molecular interactions 1 lecture 10.pdf

download molecular interactions 1 lecture 10.pdf

of 35

Transcript of molecular interactions 1 lecture 10.pdf

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    1/35

    BS204: Exp. Molecular and Cell Biology

    -

    Prof. Surajit Bhattacharyya

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    2/35

    Lecture 1

    Basic Concepts of Molecular Interactions

    Methods: Physical methods and Spectroscopic methods

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    3/35

    y u y o ecu ar n erac ons

    RNA

    Lipids

    PROTEINS MasterInteractors

    LifeisSustainedbyInteractions

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    4/35

    Proteins:DiversityinBinding

    Enzyme-substrate Antibody-Antigen DNA-Protein Interactions

    RNA-Protein InteractionsMembrane-Protein InteractionsCarbohydrate-protein

    Interactions

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    5/35

    Proteins:DiversityinBinding

    MultiproteinComplexes

    Transcriptioncomplex

    Signalingcomplex

    Transcription complex: informationprocessed local

    Signaling complex: information

    processed distal

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    6/35

    Proteins:DiversityinBinding

    WhydoProteinsabletoInteractwith

    LargeDiverseMolecules?

    vo u on

    Proteinstructures:

    Shapecomplementarities

    Toolarge

    to

    fit

    Toosmalltofit

    Goodfit

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    7/35

    Proteins:DiversityinBinding

    CharacteristicsofProteinBindingSurface

    BindingSurfaceisExposed(beforebinding)

    B n ngIn uce Con ormat ona C anges

    BindingSurface

    has

    hot

    spot

    BindingAffinityishighlyDiverse:VeryweaktoVerystrong

    Bindingsarenoncovalentandreversible

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    8/35

    Proteins:DiversityinBinding

    CharacteristicsofProteinBindingSurface

    What are the forces that stabil ize Interactions?

    Hydrogenbonds:mainlysidechainmediated

    (polaramino

    acids:

    Ser,

    Thr,

    Asn,

    Gln)

    Ionic Interactions Glu As L s Ar His

    2

    NH2Ser

    Asn

    CH2CO

    O+NH3 (CH2)4

    L s

    vanderWaalspacking:closecontactamongatoms(nonpolar

    residues)

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    9/35

    Molecular Interactions

    +

    ProteinA ProteinB ComplexofAandB

    ,

    Sizeexclusionchromatography,DynamicLightScattering(DLS)

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    10/35

    Howdowedetectbinding?

    Native(Nondenaturing)Gel

    +++

    ++

    +++

    ++

    3negativecharge

    2positivecharge

    20KD 10KD 30KD

    (MW)(size)and/orcharge

    ComplexformationincreasesMWandchangecharge

    SDSPAGEGel:ProteinsaretreatedwithSDS,separatedbysize,

    Complexcannotbedetected,denatured

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    11/35

    Native(Nondenaturing)Gel

    AllSamplesareloadedattop

    Sametime

    _ca o e

    p

    Protein

    A

    ComplexA+B

    +

    rote n

    B

    anode

    ForNativegelsproteinsamplesarepreparedusingcommonbuffers:phosphatebuffers,

    Trisbufferetc.Gelisstainedbyabluedye(CoomassieBrilliantBlue)

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    12/35

    Originalmixtureoflarge

    andsmallproteinsinbufferHowdowedetectbinding?

    SizeExclusionChromatographySmall protein

    Large protein

    Loadintocolumn

    Porous beads

    based on their sizes

    Proteins mixture loaded

    beadsinbufferM grat on

    Contains porous beads

    Lar e roteins come out of

    Large proteinsmall protein

    the column faster than

    small proteins

    ein

    centration

    does not interact wi th

    small protein, since they

    come out at different time

    Time(min)

    Pro

    con

    20min 40min

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    13/35

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    14/35

    Howdowedetectbinding?

    S ectrosco ic Methods

    UV-Vis spectroscopy

    Fluorescence spectroscopy

    NMR (Yr 3, Elective)

    ElectromagneticMolecules absorb electromagnetic

    radiationra a on

    Molecules emit electromagnetic

    radiation after absorpt ion

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    15/35

    Electromagnetic Radiation

    E = h = hc/ c= 3 x 108 m/s=Frequency of light or electromagnetic radiation h = Plancks constant

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    16/35

    Absorption of EMR and Electronic Transition

    Molecules will change energy: when it

    absorbs or emits l ight

    E3E4E5E6

    -1.5

    -0.37

    )E4E5E6-0.37

    E21st excited state

    exc e s a e

    -4.0

    ne

    rgy(eV

    E2-4.0

    - .

    ergy(eV)

    Ground stateE1-14.0 E1-14.0

    E

    Absorption of EMREmission of EMR

    E2: 1st excited state, E3: 2ndexcited state

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    17/35

    Absorption of EMR and Electronic Transition

    How much energy to give to make a transition?? (Absorption)

    h = E = Ehigh- ElowE6-0.37

    E2

    E3E4

    st

    2ndexcited state

    -4.0

    -1.5

    (e

    V)

    E2-1 = E2- E1 = hE5-1 = E5- E1 = h

    Energ

    High frequency light to move molecule

    Ground stateE1-14.0 From E1 to E5 in comparison to E1 to E2

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    18/35

    Aromatic Amino Acids of Proteins and Nucleic Acid bases (A, T, G, C, U)

    absorb UV l i ht

    Proteins and Bases in Nucleic Acids Absorb UV Light

    Absorb UV lights: Trp; 280 nm, Tyr; 278 nm, Phe; 270 nm

    Nucleic Acid bases (A, T, G, C, U) absorb UV light at 260 nm

    Trp absorbs more UV light than Tyr and Phe

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    19/35

    UV-Vis and Fluorescence Experiments are done in Spectrophotometer

    Cuvette contains samplesSpectrophotometer:

    UV l i ht source

    A to D conver ter

    UV lamp Monochromator Sample photodetector

    Intens

    it

    wavelength

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    20/35

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    21/35

    Enzyme SubstrateInteractions

    NAD+ NADH

    Substrate(glyceraldehyde

    3Phosphate)

    Enzyme (Glyceraldehyde3Phosphate

    dehydrogenase)withNAD+

    EnzymewithNADH

    Substrateconcentration

    increasesfrom

    Bottomspectrumtotopspectrun

    (0M,2M,3M,5Mand10M)

    Enzymecatalysesconversionofsubstratetoproductwithreductionof

    NADtoNADH,thatcanbemonitoredbytakingabsorbanceat340nm,

    SinceNADHabsorbsat340nm,noabsorptionfromNADorthesubstrate

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    22/35

    o ac or-con a n ng ro e ns sor g o eren ave eng

    HemeProtein (Myoglobin,hemoglobin)

    Fe

    HemeGroup

    HemeGrouphasdifferentabsorptionintheabsenceofproteinsandwhen

    boundtoproteins

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    23/35

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    24/35

    FLUORESCENCE SEPCTROSCOPY: In Molecular Interactions

    A: Absorption, F: Fluorescence

    ity

    Intens

    Wavelength (nm)

    270 290 310 330 350 370 390

    max

    max

    max: wavelength at which intensity is maximum.

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    25/35

    FLUORESCENCE SEPCTROSCOPY: In Molecular Interactions

    How much energy will be emitted from a transit ion?? (Emission)

    E2 Excited state

    Emit lightAbsorptionof light

    E1

    m e g s

    detected as Fluorescence

    The emitted light is low in energy as compared to energy of the light

    .

    (solvents)

    E= hhc , ,

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    26/35

    Fluorophores in Proteins

    m no c -------- sorpt on max ---- m ss on emPhe---------------260------------ 282

    Tyr---------------275------------- 304

    Trp--------------280--------- ---- 353

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    27/35

    Fluorophores in Proteins

    In protein Trp contributes more for the fluorescence spectra.

    Trp f luorescence is very sensit ive to conformational change, ligand

    binding association/aggregation.

    Contribution from Tyr is quenched by peptide groups or

    energy transfer with Trp.

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    28/35

    FLUORESCENCE SEPCTROSCOPY: In Molecular Interactions

    Protein-Peptide interactions: Calmodulin/Kinase Derived Peptide interaction

    Case Study

    Ca+2

    Release in Muscle

    Activates Calmodulin

    Activate M osin Li ht Chain Kinase MLCK

    Phosphorylates Myosin Light Chain

    Phosphorylated Myosin Hydrolyze ATP

    Activation of Myosin Light Chain Kinase by Calmodulin

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    29/35

    FLUORESCENCE SEPCTROSCOPY: In Molecular Interactions

    Protein Kinases are Multi-domain Proteins Containing Kinase domain,

    Inhibitory Domain and Other Regulatory Domains

    Re ulator Domain

    Kinase domain

    Occupies the Active site of Kinase

    Binds to Calmodul in

    Inhibitory Domain

    A Repressed State of Calmodulin dependent Kinase(e.g. Myosin Light Chain Kinase, MLCK)

    was sufficient to bind to Calmodulin

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    30/35

    : n o ecu ar n erac ons

    How do we record Trp fluorescence

    Spectrum?

    Light at290 nm

    Sample in

    Collect si nal

    from 310-425 nm

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    31/35

    FLUORESCENCE SEPCTROSCOPY: In Molecular Interactions

    max of Trp of RS20 ina sence o a mo u n:

    355 nm

    max presence of Calmodulin:

    323 nm

    of RS 20is high in presence

    of calmodulin

    Fluorescence spectra of RS20 peptide in the absence of calmodulin

    2 , .

    No Trp amino acid in Calmodulin

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    32/35

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    33/35

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    34/35

  • 7/27/2019 molecular interactions 1 lecture 10.pdf

    35/35