missouri Botanical Garden 82:383–397.

Bremer B, Eriksson T. 2009. Time tree of Rubiaceae:phylogeny and dating the family, subfamilies, and tribes.International Journal of Plant Sciences 170: 766–793.

Bremer K, Friis EM, Bremer B. 2004. Molecular phyloge-netic dating of asterid flowering plants shows early Creta-ceous diversification. Systematic Biology 53: 496–505.

Bremer B, Manen JF. 2000. Phylogeny and classification ofthe subfamily Rubioideae (Rubiaceae). Plant Systematicsand Evolution 225: 43–72.

Bremer B, Thulin M. 1998. Collapse of Isertieae, reestab-lishment of Mussaendeae, and a new genus of Sabiceeae(Rubiaceae); phylogenetic relationships based on rbcL data.Plant Systematics and Evolution 211: 71–92.

Chen T, Zhu H, Chen J, Taylor CM, Ehrendorfer F,Lantz H, Funston AM, Puff C. 2011. Rubiaceae. In: WuCY, Raven PH, eds. Flora of China, Vol. 19. Beijing: Science

Press and St. Louis, MO: Missouri Botanical Garden Press,93–217.

Church SA. 2003. Molecular phylogenetics of Houstonia(Rubiaceae): descending aneuploidy and breeding systemevolution in the radiation of the lineage across NorthAmerica. Molecular Phylogenetics and Evolution 27: 223–238.

Cortés-B R, Delprete PG, Motley TJ. 2009. Phylogeneticplacement of the tribe Retiniphylleae among the subfamilyIxoroideae (Rubiaceae). Annals of the Missouri BotanicalGarden 96: 61–67.

Delprete PG, Cortes-B R. 2004. A phylogenetic study of thetribe Sipaneeae (Rubiaceae, Ixoroideae), using trnL-F andITS sequence data. Taxon 53: 347–356.

Dane F, Lang P, Huang H, Fu Y. 2003. Intercontinentalgenetic divergence of Castanea species in eastern Asia andeastern North America. Heredity 91: 314–321.

von Dohlen CD, Kurosu U, Aoki S. 2002. Phylogeneticsand evolution of the eastern Asian–eastern North Americandisjunct aphid tribe, Hormaphidini (Hemiptera: Aphididae).Molecular Phylogenetics and Evolution 23: 257–267.

Dorofeev PI. 1960. New data about Tertiary floras of Kir-renskiy ravine on the Ob River. Doklady Akademii NaukSSSR 133: 211–213.

Dorofeev PI. 1963. Tertiary floras of Western Siberia.Moscow: Izd-vo Akademii nauk SSSR.

Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evo-lutionary analysis by sampling trees. BMC EvolutionaryBiology 7: 214.

Eriksson O, Bremer B. 1991. Fruit characteristics, lifeforms, and species richness in the plant family Rubiaceae.American Naturalist 138: 751–761.

Eriksson O, Bremer B. 1992. Pollination systems, dispersalmodes, life forms, and diversification rates in angiospermfamilies. Evolution 46: 258–266.

Ehrendorfer F, Manen JF, Natali A. 1994. cpDNA inter-gene sequences corroborate restriction site data for recon-structing Rubiaceae phylogeny. Plant Systematics andEvolution 190: 245–248.

Friis EM. 1985. Angiosperm fruits and seeds from theMiddle Miocene of Jutland, Denmark. Biologiske Skrifter24: 1–165.

Fu C, Kong H, Qiu Y, Cameron KM. 2005. Molecularphylogeny of the east Asian–North American disjunctSmilax sect. Nemexia (Smilacaceae). International Journalof Plant Sciences 166: 301–309.

Ganders FR. 1975. Fecundity in distylous and self-incompatible homostylous plants of Mitchella repens(Rubiaceae). Evolution 29: 186–188.

Graham, A. 1972. Outline of the origin and historical recog-nition of floristic affinities between Asia and eastern NorthAmerica. In: Graham A, ed. Floristics and Paleofloristics ofAsia and Eastern North America. Amsterdam: Elsevier,1–18.

Graham A. 2009. Fossil record of the Rubiaceae. Annals ofthe Missouri Botanical Garden 96: 90–108.

Groeninckx I, Dessein S, Ochoterena H, Persson C,Motley TJ, Kårehed J, Bremer B, Huysmans S, Smets

PHYLOGENY AND BIOGEOGRAPHY OF MITCHELLA 405

© 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 171, 395–412

Page 12: Molecular phylogenetics and biogeography of the eastern .../menu/standa… · Molecular phylogenetics and biogeography of the eastern Asian–eastern North American disjunct Mitchella

E. 2009. Phylogeny of the herbaceous tribe Spermacoceae(Rubiaceae) based on plastid DNA data. Annals of the Mis-souri Botanical Garden 96: 109–132.

Hall TA. 1999. BioEdit: a user-friendly biological sequencealignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

Hicks DJ, Wyatt R, Meagher TR. 1985. Reproductivebiology of distylous partridgeberry, Mitchella repens. Ameri-can Journal of Botany 72: 1503–1514.

Hong DY. 1993. Eastern Asian–North American disjunctionsand their biological significance. Cathaya 5: 1–39.

Hooker JD. 1873. Ordo LXXXIV. Rubiaceae. In: Bentham G,Hooker JD, eds. Genera plantarum ad exemplaria imprimisin herbariis kewensibus servata defirmmata. London: 2.7–151.

Hopkins DM. 1967. The Bering land bridge. Stanford, CT:Stanford University Press.

Huelsenbeck J, Ronquist F. 2001. MrBayes: Bayesianinference of phylogeny. Bioinformatics 17: 754–755.

Kainulainen K, Mouly A, Khodabandeh A, Bremer B.2009. Molecular phylogenetic analysis of the tribe Alberteae(Rubiaceae), with description of a new genus, Razafimand-imbisonia. Taxon 58: 757–768.

Kårehed J, Bremer B. 2007. The systematics of Knoxieae(Rubiaceae): molecular data and their taxonomic conse-quences. Taxon 56: 1051–1076.

Kårehed J, Groeninckx I, Dessein S, Motley TJ, BremerB. 2008. The phylogenetic utility of chloroplast and nuclearDNA markers and the phylogeny of the Rubiaceae tribeSpermacoceae. Molecular Phylogenetics and Evolution 49:843–866.

Khan SA, Razafimandimbison SG, Bremer B, Liede-Schumann S. 2008. Sabiceeae and Virectarieae(Rubiaceae, Ixoroideae): one or two tribes? New tribal andgeneric circumscriptions of Sabiceeae and biogeography ofSabicea s.l. Taxon 57: 7–23.

Kim S, Kim S, Shin H, Kim Y. 2009. Molecular phylogenyof Astilbe: implications for phylogeography and morphologi-cal evolution. Korean Journal of Plant Taxonomy 39: 35–41.

Leopold EB, MacGinitie HD. 1972. Development and affini-ties of Tertiary floras in the Rocky Mountains. In: GrahamA, ed. Floristics and Palaeofloristics of Asia and EasternNorth America. Amsterdam: Elsevier, 147–200.

Li HL. 1952. Floristic relationships between eastern Asiaand eastern North America. Transactions of the AmericanPhilosophical Society 42: 371–429.

Lindley J. 1846. The vegetable kingdom. London: Bradbury &Evans.

Liu H-Y, Yang T. 1998. Rubiaceae. In: Editorial Commit-tee of the Flora of Taiwan, ed. Flora of Taiwan, 2nd edn,Vol. 4. Taipei: National Taiwan University, 245–340.

Mai DH, Walther H. 1985. The upper Eocene floras ofthe Weisselster basin and adjacent areas. Abhandlungendes Staatlichen Museums für Mineralogie und Geologie zuDresden 33: 1–260.

Makino T. 1909. Observations on the flora of Japan. TheBotanical Magazine XXIII: 68–69.

Malcomber ST. 2002. Phylogeny of Gaertnera Lam.(Rubiaceae) based on multiple DNA markers: evidence of arapid radiation in a widespread, morphologically diversegenus. Evolution 56: 42–57.

Manen JF, Natali A, Ehrendorfer F. 1994. PhylogenyofRubiaceae-Rubieae inferred from the sequence of a cpDNAintergene region. Plant Systematics and Evolution 190:195–211.

Manns U, Bremer B. 2010. Towards a better understandingof intertribal relationships and stable tribal delimitationswithin Cinchonoideae s.s. (Rubiaceae). Molecular Phyloge-netics and Evolution 56: 21–39.

Meng Y, Wen J, Nie ZL, Sun H, Yang YP. 2008. Phylo-geny and biogeographic diversification of Maianthemum(Ruscaceae: Polygonatae). Molecular Phylogenetics andEvolution 49: 424–434.

Miller JH, Miller KV. 2005. Forest plants of the southeastand their wildlife uses. Athens, GA: University of GeorgiaPress.

Motley TJ, Wurdack KJ, Delprete PG. 2005. Molecularsystematics of the Catesbaeeae-Chiococceae complex(Rubiaceae): flower and fruit evolution and biogeographicimplications. American Journal of Botany 92: 316–329.

Motohashi K, Inaba S, Anzai K, Takamatsu S,Nakashima C. 2009. Phylogenetic analyses of Japanesespecies of Phyllosticta sensu stricto. Mycoscience 50: 291–302.

Mouly A, Razafimandimbison SG, Achille F, Haever-mans T, Bremer B. 2007. Phylogenetic placement of Rho-palobrachium fragrans (Rubiaceae): evidence frommolecular (rps16 and trnT-F) and morphological data. Sys-tematic Botany 32: 872–882.

Mouly A, Razafimandimbison SG, Florence J, JérémieJ, Bremer B. 2009. Paraphyly of Ixora and new tribaldelimitation of Ixoreae (Rubiaceae): inference from com-bined chloroplast (rps16, rbcL, and trnT-F) sequence data.Annals of the Missouri Botanical Garden 96: 146–160.

Naiki A, Nagamasu H. 2003. Distyly and pollen dimorphismin Damnacanthus (Rubiaceae). Journal of Plant Research116: 105–113.

Naiki A, Nagamasu H. 2004. Correlation between distylyand ploidy level in Damnacanthus (Rubiaceae). AmericanJournal of Botany 91: 664–671.

Nepokroeff M, Bremer B, Sytsma KJ. 1999. Reorganiza-tion of the genus Psychotria and tribe Psychotrieae(Rubiaceae) inferred from ITS and rbcL sequence data.Systematic Botany 24: 5–27.

Nie Z-L, Sun H, Beardsley PM, Olmstead RG, Wen J.2006a. Evolution of biogeographic disjunction betweeneastern Asia and eastern North America in Phryma (Phry-maceae). American Journal of Botany 93: 1343–1356.

Nie Z-L, Sun H, Chen Z-D, Meng Y, Manchester SR,Wen J. 2010. Molecular phylogeny and biogeographic diver-sification of Parthenocissus (Vitaceae) disjunct between Asiaand North America. American Journal of Botany 97: 1342–1353.

Nie Z-L, Sun H, Li H, Wen J. 2006b. Intercontinentalbiogeography of subfamily Orontioideae (Symplocarpus,

406 W-P. HUANG ET AL.

© 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 171, 395–412

Page 13: Molecular phylogenetics and biogeography of the eastern .../menu/standa… · Molecular phylogenetics and biogeography of the eastern Asian–eastern North American disjunct Mitchella

Lysichiton, and Orontium) of Araceae in eastern Asia andNorth America. Molecular Phylogenetics and Evolution 40:155–165.

Nie Z-L, Wen J, Sun H, Bartholomew B. 2005. Monophylyof Kelloggia Torrey ex Benth.(Rubiaceae) and evolution ofits intercontinental disjunction between western NorthAmerica and eastern Asia. American Journal of Botany 92:642–652.

Novotny V, Basset Y, Miller SE, Weiblen GD, BremerB, Cizek L, Drozd P. 2002. Low host specificity of her-bivorous insects in a tropical forest. Nature 416: 841–844.

Nylander J. 2004. Mrmodeltest v2. Program distributed bythe author. Uppsala: Evolutionary Biology Centre, UppsalaUniversity.

Olmstead RG, Bremer B, Scott KM, Palmer JD. 1993. Aparsimony analysis of the Asteridae sensu lato based onrbcL sequences. Annals of the Missouri Botanical Garden80: 700–722.

Oxelman B, Lidén M, Berglund D. 1997. Chloroplast rps16intron phylogeny of the tribe Sileneae (Caryophyllaceae).Plant Systematics and Evolution 206: 393–410.

Parks CR, Wendel JF. 1990. Molecular divergence betweenAsian and North American species of Liriodendron (Magno-liaceae) with implications for interpretation of fossil floras.American Journal of Botany 77: 1243–1256.

Persson C. 2000. Phylogeny of Gardenieae (Rubiaceae) basedon chloroplast DNA sequences from the rps16 intron andtrnL (UAA)-F (GAA) intergenic spacer. Nordic Journal ofBotany 20: 257–270.

Piesschaert F, Andersson L, Jansen S, Dessein S, Rob-brecht E, Smets E. 2000. Searching for the taxonomicposition of the African genus Colletoecema (Rubiaceae): mor-phology and anatomy compared to an rps16 intron analysisof the Rubioideae. Canadian Journal of Botany 78: 288–304.

Puff C. 1982. The delimitation of the tribe Anthospermeaeand its affinities to the Paederieae (Rubiaceae). BotanicalJournal of the Linnean Society 84: 355–377.

Razafimandimbison SG, Bremer B. 2002. Phylogeny andclassification of Naucleeae s.l. (Rubiaceae) inferred frommolecular (ITS, rbcL, and trnT-F) and morphological data.American Journal of Botany 89: 1027–1041.

Razafimandimbison SG, Kellogg EA, Bremer B. 2004.Recent origin and phylogenetic utility of divergentITS putative pseudogenes: a case study from Naucleeae(Rubiaceae). Systematic Biology 53: 177–192.

Razafimandimbison SG, McDowell TD, Halford DA,Bremer B. 2009. Molecular phylogenetics and genericassessment in the tribe Morindeae (Rubiaceae–Rubioideae):how to circumscribe Morinda L. to be monophyletic?Molecular Phylogenetics and Evolution 52: 879–886.

Razafimandimbison SG, Rydin C, Bremer B. 2008.Evolution and trends in the Psychotrieae alliance(Rubiaceae)—a rarely reported evolutionary change ofmany-seeded carpels from one-seeded carpels. MolecularPhylogenetics and Evolution 48: 207–223.

Robbrecht E, Puff C, Igersheim A. 1991. The generaMitchella and Damnacanthus: evidence for their close alli-

ance; comments on the campylotropy in the Rubiaceae andcircumscription of the Morindeae. Blumea 35: 307–345.

Rogers GK. 2005. The genera of Rubiaceae in the southeast-ern United States, Part II. Subfamily Rubioideae, and sub-family Cinchonoideae revisited(Chiococca, Erithalis, andGuettarda) 1. Harvard Papers in Botany 10: 1–45.

Ronquist F. 1996. DIVA: dispersal–vicariance analysis,version 1.1. Uppsala: Uppsala University.

Rova JHE, Delprete PG, Andersson L, Albert VA. 2002. AtrnL-F cpDNA sequence study of the Condamineeae–Rondeletieae–Sipaneeae complex with implications on thephylogeny of the Rubiaceae. American Journal of Botany 89:145–159.

Rydin C, Kainulainen K, Razafimandimbison SG, Smed-mark JEE, Bremer B. 2009a. Deep divergences in thecoffee family and the systematic position of Acranthera.Plant Systematics and Evolution 278: 101–123.

Rydin C, Razafimandimbison SG, Bremer B. 2008. Rareand enigmatic genera (Dunnia, Schizocolea, Colletoecema),sisters to species-rich clades: phylogeny and aspects of con-servation biology in the coffee family. Molecular Phylogenet-ics and Evolution 48: 74–83.

Rydin C, Razafimandimbison SG, Khodabandeh A,Bremer B. 2009b. Evolutionary relationships in the Sper-macoceae alliance (Rubiaceae) using information from sixmolecular loci: insights into systematic affinities of Neohy-menopogon and Mouretia. Taxon 58: 793–810.

Saenger P. 1998. Mangrove vegetation: an evolutionaryperspective. Marine and Freshwater Research 49: 277–286.

Shi X, Jin J, Ye C, Liu W. 2012. First fruit fossil record ofMorinda (Rubiaceae) from China. Review of Palaeobotanyand Palynology 179: 13–16.

Simões AO, Livshultz T, Conti E, Endress ME. 2007.Phylogeny and systematics of the Rauvolfioideae (Apocy-naceae) based on molecular and morphological evidence.Annals of the Missouri Botanical Garden 94: 268–297.

Smedmark JEE, Eriksson T, Bremer B. 2010. Diver-gence time uncertainty and historical biogeographyreconstruction—an example from Urophylleae (Rubiaceae).Journal of Biogeography 37: 2260–2274.

Sonké B, Dessein S, Taedoumg H, Groeninckx I, Rob-brecht E. 2008. A new species of Colletoecema (Rubiaceae)from southern Cameroon with a discussion of relationshipsamong basal Rubioideae. Blumea 53: 533–547.

Struwe L, Thiv M, Kadereit JW, Pepper ASR, Motley TJ,White PJ, Rova JHE, Potgieter K, Albert VA. 1998.Saccifolium (Saccifoliaceae), an endemic of Sierra de laNeblina on the Brazilian-Venezuelan border, is related to atemperate-alpine lineage of Gentianaceae 1. HarvardPapers in Botany 3: 199–214.

Swofford DL. 2003. PAUP*: phylogenetic analysis using par-simony, version 4.0 b10. Sunderland, MA: Sinauer.

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F,Higgins DG. 1997. The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided byquality analysis tools. Nucleic Acids Research 25: 4876–4882.

PHYLOGENY AND BIOGEOGRAPHY OF MITCHELLA 407

© 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 171, 395–412

Page 14: Molecular phylogenetics and biogeography of the eastern .../menu/standa… · Molecular phylogenetics and biogeography of the eastern Asian–eastern North American disjunct Mitchella

Tiffney BH. 1985a. The Eocene North Atlantic land bridge:its importance in Tertiary and modern phytogeography ofthe Northern Hemisphere. Journal of the Arnold Arboretum66: 243–273.

Tiffney BH. 1985b. Perspectives on the origin of the floristicsimilarity between eastern Asia and eastern North America.Journal of the Arnold Arboretum 66: 73–94.

Tiffney BH, Manchester SR. 2001. The use of geological andpaleontological evidence in evaluating plant phylogeo-graphic hypotheses in the Northern Hemisphere Tertiary.International Journal of Plant Sciences 162: S3–S17.

Wen J. 1998. Evolution of the Eastern Asian and EasternNorth American disjunct pattern: insights from phyloge-netic studies. Korean Journal of Plant Taxonomy 28: 63–81.

Wen J. 1999. Evolution of eastern Asian and eastern NorthAmerican disjunct distributions in flowering plants. AnnualReview of Ecology and Systematics 30: 421–455.

Wen J. 2000. Internal transcribed spacer phylogeny of theAsian and eastern North American disjunct Aralia sect.Dimorphanthus (Araliaceae) and its biogeographic implica-tions. International Journal of Plant Sciences 161: 959–966.

Wen J. 2001. Evolution of eastern Asian–eastern NorthAmerican biogeographic disjunctions: a few additionalissues. International Journal of Plant Sciences 162: S117–S122.

Wen J, Ickert-Bond S, Nie Z-L, Li R. 2010. Timing andmodes of evolution of eastern Asian–North American bio-geographic disjunctions in seed plants. In: Long M, Gu H,Zhou Z, eds. Darwin’s heritage today: Proceedings of theDarwin 2010 Beijing International Conference. Beijing:Higher Education Press, 252–269.

Westergaard KB, Jørgensen MH, Gabrielsen TM, AlsosIG, Brochmann C. 2010. The extreme Beringian/Atlanticdisjunction in Saxifraga rivularis (Saxifragaceae) has formedat least twice. Journal of Biogeography 37: 1262–1276.

Willson MF. 1993. Mammals as seed-dispersal mutualists inNorth America. Oikos 67: 159–176.

Wolfe, JA. 1972. An interpretation of Alaskan Tertiary florasIn: Graham A, ed. Floristics and paleofloristics of Asia andeastern North America. Amsterdam: Elsevier, 201–233.

Wolff D, Liede-Schumann S. 2007. Evolution of flower mor-phology, pollen dimorphism, and nectar composition in Arcy-tophyllum, a distylous genus of Rubiaceae. OrganismsDiversity and Evolution 7: 106–123.

Xiang QY, Soltis DE. 2001. Dispersal–vicariance analysesof intercontinental disjuncts: historical biogeographicalimplications for angiosperms in the Northern Hemisphere.International Journal of Plant Sciences 162: 29–39.

Xiang QY, Soltis DE, Soltis PS, Manchester SR, Craw-ford DJ. 2000. Timing the eastern Asian–eastern NorthAmerican floristic disjunction: molecular clock corroboratespaleontological estimates. Molecular Phylogenetics andEvolution 15: 462–472.

Xie L, Wagner WL, Ree RH, Berry PE, Wen J. 2009.Molecular phylogeny, divergence time estimates, and his-torical biogeography of Circaea (Onagraceae) in the North-ern Hemisphere. Molecular Phylogenetics and Evolution 53:995–1009.

Xu X, Walters C, Antolin MF, Alexander ML, Lutz S, GeS, Wen J. 2010. Phylogeny and biogeography of the easternAsian–North American disjunct wild-rice genus (Zizania L.,Poaceae). Molecular Phylogenetics and Evolution 55: 1008–1017.

Yamazaki T. 1993. Rubiaceae. In: Iwatsuki KT, Yamazaki K,Boufford DE, Ohba H, eds. Flora of Japan, Vol. 3a. Tokyo:Koudansha, 206–240.

Yokoyama J, Fukuda T, Tsukaya H. 2003. Morphologicaland molecular variation in Mitchella undulata, with specialreference to the systematic treatment of the dwarf formfrom Yakushima. Journal of Plant Research 116: 309–315.

Yu Y, Harris A, He X. 2010. S-DIVA (statistical dispersal–vicariance analysis): a tool for inferring biogeographic his-tories. Molecular Phylogenetics and Evolution 56: 848–850.

Yu Y, Harris A, He X. 2011. RASP (reconstruct ancestralstate in phylogenies) v1.1. Available at: http://mnh.scu.edu.cn/soft/blog/RASP

Zhu W-D, Nie Z-L, Wen J, Sun H. in press. Molecularphylogeny and biogeography of Astilbe (Saxifragaceae) inAsia and eastern North America. Botanical Journal ofthe Linnean Society 171: DOI: 10.1111/j.1095-8339.2012.01318.x.

APPENDIXSEQUENCES OBTAINED FROM GENBANK AND USED IN THE DIVERGENCE TIME ANALYSES

Species ITS atpB-rbcL rbcL rps16 trnL-F Reference

Alberta magnaE.mey.

AJ224842 – Y18708 EU145491 AJ620118 Andersson & Rova, 1999;Rydin et al., 2008;Kainulainen et al., 2009

Anthospermumherbaceum L.f.

FM204677 AJ234028 X83623 EU145496 EU145544 Bremer et al., 1995; Bremer& Manen, 2000; Rydinet al., 2008; Kainulainenet al., 2009

Arcytophyllumaristatum Standl.

AM182061 FJ695343 AJ288595 AF333348 AF333349 Bremer & Manen, 2000;Andersson et al., 2002;Wolff & Liede-Schumann,2007; Rydin et al., 2009b

408 W-P. HUANG ET AL.

© 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 171, 395–412

Page 15: Molecular phylogenetics and biogeography of the eastern .../menu/standa… · Molecular phylogenetics and biogeography of the eastern Asian–eastern North American disjunct Mitchella

APPENDIX Continued

Species ITS atpB-rbcL rbcL rps16 trnL-F Reference

AulacocalyxjasminifloraHook.f.

FM204688 DQ131704* EU817413 EF205639 EU817455 Mouly et al., 2007, 2009;Kainulainen et al., 2009

Cephalanthussalicifolius Humb.& Bonpl.

AJ346886 GQ851993 AJ346975 GQ852381 AJ346920 Razafimandimbison &Bremer, 2002; Manns &Bremer, 2010

Chiococca alba (L.)Hitchc.

AY763882 – L14394 AF004034 AY763813 Olmstead et al., 1993;Motley et al., 2005;Manns & Bremer, 2010

Cinchona calisayaWeed.

AY538352 GQ852003 AY538478 AF242927 GQ852482 Rova et al., 2002;Andersson & Antonelli,2005; Manns & Bremer,2010

Cinchonopsisamazonica(Stand.)L.Andersson

AY538357 GQ852002 AY538482 AY538428 AY538452 Andersson & Antonelli,2005; Manns & Bremer,2010

Coccocypselumcondalia Pers.

EU145358 EU145420 AM117217 EU145499 EU145547 Rydin et al., 2008, 2009a;Bremer & Eriksson, 2009

Colletoecemadewevrei (DeWild.) E.M.A.Petit

EU145353 DQ131713* FJ209067 AF191491 EU145532 Piesschaert et al., 2000;Rydin et al., 2008, 2009a;Sonké et al., 2008

Condamineacorymbosa (Ruiz& Pav.) DC.

FJ984973 – Y18713 FJ884645 AF102406 Andersson & Rova, 1999;Motley et al., 2005

Cosmibuenagrandiflora (Ruiz& Pav.) Rusby

GQ852120 GQ852007 AY538483 AF242929 AF152686 Rova et al., 2002;Andersson & Antonelli,2005; Manns & Bremer,2010

Coussareahydrangeifolia(Benth.) Benth. &Hook.f. exMüll.Arg.

EU145360 EU145326 EU145460 EU145501 EU145549 Rydin et al., 2008, 2009a

Coussareamacrophylla(Mart.) Müll.Arg.

– – Y11847 AF004040 – Bremer & Thulin, 1998;Andersson & Rova, 1999

Cremaspora triflora(Thonn.) K.Schum.

AJ224824 DQ131718* Z68856 AF200990 AF201040 Andreasen & Bremer, 1996;Andreasen et al., 1999;Persson, 2000

Crossopteryxfebrifuga (Afzel.ex G.Don) Benth.

FM204689 DQ131719* JF265372 FM204717 FM207123 Kainulainen et al., 2009

Cruckshanksiahymenodon Hook.& Arn.

– AJ234004 AJ288599 EU145502 EU145550 Bremer & Manen, 2000;Rydin et al., 2008

Cubanoladomingensis(Britton) Aiello

AY763891 DQ131720* X83632 AF004044 AF152701 Rova et al., 2002; Motleyet al., 2005

Declieuxia cordigeraMart. & Zucc. exSchult. & Schult.f.

EU145361 EU145327 AM117224 AM117298 EU145551 Rydin et al., 2008, 2009a;Bremer & Eriksson, 2009

Dunnia sinensisTutcher

EU145393 EU145343 EU145471 EU145519 EU145587 Rydin et al., 2008, 2009a

PHYLOGENY AND BIOGEOGRAPHY OF MITCHELLA 409

© 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 171, 395–412

Page 16: Molecular phylogenetics and biogeography of the eastern .../menu/standa… · Molecular phylogenetics and biogeography of the eastern Asian–eastern North American disjunct Mitchella

APPENDIX Continued

Species ITS atpB-rbcL rbcL rps16 trnL-F Reference

Emmenopteryshenryi Oliv.

FJ984985 DQ131728* |Y18715 AF242941 AF152637 Bremer et al., 1999; Rovaet al., 2002

Exostema lineatum(Vahl) Schult.

AY763901 DQ131732* AY538484 AF242944 AY763833 Andersson & Antonelli,2005; Motley et al., 2005

Faramea multifloraA.Rich.

EU145363 EU145328 Z68796 AF004048 AF102422 Andreasen & Bremer, 1996;Struwe et al., 1998;Andersson & Rova, 1999;Rydin et al., 2008, 2009a

Gelsemiumsempervirens (L.)J.St.-Hil.

AB454364 AJ233985 L14397 DQ660581 AF159696 Olmstead et al., 1993;Bremer & Manen, 2000;Rova et al., 2002; Simõeset al., 2007; Motohashiet al., 2009

Geophila obvallataDidr.

AM945196 – AM117228 JN643111* JN643390 Bremer & Eriksson, 2009

Guettarda speciosaL.

AY763904 GQ852025 JF738600* AF242964* AY763835 Motley et al., 2005; Manns& Bremer, 2010

Gynochthodescoriacea Blume

AM945192 AM945219 AJ288603 AM117311 AJ847407 Bremer & Manen, 2000;Alejandro et al., 2005;Razafimandimbison et al.,2008; Bremer &Eriksson, 2009

Hamelia papillosaUrb.

GQ852134 AJ233992 AY538487 AF004053 AF102439* Andersson & Rova, 1999;Bremer & Manen, 2000;Andersson & Antonelli,2005; Manns & Bremer,2010

Hymenodictyonfloribundum(Hochst. & Steud.)B.L.Rob.

AJ346905 DQ131742* AY538488 AF004058 AY538454 Razafimandimbison &Bremer, 2002; Andersson& Antonelli, 2005

Isertia coccinea(Aubl.) J.F.Gmel.

GQ852140 – GQ852337 GQ852405 AF152689 Rova et al., 2002; Manns &Bremer, 2010

Jaubertia aucheriGuill.

FJ695456 FJ695383 DQ662178 DQ662202 DQ662145 Backlund et al., 2007;Rydin et al., 2009b

Joosia umbelliferaH.Karst.

AY538361 – AY538492 AY538433 GQ852521 Andersson & Antonelli,2005; Manns & Bremer,2010

KeriantherapraeclaraJ.H.Kirkbr.

AY538362 – AY538493 AF242970* AY538459 Andersson & Antonelli,2005

Knoxia platycarpaArn.

AM267002 FJ695363 AJ288631 AM266826 AM266915 Bremer & Manen, 2000;Kårehed & Bremer, 2007;Rydin et al., 2009b

Kraussia floribundaHarv.

– DQ131746* JF265494* AM117325 AM117368 Bremer & Eriksson, 2009

LadenbergiaamazonensisDucke

AY538363 – AY538494 AY538434 AY538460 Andersson & Antonelli,2005

Lasianthuslanceolatus(Griseb.) Urb.

EU145367 EU145331 AM117238 AF004062 EU145554 Andersson & Rova, 1999;Rydin et al., 2008, 2009a;Bremer & Eriksson, 2009

410 W-P. HUANG ET AL.

© 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 171, 395–412

Page 17: Molecular phylogenetics and biogeography of the eastern .../menu/standa… · Molecular phylogenetics and biogeography of the eastern Asian–eastern North American disjunct Mitchella

APPENDIX Continued

Species ITS atpB-rbcL rbcL rps16 trnL-F Reference

ManostachyaternifoliaE.S.Martins

FJ695446 EU542973 AM117246 EU543042 EU543127 Bremer & Eriksson, 2009;Groeninckx et al., 2009;Rydin et al., 2009b

Mitchella repens L. AF072019* AM945223 Z68805 AF001441 FJ906973 Bremer, 1996; Andersson &Rova, 1999;Razafimandimbison et al.,2008; Razafimandimbisonet al., 2009

Morinda citrifolia L. GU222395* AJ234003 X83651 AJ320078 AF152616 Bremer et al., 1995; Bremer& Manen, 2000; Novotnyet al., 2002; Rova et al.,2002

Nauclea orientalis(L.) L.

AJ346897 EU145320 X83653 AY538440 AJ346958 Bremer et al., 1995;Razafimandimbison &Bremer, 2002; Andersson& Antonelli, 2005; Rydinet al., 2008

Neurocalyxchampionii Benth.ex Thwaites

EU145376 – EU145463 EU145509 EU145563 Rydin et al., 2008, 2009a

NormandianeocaledonicaHook.f.

AF257930* FJ695375 FJ695375 AF257931* AM409177 Khan et al., 2008; Rydinet al., 2009b

Ophiorrhiza elmeriMerr.

EU145378 – EU145464 EU145510 EU145564 Rydin et al., 2008, 2009a

Paederia bojeriana(A.Rich. ex DC.)Drake

FJ695454 DQ131757* DQ662181 DQ662206 DQ662152 Backlund et al., 2007;Rydin et al., 2009b

Parapentas silvatica(K.Schum.)Bremek.

AM267023 AJ234021 X83657 AM266849 AM266937 Bremer et al., 1995; Bremer& Manen, 2000; Kårehed& Bremer, 2007

Pavetta abyssinicaFresen.

FM204696 – Z68863 FM204726 FM207133 Andreasen & Bremer, 1996;Kainulainen et al., 2009

Placopoda virgataBalf.f.

AM267064 FJ695382 Z68815 AM266894 AM266980 Bremer, 1996; Kårehed &Bremer, 2007; Rydinet al., 2009b

Posoqueria latifolia(Rudge) Schult.

DQ787409* – Z68850 AF242998* AF152680 Andreasen & Bremer, 1996;Rova et al., 2002

Prismatomerisbeccariana (Baill.ex K.Schum.)J.T.Johanss.

AM945206 AM945238 AF331651* AF331652* – Razafimandimbison et al.,2008

PsychotriaambonianaK.Schum.

AM945215 AM945248 AM945302 AM945328 AJ847409 Alejandro et al., 2005;Razafimandimbison et al.,2008

Rondeletia odorataJacq.

AY730307* EU145321 Y11857 EU145490 AF152741 Bremer & Thulin, 1998;Rova et al., 2002, Rydinet al., 2008

Sabicea diversifoliaPers.

AJ846883 DQ131781* AM117268 EU145494 AJ847396 Alejandro et al., 2005;Bremer & Eriksson, 2009

Saprosma foetens(Wight) K.Schum.

FJ695460 FJ695386 DQ662193 DQ662218 DQ662168 Backlund et al., 2007;Rydin et al., 2009b

PHYLOGENY AND BIOGEOGRAPHY OF MITCHELLA 411

© 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 171, 395–412

Page 18: Molecular phylogenetics and biogeography of the eastern .../menu/standa… · Molecular phylogenetics and biogeography of the eastern Asian–eastern North American disjunct Mitchella

APPENDIX Continued

Species ITS atpB-rbcL rbcL rps16 trnL-F Reference

ScyphiphorahydrophyllaceaC.F.Gaertn.

– – Y18717 DQ923045 FM207140 Bremer et al., 1999;Kainulainen et al., 2009

Serissa foetida (L.f.)Lam.

FJ980385* AJ234034 Z68822 AF004081 AF152618 Bremer, 1996; Andersson &Rova, 1999; Bremer &Manen, 2000

Sipanea biflora (L.f.)Cham. & Schltdl.

AY555116 DQ131788* AY538509 AF004085 AF152675 Andersson & Rova, 1999;Delprete & Cortes, 2004;Andersson & Antonelli,2005

Spermacoce hispidaL.

AM939540 EU543011 AJ288623 EU543073 EU543162 Rova et al., 2002; Kårehedet al., 2008; Groeninckxet al., 2009; Rydin et al.,2009b

Spiradiclis bifidaKurz

EU145379 – EU145465 EU145511 EU145565 Rydin et al., 2008, 2009a

StilpnophyllumgrandifoliumL.Andersson

AY538375 GQ852090 AY538510 AY538446 AY538476 Andersson & Antonelli,2005; Manns & Bremer,2010

Theligonumcynocrambe L.

FJ695470 FJ695393 X83668 AF004087 FJ695427 Bremer et al., 1995;Andersson & Rova, 1999;Rydin et al., 2009b

TriainolepismandrarensisHomolle exBremek.

AM267068 FJ695394 FJ695250 AM266899 AM266985 Kårehed & Bremer, 2007;Rydin et al., 2009b

VangueriamadagascariensisJ.F.Gmel.

AJ224839 – X83670 EU821636 FM207146 Bremer et al., 1995;Andreasen et al., 1999;Cortés-B et al., 2009

Xanthophytumborneense(Valeton) Axelius

EU145381 EU145335 EU145466 EU145513 EU145567 Rydin et al., 2008, 2009a

*Sequence unpublished.

412 W-P. HUANG ET AL.

© 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 171, 395–412