MOLECULAR AND MORPHOLOGICAL CHARACTERIZATION OF ...dl.uncw.edu › Etd › 2011-2 › r1 ›...
Embed Size (px)
Transcript of MOLECULAR AND MORPHOLOGICAL CHARACTERIZATION OF ...dl.uncw.edu › Etd › 2011-2 › r1 ›...

MOLECULAR AND MORPHOLOGICAL CHARACTERIZATION OF ALEXANDRIUM SPECIES (DINOPHYCEAE) FROM THE EAST COAST, USA
Erika N. Schwarz
A Thesis Submitted to the University of North Carolina Wilmington in Partial Fulfillment
of the Requirements for the degree of Master of Science
Department of Biology and Marine Biology
University of North Carolina Wilmington
2011
Approved by
Advisory Committee
D. Wilson Freshwater R. Wayne Litaker Alison R. Taylor Carmelo R. Tomas Chair
Accepted by
Dean, Graduate School

ii
This thesis has
been formatted in accordance to the
author guidelines for the Journal of Phycology.

iii
TABLE OF CONTENTS
ABSTRACT ................................................................................................................................... iv
ACKNOWLEDGMENTS ...............................................................................................................v
DEDICATION ............................................................................................................................... vi
LIST OF TABLES ........................................................................................................................ vii
LIST OF FIGURES ..................................................................................................................... viii
INTRODUCTION ...........................................................................................................................1
MATERIALS & METHODS ..........................................................................................................8
RESULTS ......................................................................................................................................14
DISCUSSION ................................................................................................................................16
LITERATURE CITED ..................................................................................................................23
TABLES ........................................................................................................................................28
FIGURES .......................................................................................................................................37
APPENDIX 1 .................................................................................................................................40
APPENDIX 2 .................................................................................................................................57
APPENDIX 3 .................................................................................................................................65

iv
ABSTRACT
The dinoflagellates (Dinophyceae) are a group of highly diverse unicellular organisms
that inhabit fresh, estuarine and saltwater environments. Some dinoflagellates produce toxins that
have negative impacts resulting as both economic and public health risks. This study focuses on
Alexandrium peruvianum, a thecate, paralytic shellfish poisoning (PSP) toxin producing
dinoflagellate. Alexandrium peruvianum was thought to be restricted to waters north of Cape
Cod, MA but this species was recently isolated from the New River, NC. The aim of this study
was to thoroughly characterize A. peruvianum using both morphological and molecular
techniques in order to distinguish it from the closely related A. ostenfeldii. Calcofluor White
staining was used to visualize thecal plates to determine morphological differences between A.
peruvianum and A. ostenfeldii. Significant differences were found in the first apical (1’), the
sixth precingular (6’’) and the anterior sulcal (s.a.) plates between the two species. The
differences observed were consistent with original descriptions of A. peruvianum and A.
ostenfeldii. Utilizing 5.8S, 18S, 28S and internal transcribed spacer (ITS) sequences generated in
this study in addition to those submitted to GenBank, phylogenetic analysis resolved four clades
between the two species; Clades 1 and 2 were comprised of A. peruvianum and Clades 3 and 4
were comprised of A. ostenfeldii. Isolates from Clades 1 and 3, including A. peruvianum from
North Carolina, USA, Finland and A. ostenfeldii from Canada/Denmark/Scotland, respectively
were used for comparison. Isolates from Clades 2 and 4, A. peruvianum from Spain and A.
ostenfeldii from New Zealand, were not available for the morphological study. DNA sequence
information for the Alexandrium isolates examined was used to develop a PCR-based method for
detection and identification of A. peruvianum and A. ostenfeldii.

v
ACKNOWLEDGMENTS
First and foremost I would like to thank my advisor, Dr. Carmelo R. Tomas, who has
believed in my abilities from the beginning. He has been a wonderful advisor and influence. He
has shown me what it means to be a good advisor, professor and mentor and for that I am
grateful. The only limiting factor is your mind and where it can take you when in his lab. In
addition, the wonderful vegetables from his garden are always a welcome summertime surprise
and lunches at Thai Spice will be missed. Thank you for everything!
I would like to send many thanks to my wonderful committee members. To Dr. R. Wayne
Litaker (NOAA) for always answering his phone to answer questions and offer advice or lend a
helping hand when needed. Welcoming us into his lab and making the trek to Wilmington for
our meetings are also things that are greatly appreciated. To Dr. D. Wilson Freshwater for his
willingness to stop whatever he may be doing in order to answer questions without notice and to
answer those questions in a way that is easy to understand. To Dr. Alison R. Taylor, not only for
agreeing to serve as a committee member regardless of her busy schedule but for her wealth of
knowledge and enthusiasm for science. Both traits make her someone to aspire to.
I would like to thank Mark W. Vandersea (NOAA) for sharing his knowledge and testing
the A. ostenfeldii primers. Also, Dr. Anke Kremp for sharing cultures and associated sequences.
I would also like to thank my lab mates (past and present), Kristi Sommer, Lindsay Haus,
Cory Dashiell, Brooke Stuercke, Bob York, Michelle Stuart, Harris Muhlstein and Tara Haney
who have always been a wealth of information and very supportive.
I would like to thank my best friend, Bart R. Frans, and family whose support throughout
my educational endeavors has meant a great deal.
Lastly, I would also like to thank MARBIONC for funding this thesis project.

vi
DEDICATION
I would like to dedicate this thesis to my daughter, Athena N. Schwarz, whose presence
has been the driving force for my motivation. My desire to go to college first started when she
was born in hopes of building a better life for us. However, it quickly turned from a stepping-
stone to get a decent job into a true passion. Because of Athena I was able to find my true
interests when I took my first biology class as a requirement for my Associate’s degree. If it
weren’t for her, I would have never given school another chance and for that I am eternally
grateful.

vii
LIST OF TABLES
Table Page 1. Recognized Alexandrium species and present knowledge of toxicity ..............................28 2. Isolates of A. peruvianum and A. ostenfeldii used in this study including isolate
code, location of sample, isolation date, isolator, growth temperature and salinity ................................................................................................................................29
3. Primers used in this study to generate partial SSU, ITS1, 5.8S, ITS2 and partial
LSU sequences from A. peruvianum (AP0411-1) and A. ostenfeldii (CCMP1773) ..........30 4. Alexandrium D1-D2 rDNA sequences obtained from GenBank and used in combination
with those of this study for the D1-D2 alignment and phylogenetic analysis. A. insuetum and A. tamutum were the most closely related sister taxa and used as outgroup taxa .......31
5. Primers designed to distinguish between A. peruvianum (AP) and A. ostenfeldii (AO).
Grey regions indicate the variable regions between the two species .................................32 6. Genomic DNA used in cross-reactivity tests of A. peruvianum and A. ostenfeldii primer
sets......................................................................................................................................33 7. Mean and standard deviation (sd) of plate measurements for A. peruvianum and A.
ostenfeldii, number of samples (n) and significance (5% level) using a two-tailed student’s t-test. Measurements from AP0411-1, AOTVA4, AOF0933 were used to calculate A. peruvianum mean and sd and measurements from CCMP1773 and AONOR4 were used to calculate A. ostenfeldii mean and sd .............................................................34
8. Results of cross-reactivity tests with A. peruvianum primer set APF3/APR3 ...................35 9. Results of qPCR assays with A. ostenfeldii primer set AOF4/AOR3 ................................36

viii
LIST OF FIGURES Figure Page 1. Calcofluor White stained cells representing A. peruvianum showing the anterior sulcal
(s.a.) plates, the ventral pore (v.p.), first apical plate (1’) and the 6th precingular plate (6’’); a) AP0411-1, b) B2-NR, c) C10-NR, d) D4-NR, e) AOTVA4 and f) AOF0933 ....37
2. Calcofluor White stained cells representing A. ostenfeldii isolates showing the s.a. plates,
the ventral pore (v.p.), first apical plate (1’) and the 6th precingular plate (6’’); a) CCMP1773 and b) AONOR4 ........................................................................................38
3. Phylogeny of A. peruvianum and A. ostenfeldii showing four distinct clades; 1) A. peruvianum from North Carolina, USA and Finland with the exception of 2 isolates identified as A. ostenfeldii, 2) A. peruvianum sequences from Spain isolates, 3) A. ostenfeldii isolates from Canada/Scotland/Denmark and 4) A. ostenfeldii isolates
from New Zealand .............................................................................................................39

INTRODUCTION
Dinoflagellates (Dinophyceae) comprise a group of highly diverse unicellular organisms
that live in freshwater, estuarine or marine environments and exhibit two dimorphic flagella
during at least one life cycle stage. The term dinoflagellate originates from the Greek term dineo,
which means “to whirl” (Graham et al. 2009). This term is descriptive of their characteristic
whirling swimming motion driven by the combined action of the transverse and the longitudinal
flagella (Dodge and Lee 2000). The cell surfaces of many dinoflagellates are covered with
closely fitting cellulosic plates that help protect the cell (Steidinger and Tangen 1997). Species
possessing these cellulosic plates are referred to as “thecate” dinoflagellates, whereas those
lacking cellulosic plates are called “athecate”. All dinoflagellates are further characterized by
tubular mitochondrial cristae and the presence of alveoli, flattened amphiesmal vesicles packed
into a continuous layer beneath the plasmalemma. The amphiesmal vesicles are also common to
several other major lineages of protists including ciliates and apicomplexans that are collectively
referred to as ′Alveolates′.
Fossil evidence indicates that dinoflagellates are at least 240 million years old but some
biological and biogeochemical evidence suggests origins dating back to 545 million years ago
(John et al. 2003). Over 2000 extant species and a similar number of fossil species were
described. It is likely, however, that the species diversity of both extant and fossil species is
considerably higher. Fifty percent or more of the extant species are non-photosynthetic and
acquire their nutrition through heterotrophy, parasitism, osmotrophy or mixotrophy. The
remaining species have secondarily acquired chloroplasts and are autotrophic or mixotrophic
(Graham et al. 2009). These autotrophic species are important primary producers and
collectively contribute more oceanic primary productivity than any other eukaryotic group

2
besides the diatoms (Graham et al. 2009). Despite this significant photosynthetic capacity, most
autotrophic dinoflagellates retain their heterotrophic ability whereas a few species have evolved
to become true parasites (Graham et al. 2009). Many but not all plastid-containing
dinoflagellates are characterized by the presence of chlorophylls a and c and unique carotenoids.
Of these carotenoids a common accessory pigment, peridinin, has evolved in some
dinoflagellates (Graham et al. 2009).
Dinoflagellates are classified as Chromalveolates, which implies that the last common
ancestor of this group was a photosynthetic eukaryote with a secondary, red type plastid
(Cavalier-Smith 1999). This group includes the Cryptophyta, Haptophyta, Stramenopiles (or
Heterokontophyta) and the Alveolata (including dinoflagellates) (Delwiche 2007).
Taxonomy of thecate dinoflagellates is primarily based on morphological characteristics
such as number, shape, size, position and ornamentation of thecal plates (Fukuyo 1985,
Steidinger and Tangen 1997). Thecal plates are generally arranged in a series that can be
systematically numbered. This system is known as the “Kofoidian system” of plate nomenclature
(Steidinger and Tangen 1997). A typical plate tabulation includes the apical pore plates (′), the
anterior intercalary (a), precingular (′′), postcingular (′′′), posterior intercalary (p) and antapical
(′′′′) plates. The apical plates are those at the anterior end of the cell that come in contact with the
apical pore complex (APC). Precingular and postcingular plates refer to those that come in
contact with the cingulum on the apical side or the antapical side, respectively. Antapical plates
are located at the antapex or posterior of the cell and may be in contact with the sulcal plates but
not with cingular plates. Anterior and posterior intercalary plates are located between the
precingular and the apical series or between the postcingular and the antapical series,
respectively. Balech (1980) amended Kofoidan nomenclature to include the cingular (c) and

3
sulcal (s) plates and the apical pore complex (APC). The APC itself can include the apical pore
(po), canopy (cp) and ventral apical plate (X) (Steidinger and Tangen 1997). The Kofoidian
system with Balech’s improvements gives a succinct plate formula that can be used in
conjunction with other characteristics to identify thecate dinoflagellates at the ranks of order,
family, genus and species (Steidinger and Tangen 1997).
In addition to a variety of nutritional modes and their importance as primary producers,
approximately 60 dinoflagellate species also produce toxins that have cytolytic, hemolytic,
hepatotoxic or neurotoxic activities depending on their chemical structures and conversion state
of the toxin produced (Plumley 1997, Steidinger and Tangen 1997). These toxins are transferred
through the food chain where they sometimes accumulate within particular organisms such as
shellfish (La Du et al. 2002). They can adversely affect ecosystem function and may cause mass
mortalities of aquatic organisms such as fish (La Du et al. 2002). Humans are most commonly
affected by algal toxins via ingestion of contaminated shellfish, finfish or exposure to toxic
aerosols (Franquelo 2009).
The genus Alexandrium Halim is of particular concern because 11 of the 32 described
species produce potent neurotoxins collectively known as saxitoxins (Steidinger and Tangen
1997) (Table 1). These toxins act by blocking voltage-gated sodium channels thereby interfering
with nerve conduction. Severity of human illness resulting from the consumption of shellfish
feeding on Alexandrium cells depends on dosage and individual susceptibility. Symptoms
include numbness, lack of coordination, paralysis and, in severe cases, death (Friedman and
Levin 2005). Collectively, this suite of symptoms is referred to as paralytic shellfish poisoning
(PSP) (Hansen 2003; Wang et al. 2007). Toxic Alexandrium blooms are a common occurrence
in many parts of the world and often pose a dual economic/public health threat with losses

4
resulting from lost shellfish harvests, increased medical expenditures, and decreased tourism-
related business associated with adverse media coverage. The threat posed by Alexandrium
species was first recognized when people eating shellfish became ill during a large bloom of an
unidentified dinoflagellate in Alexandria Harbour, Egypt in 1960 (Penna et al. 2008). From this
bloom Halim (1960) first described the genus. Prior to the introduction of the genus
Alexandrium, similar species were commonly classified as Gonyaulax, Protogonyaulax and
Goniodoma.
Because some Alexandrium species are toxic while others are not, it is crucial that
Alexandriums be accurately identified. At the genus level this is straightforward.
Morphologically, Alexandrium cells are small (~20-50 µm), thecate, lack spines and have a
characteristic shape (Sournia 1986, Steidinger and Tangen 1997). The displacement of the
girdle, where one end of the cingulum enters the sulcus relative to where the cingulum enters the
other side of the sulcus, is about 1-1.5 times the girdle width (Steidinger and Tangen 1997).
Accurate identification at the species level, however, is often challenging. The general plate
formula for Alexandrium species is Po, cp, 4′, 0a, 6′′, 6c, 9 or 10s, 5′′′ and 2′′′′. These plates can
be visualized most accurately using scanning electron microscopy (SEM). The plates can also be
observed by staining cells with Calcofluor White (Fritz and Triemer 1985) that binds
preferentially to the plate boundaries, allowing the size and shape of the various thecal plates to
be clearly determined using epifluorescent microscopy.
Alexandrium species are separated by small differences in the size, shape, location and
ornamentation of their thecal plates. Common types of ornamentation include pores, reticulae
and vermiculae. Pores are channels through the theca and can be involved in a number of active
processes such as pinocytosis and extrusion of mucocysts (Steidinger and Tangen 1997).

5
Ornamentation patterns, numbers and location of pores in particular are thought to be reliable
characters for distinguishing species. Raised worm-like markings on the surface of the theca are
collectively known as vermiculae, whereas, reticulae are irregular or straight lines on the surface
of theca that form a mesh-like network (Steidinger and Tangen 1997). Unfortunately, many of
these ultrastructural characteristics can be obscured by age of the cell and by the fact that the
thecal plates lay beneath the plasmalemma in living cells (Steidinger and Tangen 1997). The
vermiculae and reticulae are often the last structure to form thus, a younger cell may not exhibit
representative structures of the entire genus or species. Older cell plates occasionally overlap
and/or lose clarity regarding connections between certain plate types and structures. In the case
of chain forming Alexandrium species, stressful conditions inhibit them from forming chains.
Therefore, the ability to form chains would not be suitable criteria for identification (Penna et al.
2008). When observing the cells through scanning electron microscopy (SEM), the fixation
process may lyse or distort the cells causing artifacts. Due to these potential problems,
identification based strictly on plate formulas and ornamentation is tedious and requires
particular care to allow accurate identifications.
Morphological characteristics used to identify species are often subtle and a potential way
to supplement information obtained from morphological analyses is to employ molecular
identification techniques carefully tested using confirmed cultures. Such molecular approaches
are becoming more precise and cost effective (Litaker et al. 2007). In addition, molecular
identification techniques can be used to address a wide variety of questions including
identification of culture isolates, distribution and abundance studies and population growth
estimates (La Du et al. 2002). These techniques can also be incorporated into effective harmful
algal bloom (HAB) monitoring systems (Anderson et al. 2005).

6
When selecting a particular gene for use in developing species-specific assays, it is
important to choose one that is evolving at a rate that is consistent with speciation events among
the species of interest. An ideal gene would exhibit within-species sequence variation, which is
consistently less than that of the amount of sequence divergence among species. Commonly
used regions in dinoflagellate molecular research include ribosomal DNA (rDNA) which encode
structural rRNAs crucial for protein synthesis (Penna et al. 2008; Litaker et al. 2007; Wang et al.
2008). The rDNA is often used in helping distinguish closely related species. The rDNA region
is transcribed as a single poylcistronic RNA that includes the small subunit (SSU, 18S) gene,
Internal Transcribed Spacer 1 (ITS1), 5.8S subunit gene, Internal Transcribed Spacer 2 (ITS2)
and the large subunit (LSU, 28S) gene. The ITS1 and ITS2 regions are excised by a dedicated
enzyme complex that liberates the SSU, 5.8S and LSU RNAs, which subsequently form the
catalytic core of the ribosomes. The SSU (~1800 bp) and LSU (~3600 bp) genes both contain
sub-regions that have different rates of sequence variation. Regions such as the D1-D3 portion of
the LSU gene have evolved quickly enough that they can be used to distinguish species. On the
whole, however, the SSU, LSU and 5.8S genes have evolved more slowly than the ITS regions
because they are under strong stabilizing selection due to their critical role they play in
translation (Litaker et al. 2007). Therefore the SSU, 5.8S, and LSU regions are more useful for
determining phylogenetic relationships among more distantly related species. This is especially
true for species which have only recently diverged or in the case where rates of substitution are
lower than average. In these instances, it is the more rapidly diverging ITS regions that can be
used to distinguish species. Once the ITS region of a given dinoflagellate has been established it
can be utilized as a species-specific ′DNA barcode′ (Litaker et al. 2007).
DNA barcodes or markers can be designed from such regions to target a single species. A

7
species of local concern is Alexandrium peruvianum. This species produces saxitoxins causing
PSP and was once thought to have a southernmost distribution around Cape Cod, MA. In 2004 it
was identified and isolated from New River, NC (Tomas, personal communication). Its presence
in local waters poses a potential threat to the local shellfish industry and the health of animals
and humans that commonly use the New River. To address this threat, a major goal of this
project was to collect sequence data essential to design accurate species-specific markers for
quick and reliable identification of A. peruvianum. Distinguishing between two or more closely
related species is key prior to the design of a species-specific probe. Alexandrium ostenfeldii is
the most closely related species to A. peruvianum and the two are known to co-occur in some
regions. The successful development of a specific marker requires thorough characterization of
both species. Alexandrium ostenfeldii was originally described from northern Iceland by Paulsen
in 1904, however, this species was also reported in temperate waters of both hemispheres
(Tillmann et al. 2007). Spirolides, known as fast-acting toxins, were originally described from
A. ostenfeldii cells isolated from Nova Scotia (Cembella et al. 2000). This species was also found
to produce PSP toxins (Tillmann et al. 2007).
Current controversy surrounding whether A. peruvianum and A. ostenfeldii should be
maintained as two separate species exists because of close sequence homology of the ribosomal
operon (18S–28S) and similar morphological characters (Kremp et al. 2010). An additional goal
of this project was to analyze the morphology of the clones from the New River and to reconcile
these data with the molecular results to ensure that the Alexandrium species isolated from the
New River were indeed A. peruvianum and not A. ostenfeldii. A reconciliation of the
morphology and phylogenetic data is crucial in order to ensure that any subsequent species-
specific molecular assays for these species are reliable. Utilizing species-specific assays to

8
develop qPCR probes is attractive in that it aids in; 1) identification, 2) quantifying DNA in
environmental samples and 3) monitoring the environment and assessing the potential need for
closure of shellfish beds in order to prevent human illness. This constitutes future work and
further development of the species-specific PCR assays designed in this study.
MATERIALS & METHODS
Cultures
Cultures of A. peruvianum and other unidentified Alexandrium species established by
isolating a single cell from subsurface (<1 m) water samples were maintained in L1 media
(Guillard and Hargraves 1993) under temperature/salinity conditions similar to that of the
isolation sites (Table 2). Clones AP0411-1, B2-NR, C10-NR and D4-NR (CMS TAC) were used
for molecular and morphological studies. Cultures of A. ostenfeldii were also used in this study
and obtained as CCMP1773 from the Provasoli-Guillard National Center for Culture of Marine
Phytoplankton, West Boothbay Harbor, ME and AOTVA4, AONOR4 and AOF0933 from Dr.
Anke Kremp, Finnish Environment Institute (SYKE), Helsinki, Finland. Cultures were grown in
ECG growth chambers on a 14:10 h light/dark cycle with 50-65 mol. photon quanta m2s-1.
Morphological methods
To ensure the use of comparable cells in the morphological analysis, samples in a similar
growth stage were taken during log to late log phase growth at approximately 8AM each
morning. Dinoflagellates divide late in the dark period and harvesting in the early morning

9
reduced the number of older cells having morphology and size changes. Once harvested, the cells
were fixed using Lugol’s solution (Utermöhl 1958).
Cultures of A. peruvianum (CMS TAC AP0411-1) and A. ostenfeldii (CCMP1773) were
examined morphologically along with a number of unidentified Alexandrium isolates obtained
from the New River Estuary (B2-NR, C10-NR and D4-NR). In addition, isolates from
Scandinavia (AOTVA4, AONOR4 and AOF0933) were examined. One drop of Lugol’s fixed
cells in addition to one drop of Calcofluor White Stain (Remel, Lenexa, KS USA) were placed
on a slide and a coverslip added. In some cases cells were gently squashed by applying pressure
to the coverslip using a pencil eraser but in many cases squashing was not necessary as natural
separation of plates occurred with the addition of the cover slip. Cells were then examined on a
Zeiss Imager Z1 Epifluorescence microscope equipped with an AxioCam MRc5 camera. An
excitation wavelength of 365 nm and an emission wavelength of 445 nm were used.
Images were taken at 40X and 100X and stored electronically. Plate measurements were
calculated by using the outline or measure function in AxioVision 4.8 software. Areas were
calculated using the outline tool in AxioVision and length and height measurements were
calculated using the measure tool. The 1′ plate and ventral pore were each outlined and the
software calculated the area of the outlined region. In addition, the s.a. plate and the 6′′ were
measured using the measurement tool drawn along the tallest points and the widest points of both
plates with AxioVision software calculating the length of each line. Ratios of width to height
measurements for each the s.a. and 6′′ plates measured were calculated along with the ratio of the
ventral pore area to 1′ plate area. Each measurement was then averaged and the standard
deviation calculated. Independent groups two-tailed T-test was performed to test for significant

10
differences (http://www.dimensionresearch.com/resources/calculators/ttest.html) and to
determine if the plate differences were consistent with those noted in Balech (1995).
Molecular Methods
DNA extraction - DNA was extracted using a 10% solution of Chelex. Approximately 1.5
mL of culture was transferred to a microfuge tube and spun for 3 minutes at 10,000 x g to pellet
cells and supernatant was poured off. An aliquot of 0.3 mL of Chelex (10% w/v) was then added
to the pelleted cells. The suspension was mixed on a vortex for 20 s, centrifuged for 3 min at
10,000 x g and incubated at 100˚ C for 20 minutes. Mixing, centrifugation and incubation was
immediately repeated one more time and a final centrifuge step was added. The supernatant was
then transferred into a clean 1.5 ml tube, taking care not to disturb the pellet, and stored in the
-20˚C freezer until use.
Polymerase Chain Reaction (PCR) Amplification - Partial dinoflagellate SSU, ITS1-ITS2
and the D1-D3 LSU regions were amplified using primers G22F and D2C (Table 3). PCR
reactions were performed in 50 µL volumes with 10 µL of 5X Green GoTaq Reaction Buffer
(Promega, Madison, WI), 1 µL 10mM dNTP (Promega), 0.5 µL of 10 µM primers, 0.25 µL
GoTaq (Promega), 36.75 µL sterile distilled water and 1 µL DNA template. The PCR
thermocycling program (Eppendorf Mastercycler Gradient, Westbury, NY) included an initial
denaturing step at 94 °C for 4 min, followed by 40 cycles of DNA denaturation at 94 °C for 30 s,
primer annealing at 56 °C for 45 s and fragment extension at 72 °C for 1.5 min. The final
extension ran for an additional 7 min at 72 °C. PCR products were then purified using StrataPrep
PCR Purification Kit (Stratagene, La Jolla, CA) according to the manufacturer′s instructions.

11
Cloning - PCR products were used as the template in TOPO TA Cloning reactions
(K4500-01, Invitrogen, Carlsbad, CA, USA). Each reaction included 1 µL PCR template, 1 µL
salt solution (1.2M NaCl, 0.06M MgCl2), 1 µL TOPO vector and the reaction was brought to a
final volume of 6 µL with 3 µL of deionized water. This reaction was incubated at room
temperature for a minimum of 5 min and then put on ice until use. Chemically competent E. coli
cells were thawed on ice and 2 µL of the cloning reaction as per manufacturer’s instructions was
gently swirled into the cells. This reaction was allowed to incubate on ice for 5–30 min. Cells
were then heat shocked for 30 s in a 42˚ C water bath and immediately put back on ice and 250
µL of S.O.C. medium at room temperature was added and allowed to shake at 200 rpm in a 37˚
C incubator for 1 h. Transformed cells were then spread on 150 mm Petri dishes with LB Agar
plus kanamycin and X-gal and incubated overnight at 37˚ C. White colonies containing plasmids
were then selected and each placed into 3 mL of 2xYT media and grown overnight at 37˚ C with
shaking (ca. 170rpm).
E. coli cells were lysed using reagents supplied by the manufacturer and plasmids were
then pelleted in a centrifuge and cleaned using the Wizard Plus Minipreps DNA Purification
System (Promega, Madison, WI, USA) following the manufacturer’s instructions. Purified
plasmids were then used as templates in PCR reactions using the vector primers M13F and
M13R (Table 3). PCR products yielding the correct sized fragment (~2000 bp) were purified
using StrataPrep PCR Purification Kit (400773, Stratagene, La Jolla, CA) according to the
manufacturer′s instructions.

12
Sequencing - Purified plasmid PCR products were used as templates in Big Dye (Applied
Biosystems, Foster City, CA, USA) cycle sequence reactions. Vector primers and internal
primers were used for sequencing (Table 3). Sequencing reactions were run on a 3130xl Genetic
Analyzer (DNA Core Facility, Center for Marine Science, UNCW) and edited and aligned in
MacVector 12 (MacVector Inc., Cary, NC, USA).
Sequence Alignment – In general, most of the sequences in GenBank spanned only the 3’
SSU, the ITS/5.8S or the D1-D2 LSU region. By far the largest number of sequences were from
the D1-D2 LSU region. Because there was little overlap between the sequences it was
impossible to reliably align all the sequences at the same time. Consequently, separate sub
alignments containing either the 3’ SSU, ITS/5.8S or the D1-D2 LSU sequences were built. Due
to scarcity and high conservancy of the 3’ SSU data, it was excluded from further analysis. The
ITS/5.8S and D1-D2 LSU sequence data were aligned using the ClustalX algorithm with open
and extended gap penalties of 8 and 5, respectively (Thompson et al. 1997). These alignments
were used for phylogenetic analyses and for identifying unique DNA sequences, which could be
used as a basis for developing species-specific assays.
Phylogenetic analysis
Phylogenetic analyses were undertaken to estimate if: 1) the sequences obtained from this
study and GenBank fell into discrete genetic clades indicative of species level differences and 2)
the degree to which sequences have been assigned the wrong species designation. In the latter
case, if sequences with different species designations fall into the same clade it would indicate
that at least some of those sequences had been ascribed to the wrong species.

13
The aligned sequences including those of A. peruvianum and A. ostenfeldii obtained from
GenBank (Table 4) were initially saved as a nexus file and MrModeltest version 3.7 used to
estimate the most appropriate phylogenetic model (Nylander, 2004; Posada & Crandall, 1998).
The selected best fit model for each data set was a general time reversible model with invariant
sites and gamma distribution (GTR +I+G). Phylogenetic relationships were determined using
MrBayes v3.0b41 (Ronquist and Huelsenbeck 2003). The program parameters were
statefreqpr=dirichlet(1,1,1,1), nst=6, rates=invgamma, contype=halfcompatible, nswaps=2. The
phylogenetic analyses employed two parallel analyses, each with 4 chains. Starting trees for each
chain were selected randomly. In both parallel analyses there was one cold and three
incrementally heated chains, where the heat of the ith chain is B = 1/[1 + (i - 1)T] and T = 0.01.
This allowed for more efficient swapping between chains. The analysis was run for 150,000
generations and trees were sampled from the cold chain every 100 generations. The first 1,500
generations, which constitute the “burn-in” phase, were excluded from the analysis.
Development of Species-Specific PCR Assays
The process of identifying unique species-specific sites in the ITS/5.8S and D1-D2 LSU
regions was initiated by comparing only A. peruvianum and A. ostenfeldii. Because of their close
sequence homology, this was the fastest way to eliminate all but the most promising sites. Once
potential sites were identified, primers were designed for each species (Table 5) and tested for
consistently strong amplification, and whether or not they would cross-react with genomic DNA
isolated from other closely related Alexandrium species (Table 6).

14
RESULTS
Morphological Analysis
Cells from cultures AP0411-1, AOTVA4, AOF0933, B2-NR, C10-NR and D4-NR
exhibited similar plate structures. The 1’ plates consistently exhibited a flat bottom side that
came into contact with the top of the s.a. plate with the remaining sides angular in nature with a
small ventral pore (Fig. 1). In addition, the 6’’ plate was often as tall as it was wide and the s.a.
plate had an “A” shape also taller than wide. Cells from cultures AONOR4 and CCMP1773
consistently exhibited a more curved 1’ plate that came to a point where it met the s.a. plate and
also contained a large ventral pore (Fig. 2). The s.a. and 6’’ plates of these cells were generally
wider than tall (Fig. 2).
These morphological differences between the two groups were tested statistically using a
two-tailed T-test. A significantly larger area of the 1’ plate in A. peruvianum cells (70.27 µm2)
compared to A. ostenfeldii cells (33.41 µm2) was observed. The ratios of width to height
measurements in the s.a. plate were significantly smaller in A. peruvianum cells (1.34) versus the
A. ostenfeldii cells (1.61) (Table 7). Also, the height of the 6’’ plate in A. peruvianum cells was
significantly greater (12.02 µm) than that of A. ostenfeldii cells (9.23).
Molecular Analysis
Sequence data - Twenty rDNA sequences obtained from the A. peruvianum isolate
AP0411-1 (Accession no. JF921179-JF921198, Appendix 1) were aligned and found to be nearly
identical (<0.0053 substitutions per site). In addition, eight sequences from A. ostenfeldii clone
CCMP1773 (Accession no. JF921171-JF921178, Appendix 2) were aligned with one another
and found to also be highly similar (<0.0044 substitutions per site).

15
Phylogenetic Analysis
The phylogenetic analysis of the D1-D2 sequences showed that the A. peruvianum and A.
ostenfeldii, fell into four distinct clades (Fig. 3). Clade 1 was composed of A. peruvianum
sequences from isolates obtained from North Carolina, USA and Finland as well as two A.
ostenfeldii sequences (AOTVA1 and AOTVA4) from Finland. Clade 2 consisted of A.
peruvianum sequences from two isolates originating from Spain. Clades 3 and 4 were distinct
and contained only sequences ascribed to A. ostenfeldii. Clade 3 contained isolates from
Canada/Scotland/Denmark and Clade 4 only isolates from New Zealand. While ITS data is less
abundant than that of the D1-D2 region, an ITS/5.8S phylogeny also confirmed the geographic
groupings to include clades formed by isolates of North Carolina, USA/Finland, Japan,
Spain/UK and Norway/Denmark (data not shown).
Assay development
Divergence rates within the ITS/5.8S and D1-D2 regions of A. peruvianum were 0.06 and
0.02 substitutions per site, respectively. Alignment of the D1-D2 LSU from A. peruvianum and
A. ostenfeldii indicated the presence of several potentially unique primer sites. However, when
these sites were checked against an alignment of all Alexandrium D1-D2 sequences they were
found to be present in other species as well.
The A. peruvianum and A. ostenfeldii ITS/5.8S alignment indicated the presence of two
unique 4 bp segments in the ITS2 region. These unique sites were located at bp 406 and bp 481
of the alignment. When these sequences were compared to those found in the comprehensive
D1-D2 alignment, they appeared unique and potentially useful for probe development.

16
A series of species-specific primers designed to target these putatively unique regions of
A. peruvianum and A. ostenfeldii were used. The primary difference among these primers was
that they were constructed to have the variable region occur in either the middle of the primer, or
at the 5’ or 3’ end. The primer pair that produced the most consistent and robust amplification of
A. peruvianum was APF3 and APR3 located at bp position 405-425 and 479-499, respectively.
The APF3 and APR3 primer set failed to cross-react with A. ostenfeldii or the other genomic
DNA samples and is likely to be species-specific (Table 8). The resulting amplification product
was 94 bp long (see gel picture, Appendix 3). The primer set that consistently amplified A.
ostenfeldii was AOF4 and AOR3 located at bp position 395-414 and 473-493, respectively. The
AOF4 and AOR3 primer set did not cross-react with A. peruvianum or genomic DNA of other
Alexandrium species (Table 9).
Whether the A. peruvianum and A. ostenfeldii primer pairs would amplify genomic DNA
from either Clade 2 or 4 isolates cannot be determined at this time due to the paucity of
Alexandrium ITS sequence data compared to that of the D1-D2 region for A. peruvianum and A.
ostenfeldii. Our laboratory did not have access to isolates or genomic DNA from Clades 2 and 4
or sequence data needed to test cross-reactivity.
DISCUSSION
This study focused on utilizing a combination of morphology and molecular data in order
to properly characterize A. peruvianum and to design a molecular assay that can unambiguously
distinguish this species from other closely related Alexandrium species. This species produces
saxitoxins and/or spirolides and has been recently found in waters of North Carolina (Tomas,
unpublished data). However, A. peruvianum may be more widespread than previously thought

17
which makes the proper identification of this toxic species critical. Distinguishing Alexandrium
species is not an easy task. Using brightfield microscopy, many Alexandrium species look
identical. Plate number, structure and ornamentation are not apparent without the use of scanning
electron microscopy (SEM) or fluorescent stains, such as Calcofluor. However, even with these
tools preparation techniques can cause artifacts that obscure important characteristics. Due to
these issues, using a combination of morphology and molecular data is key in properly
characterizing and identifying Alexandrium species.
A. ostenfeldii is the most morphologically and quantitatively similar species to A.
peruvianum. These species co-occur in certain parts of the world making it critically important to
be able to distinguish between the two toxic species. There is some debate about whether these
two species are two distinct species or whether they are part of a larger species complex. Studies
performed by Kremp et al. (2010) placed tropical A. peruvianum apart from A. ostenfeldii and
temperate A. peruvianum populations. The phylogenetic patterns they observed were not
mirrored in the morphology or toxin composition analyzed in the same study. This controversy
makes the proper characterization of both A. peruvianum and A. ostenfeldii all the more
important.
Lectotype illustrations from Enrique Balech (1995) are an invaluable resource for the
morphological characterization of A. peruvianum and A. ostenfeldii. These lectotypes are
frequently used to aid in identifying Alexandrium species. There are often subtle differences in
plate structures between Alexandrium species such as the position and size of the ventral pore or
a curved versus angular 1’ plate. Because of these subtleties proper identification of Alexandrium
species based on morphology takes a well-trained individual with a great deal of experience.
According to original descriptions by Balech and Tangen (1985) characteristics distinguishing A.

18
peruvianum from A. ostenfeldii are the angular nature of the 1’ plate, a smaller ventral pore and
s.a. plate that is taller than wide. Morphological analyses in this study confirm those descriptions
originally set forth by Balech and Tangen (1985).
Upon examination of the morphological characteristics using Calcofluor, the 1’ plate,
ventral pore, 6’’ plate and s.a. plate yielded the best proxy to differentiate between these two
species. Isolates AP0411-1, AOTVA4, AOF0933, B2-NR, C10-NR and D4-NR exhibited
characteristic morphology of A. peruvianum. These characteristics included a 1’ plate that is
angular in nature with a small ventral pore, a 6’’ plate that is often as tall as it is wide and an s.a.
plate that is taller than wide. Isolates CCMP1773 and AONOR4 exhibited a 1’ plate with more
curvature, a large ventral pore, a 6’’ plate that is wider than tall and an s.a. plate that is also wider
than tall. Measurements of the 1’, ventral pore, 6’’ and s.a. revealed statistically significant
differences (95% confidence level) in the area of the 1’ plate, height of the 6’’ and the ratio of
width to height of the s.a. plate. Again, these differences agree with the descriptions by Balech
and Tangen (1985) and support the idea that these are two separate species, A. peruvianum and
A. ostenfeldii.
This study has greatly increased A. peruvianum rDNA sequence data. Prior to this study
there were only four A. peruvianum sequences available on GenBank and these were limited to
the D1-D2 region of the LSU rDNA (i.e. FJ011436, FJ011437, FJ011438 and AM237340).
Twenty A. peruvianum sequences were generated in addition to eight A. ostenfeldii sequences
and these data indicated the within genome variation among clones was relatively low and that
no alternative form of the ribosomal gene was present as has been observed in A. fundyense
(Scholin et al. 1994). Not only were twenty A. peruvianum SSU – D1-D3 LSU sequences
generated but according to the findings some A. peruvianum isolates appear to have been

19
misidentified and submitted to GenBank as A. ostenfeldii (FJ011432, FJ011433, FJ011439,
FJ011440).
Phylogenetic analysis of Alexandrium D1-D2 sequences from GenBank and those
generated in this study were used to define the species boundaries of A. peruvianum and A.
ostenfeldii. The D1-D2 region phylogenetic analysis in the present study revealed four clades;
Clade 1 - North Carolina, USA/Finland, Clade 2 – Spain, Clade 3 - Canada/Denmark/Scotland
and Clade 4 - New Zealand. Clades 1 and 2 were comprised of mostly A. peruvianum with two
exceptions that were ascribed to A. ostenfeldii (AOTVA1 and AOTVA4) whereas Clades 3 and 4
were comprised solely of A. ostenfeldii. While representatives from Clades 2 and 4 were not
available for use, representatives of Clades 1 and 3 were available and analyzed
morphologically.
Phylogenetic analysis supported multiple clades belonging to each species generating the
following questions: 1) are there geographic clades within a species complex of A.
peruvianum/A. ostenfeldii similar to that of the A. fundyense/A. tamarense/A. catenella species
complex; 2) Do Clades 1 and 3 represent A. peruvianum and A. ostenfeldii, respectively and
Clade 2 is a population of A. peruvianum and Clade 4 is a population of A. ostenfeldii; 3) Are
Clade 1 A. peruvianum and Clade 3 A. ostenfeldii where Clades 2 and 4 represent new species?
Morphological and phylogenetic data from this study supports Clades 1 and 3 being A.
peruvianum and A. ostenfeldii, respectively but to fully answer the above questions more
information is necessary from Clades 2 and 4. In order to test the species complex idea, cross
breeding of representative members of each clade would need to be performed in addition to
toxin analysis. However, those studies were beyond the scope of this project.

20
A. peruvianum and A. ostenfeldii were clearly separated in this study both by
phylogenetic and morphological analyses. This supports the notion that these are indeed two
species with Clade 1 isolates belonging to A. peruvianum and Clade 3 isolates belonging to A.
ostenfeldii. However, Clades 2 and 4 require further study in order to determine if they are
composed of populations of A. peruvianum and A. ostenfeldii or if these are new species
altogether. As seen in this study, the use of molecular data and morphological data in
combination would be ideal in order to further analyze Clades 2 and 4.
After the differences between isolates were established it was possible to design species-
specific molecular assays for A. peruvianum and A. ostenfeldii. The specificity of the A.
peruvianum assay was tested with genomic DNA of other Alexandrium species. The assay
reacted with all Clade 1 isolates and did not react with any Clade 3 isolates or other closely
related Alexandrium spp. There is no way to know if the assay will react with Clade 2 isolates as
they were not available for testing. Similarly, the A. ostenfeldii assay was tested against other
Alexandrium species and only reacted with Clade 3 isolates but none of the Clade 1 isolates or
other DNA samples. To confirm this assay as specific additional testing is needed with
representatives of Clades 2 and 4. In addition, representatives from these clades would need to be
morphologically characterized and identified and probe tested before the assays designed here
are labeled as all-inclusive A. peruvianum or A. ostenfeldii assays. The A. peruvianum and A.
ostenfeldii specific markers designed in this study may only be Clade 1-specific for North
Carolina, USA/Finland and Clade 3-specific for Canada/Denmark/Scotland, respectively, as
opposed to species-specific. Further testing of the marker on A. peruvianum isolates from Spain
and surrounding regions and A. ostenfeldii isolates from New Zealand would aid in determining
the specificity of the marker.

21
The combination of morphological, molecular and phylogenetic analyses was key in
properly characterizing A. peruvianum and A. ostenfeldii and designing specific molecular assays
that distinguish the two species. The morphological and molecular results indicated that only A.
peruvianum is found in the New River Estuary, NC and that Clade 1 and Clade 3-specific PCR
assays could be developed. The A. peruvianum Clade 1-specific molecular assay designed in this
study will offer advantages for samples of A. peruvianum from Eastern USA. For areas near and
within the Baltic Sea where A. peruvianum and A. ostenfeldii co-occur both Clade 1 and Clade 3-
specific assays will be useful. These assays can be used to detect the presence of toxic A.
peruvianum and A. ostenfeldii from cultured isolates or environmental samples and act as a
compliment to morphology in order to properly identify these species.
Further work should be done in building a geographically diverse dataset of A.
peruvianum and A. ostenfeldii sequences based on either the ITS/5.8S and/or D1-D2 LSU
regions in order to allow comparisons on a larger scale. In addition, morphological analysis of
representative isolates from each region should be initiated. Once these issues are addressed,
specific molecular assays could be designed for each species or clade.
The development of a qPCR probe from the specific assays would be beneficial.
Quantitative polymerase chain reaction (qPCR), also referred to as real-time PCR, can be used in
order to quantify initial DNA concentrations within samples. Unlike traditional PCR, qPCR
quantifies DNA during the logarithmic amplification of the target (Gauthier et al. 2006).
Species-specific qPCR probes have proved useful in clinical laboratory diagnostics as well as
diagnostics and detection of disease causing protists found to infect oysters (Gauthier et al.
2006). Clade 1 A. peruvianum and Clade 3 A. ostenfeldii qPCR probes would be beneficial in
determining concentrations of DNA within environmental samples. This is important in

22
assessing cell concentrations within an area and can lead to a quick and reliable way to determine
the potential need for closure of shellfish beds in order to prevent human illness. In regions
where A. peruvianum and A. ostenfeldii co-occur, specific qPCR probes would be especially
beneficial in teasing out which species is responsible for toxic blooms at any given time.

23
LITERATURE CITED
Anderson, D.M., Kulis, D.M., Keafer, B.A., Gribble, K.E., Marin, R. and Scholin, C.A. 2005.
Identification and enumeration of Alexandrium spp. from the Gulf of Maine using
molecular probes. Deep-Sea Research II. 52:2467-2490.
Balech, E. 1980. On thecal morphology of dinoflagellates with special emphasis cingular and
sulcal plates. Anales del Centro de Ciencias del Mar y Limnologia, Universidad Nacional
Auto’noma de Me’xico. 7:57-68.
Balech, E. and Tangen, K. 1985. Morphology and taxonomy of toxic species in the Tamarensis
group (Dinophyceae): Alexandrium excavatum (Braarud) comb. nov. and Alexandrium
ostenfeldii (Paulsen) comb. nov. Sarsia. 70(4)333-343.
Balech, E. 1995. The genus Alexandrium Halim (Dinoflagellata), Sherkin Island Marine Station
Publication, Sherkin Island, Co, Cork, Ireland.
Cavalier-Smith, T. 1999. Principles of protein and lipid targeting in secondary symbiogenesis:
euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree.
Journal of Eukaryotic Microbiology. 46(4):347-366.
Cembella, A.D., Lewis, N.I. and Quilliam, M.A. 2000. The marine dinoflagellate Alexandrium
ostenfeldii (Dinophyceae) as the causative organism of spirolide shellfish toxins.
Phycologia. 39(1):67-74.
Delwiche, C.F. 2007. Algae in the warp and weave of life: bound by plastids. In: Brodie, J. &
Lewis, J., eds. Unravelling the algae; the past, present, and future of algal systematics.
CRC Press. Boca Raton, FL. pp. 7-20.

24
Dodge, J. D. and Lee, J.J. 2000. Phylum Dinoflagellata. In: Lee, J.J., Leedale, G. F. & Bradbury,
P., eds. An Illustrated Guide to the Protozoa, Second Edition, vol. 1. Society of
Protozoologists, Lawrence, Kansas. pp. 656-689.
Franquelo, F.C., Picón, F.D., Cruz-Conde de Boom, R., Andrade, A.T. and García, G.Q. 2009.
Paralytic shellfish poisoning. Emergencias. 21:306-308.
Friedman, M.A. and Levin, B.E. 2005. Neurobehavioral effects of harmful algal bloom (HAB)
toxins: A critical review. Journal of the International Neuropsychological Society.
11:331–338.
Fritz, L. and Triemer, R.E. 1985. A rapid simple technique utilizing Calcofluor White M2R for
the visualization of dinoflagellate thecal plates. Journal of Phycology. 21(4):662-664.
Fukuyo, Y. 1985. Morphology of Protogonyaulax tamarensis (Lebour) and Protogonyaulax
catenella (Whedon and Kofoid) Taylor from Japanese coastal waters. Bulletin of Marine
Science. 37(2):529-537.
Gauthier, J.D., Miller, C.R. and Wilbur, A.E. 2006. Taqman MGB real-time PCR approach to
quantification of Perkinsus marinus and Perkinsus spp. in oysters. Journal of Shellfish
Research. 25(2):619-624.
Graham, L.E., Graham, L.M. & Wilcox, L.W. 2009. Dinoflagellates. In: Algae 2nd edition.
Benjamin Cummings. San Francisco, CA. 186-216.
Guillard, R.R.L. and Hargraves, P.E. 1993. Stichochrysis immobilis is a diatom, not a
chrysophyte. Phycologia 32: 234-236.
Halim, Y. 1960. E. tude quantitative et qualitative du cycle e.cologique des dino£agelle.s dans
les eaux de Villefranche-sur-Mer. Annales de l’Institut Oce.anographique, Paris, 38, 123-
232.

25
Hansen, G., Daugbjerg, N. and Franco, J.M. 2003. Morphology, toxin composition and LSU
rDNA phylogeny of Alexandrium minutum (Dinophyceae) from Denmark, with some
morphological observations on other European strains. Harmful Algae. 2:317-335.
John, U., Fensome, R.A., Medlin, L.K. 2003. The application of a molecular clock based on
molecular sequences and the fossil record to explain biogeographic distributions within
the Alexandrium tamarense “Species Complex” (Dinophyceae). Molecular Biology and
Evolution. 20(7):1015-1027.
Kremp, A., Mäenpää, P., Suikkanen, S., Krock, B., Kankaanpää, H., Sillman, P., Nagai, S. and
Lim, P.T. Phylogenetic relationships, morphological variation and toxicity patterns in the
Alexandrium ostenfeldii/Alexandrium peruvianum species complex. (Poster) 14th
International Conference on Harmful Algae, Hersonissos-Crete, Greece, 1-5 November
2010.
La Du, J., Erdner, D., Dyhrman, S. and Anderson, D. 2002. Molecular approaches to
understanding population dynamics of the toxic dinoflagellate Alexandrium fundyense.
Biological Bulletin. 203: 244-245.
Litaker, R.W., Vandersea, M.W., Kibler, S.R., Reece, K.S., Stokes, N.A., Lutzoni, F.M., Yonish,
B.A., West, M.A., Black, M.N.D. and Tester, P.A. 2007. Recognizing dinoflagellate
species using ITS rDNA sequences. Journal of Phycology. 43:344-355.
Nylander, J.A.A. 2004. MrModeltest v2. Program distributed by the author. Evolutionary
Biology Centre, Uppsala University.
Penna, A., Fraga, S., Masó, M., Giacobbe, M.G., Bravo, I., Garcés, E., Vila, M., Bertozzini, E.,
Andreoni, F., Lugliè, A. and Vernesi, C. 2008. Phylogenetic relationships among the
Mediterranean Alexandrium (Dinophyceae) species based on sequences of 5.8S gene and

26
Internal Transcript Spacers of the rRNA operon. European Journal of Phycology.
43(2):163-178.
Plumley, G. 1997. Marine Algal Toxins; Biochemistry, genetics, and molecular biology.
Limnology and Oceanography. 42(No. 5, Part 2):1252-1264.
Posada, D. and Crandall, K.A. 1998. Modeltest: testing the model of DNA substitution.
Bioinformatics 14: 817-818.
Ronquist, F. and Huelsenbeck, J. P. 2003. MRBAYES 3: Bayesian phylogenetic inference under
mixed models. Bioinformatics. 19:1572-1574.
Scholin, C.A., Herzog, M., Sogin, M. and Anderson, D.M. 1994. Identification of group- and
strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae). II.
Sequence analysis of a fragment of the LSU rRNA gene. Journal of Phycology. 30:999-
1011.
Sournia, A. 1986. Atlas du Phytoplancton Marin. Volume 1: Introduction, Cyanophycées,
Dictyochophycées, Dinophycées et Raphidophycées. Éditions du Centre National de la
Recherche Scientifique. Paris, France. Pg. 1-219.
Steidinger, K.A. and Tangen, K. 1997. Dinoflagellates. In: Tomas, C., ed. Identifying Marine
Phytoplankton. Academic Press. New York, USA. 387-584.
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. 1997. The ClustalX
windows interface: flexible strategies for multiple sequence alignment aided by quality
analysis tools. Nucleic Acids Research 24: 4876-82.
Tillmann, U., John, U. and Cembella, A. 2007. On the allelochemical potency of the marine
dinoflagellate Alexandrium ostenfeldii against heterotrphic and autotrophic protists.
Journal of Plankton Research. 29(6):527-543.

27
Utermöhl, H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. int.
Ver. theor. angew. Limnol. 9:1-38.
Wang, D-Z., Lin, L., Gu, H-F., Chan, L.L. and Hong H.S. 2008. Comparative studies on
morphology, ITS sequence and protein profile of Alexandrium tamarense and A.
catenella isolated from the China Sea. Harmful Algae. 7: 106-113.

28
Table 1. Recognized Alexandrium species and present knowledge of
toxicity.
Species Toxic Alexandrium acatenella Yes Alexandrium affine No Alexandrium andersonii No Alexandrium balechii No Alexandrium camurascutulum No Alexandrium catenella Yes Alexandrium cohorticula Yes Alexandrium compressum No Alexandrium concavum No Alexandrium depressum No Alexandrium excavatum No Alexandrium foedum No Alexandrium fraterculum No Alexandrium fraterculus No Alexandrium fukuyoi No Alexandrium fundyense Yes Alexandrium hiranoi Yes Alexandrium insuetum No Alexandrium kutnerae No Alexandrium leei Yes Alexandrium margalefii No Alexandrium minutum Yes Alexandrium monilatum Yes Alexandrium ostenfeldii Yes Alexandrium peruvianum Yes Alexandrium pseudogonyaulax Yes Alexandrium satoanum No Alexandrium tamarense Yes Alexandrium tamiyavanichii Yes Alexandrium tamutum No Alexandrium taylorii No Alexandrium tropicale No

29
Table 2. Isolates of A. peruvianum and A. ostenfeldii used in this study including isolate code, location of sample,
isolation date, isolator, growth temperature and salinity.
a Maintained in the CMS TAC Culture Collection, UNCW, Wilmington, NC b Maintained in the CCMP Culture Collection, Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, ME c Maintained in the Finnish Environment Institute (SYKE), Marine Research Centre, Helsinki, Finland
Proposed species Isolate ID Isolated from Isolation date Isolated by Temp. Salinity A. peruvianum a AP0411-1 New River, NC November 2004 Tomas, C.R. 22 15 Alexandrium sp. a B2-NR New River, NC April 2010 Tomas, C.R. 20 26 Alexandrium sp. a C10-NR New River, NC April 2010 Tomas, C.R. 20 26 Alexandrium sp. a D4-NR New River, NC April 2010 Tomas, C.R. 20 26 A. ostenfeldii b CCMP1773 Fjorden, Denmark May 1986 Hansen, PJ 15 30 A. ostenfeldii c AOTVA4 Ålond, Finland 2004 Kremp, A. 15 20 A. ostenfeldii c AOF0933 Ålond, Finland 2009 Kremp, A. 15 20 A. ostenfeldii c AONOR4 Oslofjorden, Norway Unknown Kremp, A. 15 30

30
Table 3. Primers used in this study to generate partial SSU, ITS1, 5.8S, ITS2 and partial LSU
sequences from A. peruvianum (AP0411-1) and A. ostenfeldii (CCMP1773).
Primer name Sequence 5′ à 3′ Source Forward
G22F TGGTGGAGTGATTTGTCTGG Litaker, R.W. et al. 2003 M13F GTAAAACGACGGCCAG Invitrogen, Carlsbad, CA, USA G18F CAATAACAGGTCTGTGATGC Litaker, R.W. et al. 2003 G45F CACTTAGAGGAAGGAGAAGT Vandersea, M.W. personal communication Reverse D2C CCTTGGTCCGTGTTTCAAGA Scholin et al. 1994 M13R CAGGAAACAGCTATGAC Invitrogen, Carlsbad, CA, USA G18R GCATCACAGACCTGTTATTG Litaker, R.W. et al. 2003 G45R ACTTCTCCTTCCTCTAAGTG Vandersea, M.W. personal communication ITSR2 TCCCTGTTCATTCGCCATTAC Litaker, R.W. et al. 2003

31
Table 4. Alexandrium D1-D2 rDNA sequences obtained from GenBank
and used in combination with those of this study for the D1-D2
alignment and phylogenetic analysis.
Species Accession no. A. insuetum AF318233 A. insuetum AY962834 A. insuetum AB088249 A. insuetum AB088248 A. tamutum AJ535373 A. tamutum AJ535372 A. tamutum AY962863 A. tamutum AY268618 A. tamutum EU707459 A. tamutum AJ535354 A. tamutum AY268617 A. tamutum GQ120507 A. tamutum AY962865 A. tamutum AJ535366 A. tamutum AJ535367 A. tamutum AY962864 A. tamutum AY962862 A. tamutum AY268616 A. peruvianum FJ011437 A. peruvianum FJ011438 A. ostenfeldii FJ011437 A. ostenfeldii FJ011438 A. ostenfeldii AY962857 A. ostenfeldii AY268614 A. ostenfeldii AJ535358 A. ostenfeldii EU707483 A. ostenfeldii GQ120506 A. ostenfeldii GQ120505 A. ostenfeldii AY962858 A. ostenfeldii AJ535363 A. ostenfeldii AY268615 A. ostenfeldii AY268611 A. ostenfeldii AF033533 A. ostenfeldii AY962856 A. ostenfeldii AY268601 A. ostenfeldii AJ535357 A. ostenfeldii AY268603

32
Table 5. Primers designed to distinguish A. peruvianum (AP)
and A. ostenfeldii (AO). Grey regions indicate the variable
regions between the two species.
Primer Sequence (5' à 3') Forward APF1 TGTGTGCGTCAATGCTGTC APF2 CGTCAATGCTGTCGCATTAG APF3 CTGTCGCATTAGACACACGC AOF1 CTGTGTGTGTCAATGCGTGT AOF2 CTGTGTGCGTCAATGCTTTT AOF3 CGTGTGCATTCGACTCACG AOF4 TGTCAATGCGTGTGCATTCG AOF5 CGTTTGCATTAGACACATGCG AOF6 GTGTCAATGCGTTTGCATTAG AOF7 CTTTTGCATTAGACACACGCG AOF8 GCGTCAATGCTTTTGCATTAG Reverse APR1 TCCAGTGACAGAGGTTAGAC APR2 GCAACCAAATCCAGTGACAG APR3 CACATTGCAACCAAATCCAGT AOR1 GCACGTGACAGAGGTTAGA AOR2 ACCAATGCACATGACAGAGG AOR3 CATTGCAACCAATGCACATGA AOR4 GCAACCAAAGCACGTGACAG AOR5 CACATTGCAACCAAAGCACG

33
Table 6. Genomic DNA used in cross-reactivity tests of A.
peruvianum and A. ostenfeldii primer sets.
Species Culture ID A. affine CCMP 112 A. andersoni CCMP1718 A. catenella A. catenella A. hiranoi AH2215 A. hiranoi CCMP 2215 A. insuetum CCMP 2082 A. leei CCMP 2955 A. minutum CCMP 1888 A. monilatum A.monMiss A. monolatum A mono YK A. ostenfeldii AOTVA4 A. ostenfeldii AOF0933 A. ostenfeldii AONOR4 A. ostenfeldii CCMP1773 A. ostenfeldii CCMP 3248 A. peruvianum AP0411-1 A. tamarense CCMP 116 A. tamarense CCMP 1719 A. tamarense (clade 1) Dentist Dock A. tamarense (clade 2) CCMP1598 A. tamarense (clade 4) CCMP1771 Alexandrium sp. B2-NR Alexandrium sp. C10-NR Alexandrium sp. D4-NR

34
Table 7. Mean and standard deviation (sd) of plate measurements for A. peruvianum and A. ostenfeldii, number of samples (n) and
significance (5% level) using a two-tailed student’s t-test. Measurements from AP0411-1, AOTVA4, AOF0933 were used to calculate
A. peruvianum mean and sd and measurements from CCMP1773 and AONOR4 were used to calculate A. ostenfeldii mean and sd.
Sample
S.a. width (µm)
S.a. height (µm)
Ratio (w/h)
V. pore diameter
(µm)
V. pore area (vp)
(µm2)
1st apical area (1’)
(µm2) Ratio
(vp/1’) 6'' width
(µm) 6'' height
(µm) Ratio
(6''w/h)
A. peruvianum mean 6.44 4.96 1.34 1.96 2.93 70.27 0.07 18.86 12.01 1.57 sd 1.16 1.18 0.26 0.61 1.06 28.63 0.12 3.14 0.99 0.22 n= 22 22 22 14 14 14 14 8 8 8 A. ostenfeldii 6.54 4.10 1.61 2.22 3.24 33.41 0.10 16.12 9.23 1.74 mean 1.00 0.42 0.30 0.11 0.23 4.50 0.01 3.10 1.01 0.17 sd 1.00 0.42 0.30 0.11 0.23 4.50 0.01 3.10 1.01 0.17 n= 7 7 7 3 3 3 3 3 3 3 t value 0.2046 1.8708 2.3095 0.7179 0.4920 2.1696 0.4219 1.2926 4.4018 1.1962 df 27 27 27 15 15 15 15 9 9 9 Confidence level 18.06 92.78 97.12 51.61 37.02 95.35 32.09 77.16 99.74 73.78
Significant at 5%? No No Yes No No Yes No No Yes No

35
Table 8. Results of cross-reactivity tests with primer set APF3/APR3*
*Gel pictures included in Appendix 3.
Species Culture ID Amplified? A. peruvianum AP0411-1 Yes A. ostenfeldii AOTVA4 Yes A. ostenfeldii AOF0933 Yes A. ostenfeldii AONOR4 No A. ostenfeldii CCMP1773 No A. tamarense (clade 1) Dentist Dock No A. tamarense (clade 2) CCMP1598 No A. tamarense (clade 4) CCMP1771 No A. andersoni CCMP1718 No A. monilatum A.monMiss No A. hiranoi AH2215 No A. catenella A. catenella No Alexandrium sp. B2-NR Yes Alexandrium sp. C10-NR Yes Alexandrium sp. D4-NR Yes

36
Table 9. Results of qPCR assays with A. ostenfeldii primer set
AOF4/AOR3*.
*Tests performed by Mark W. Vandersea, National Ocean Service at the Center for Coastal Fisheries and Habitat Research in Beaufort, North Carolina.
Species Culture ID qPCR result A. ostenfeldii CCMP 3248 + A. ostenfeldii CCMP 1773 + A. ostenfeldii AONOR4 + A. tamarense CCMP 116 - A. tamarense CCMP 1771 - A. leei CCMP 2955 - A. insuetum CCMP 2082 - A. affine CCMP 112 - A. tamarense CCMP 1719 - A. hiranoi CCMP 2215 - A. minutum CCMP 1888 - A. monilatum A mono YK -

37
Figure 1. Calcofluor White stained cells representing A. peruvianum showing the anterior sulcal (s.a.) plates, the
ventral pore (v.p.), first apical plate (1’) and the 6th precingular plate (6’’); a) AP0411-‐1, b) B2-‐NR, c) C10-‐NR,
d) D4-‐NR, e) AOTVA4 and f) AOF0933.

38
Figure 2. Calcofluor White stained cells representing A. ostenfeldii
Isolates showing the s.a. plates, the ventral pore (v.p.), first
apical plate (1’) and the 6th precingular plate (6’’);
a) CCMP1773 and b) AONOR4.

39
Figure 3. Phylogeny of A. peruvianum and A. ostenfeldii showing four distinct clades; 1) A.
peruvianum from North Carolina, USA and Finland with the exception of 2 isolates
identified as A. ostenfeldii, 2) A. peruvianum sequences from Spain isolates, 3) A. ostenfeldii
isolates from Canada/Scotland/Denmark and 4) A. ostenfeldii isolates from New Zealand.

40
APPENDIX 1
JF921179 A. peruvianum AP0411-1 Clone 1 – 18S, ITS1, 5.8S, ITS2, 28S (D1-D3) CGAACGATTTGCACGTCAGTATCGATACGAACCTCCATCAGAGTTTCCTCTGAATTCGTTCTGTTCAGGCATAGTTCACCATCTTTCGGGTCCTAATAGATATGCTCAAACTCAAACCTCTGTCTGCTAATCGGTCGGCTGCTGGTGCAAGTATCCCAGCCAATACTTTCATTGCGCAAAAAGGTTTGCCCACCCACGAACTTGCACATCTGTTAGACTCCTTGGTCCGTGTTTCAAGACGGGTCAAGCAGAAACATTTTGCCAGCAACAATGTGCAAGGGCTTGCAGTGCCCAGGGAGGAGAGCCCTCCCCTTTTGGCAAGAAGGCACACACAAGAACACCAGACACACGTATCAAATCACAAATCATTGCAAACACATGCATTCCAATACCCACAGGCAAATTACCATTCATGTGCAAGGGTAATGATTTGCAGAAATAGACGCTGACATTCAAGGTAAGAACCATTGCGCCCACAAGTGGACGCAACAATCTCACCAAGTAGATCAATTCTGTTTGCTTTCTGTTCAGCAAATGCAGACTCTTTTAATTCTCTTTTCAAAGTCCTTTTCATATTTCCCTCATGGTACTTGTTTGCTATCAGTCTCAATAATATATTTTCCTTTACATGGAATTTACCACCCACTTTGCATTCCAATGCCGAGGAGTGTGACTCGTCAAATATATACCGTGCACGGAGGACTGCAAATGACAAAAAGGAATCTCACCCTCATTGACGCTTTCTTTCAATAGGCTTGCACCTGCGCCTCCATTGGCAATACATTTCAAAATTACAATTCAAGGCCGAAGGCCCCAATTTTCAAGCTGAGCAGTTCCTTGTTCATTCGCAATTACTTAAGGAATCCCATTTGGTTCATTTTCCACCGCCTACTTATATGCTTAAATTCAGCAGGTTTACATGCTTCACTTCATGTTAAGTTTACGCGTGCAAGCTTCAGAAAACAAACACATTGCAACCAAATCCAGTGACAGAGGTTAGACCTAAGCAGACACGGTAAGGTTGCAAGGCGTTTGCAAGCGCGTGTGTCTAATGCGACAGCATTGACGCACACAGCTCACAATGTTGCTGAACCAGCAAGCCAGAGATTGGAAGTTAATTGACATTGAATCAAGCACACCTTCAAGCATATCCCAAAGGTGCAAATTACGTTCAAACATCTATTGGCTCACGGAATTCTGCAATTCACAATGCATATCACATTTTGCTGCATTCTTCATCATCAATTGAGCTAAGACATTCATTGCAAAAACACATTTCGCGATTAGGATTCAATCAAAGAACGAGCGTGTTACCAAGAATTGATGTTCAGGAGCACGGCAGCATGAAAGCGCTTGCTGCTGCAAGCCATGCCACCCACGAGCAAATGATGCAGAGCCCAAGGGTTGGGAACCACACCACAGCTCACAAAGTCGTGAAAGATTGTTGTTGTTAGGAATGTGCAAATGATCCTTCCGCAGGTTCACCTACAGAAACCTTGTTACGACTTCTCCTTCCTCTAAGTGATAAGGTTCATTAAACTTTCCACTGCAATGTTCAAGAACTGAACACTGCTGCAGTCCGAATTATTCACCGGATCACTCAATCGGTAGGAGCGACGGGCGGTGTGTACAAAGGGCAGGGACGTAATCAGCACAAGCTGATGACTCAAGCTTACTAGGAATTCCTCGTTTAAGATTAATAATTGCAATAATCAATCCCCATCACGATGCATTTTTTCAAGATTACCCAACCTTTCCAGGCAAGGCAACAAACTCGTTGAACACATCAGTGTAGCGCGCGTGCAGCCCAGAACATCTAAGGGCATCACAGACCTGTTATTGCCTCAAACTTCCTTGCGTTATACACACAAAGTCCCTCTAAGAAGTTGCCCACATAACCGAAATTACGTGTAACTATTTAGCAGGTTAAGGTCTCGTTCGTTAACGGAATTAACCAGACAAATCACTCCACCA JF921180 A. peruvianum AP0411-1 Clone 2 – 18S, ITS1, 5.8S, ITS2, 28S (D1-D3) CGAACGATTTGCACGTCAGTATCGATACGAACCTCCATCAGAGTTTCCTCTGAATTCGTTCTGTTCAGGCATAGTTCACCATCTTTCGGGTCCTAATAGATATGCTCAAACTCAAACCTCTGTCTGCTAATCGGTCGGCTGCTGGTGCAAGTATCCCAGCCAATACTTTCATTGCGCAAAAAGGTTTGCCCACCCACGAACTTGCACATCTGTTAGACTCCTTGGTCCGTGTTTCAAGACGGGTCAAGCAGAAACATTTTGCCAGCAACAATGTGCAAGGGCTTGCAGTGCCCAGGGAGGAGAGCCCTCCCCTTTTGGCAAGAAGGCACACACAAGAACACC

41
AGACACACGTATCAAATCACAAATCATTGCAAACACATGCATTCCAATACCCACAGGCAAATTACCATTCATGTGCAAGGGTAATGATTTGCAGAAATAGACGCTGACATTCAAGGTAAGAACCATTGCGCCCACAAGTGGACGCAACAATCTCACCAAGTAGATCAATTCTGTTTGCTTTCTGTTCAGCAAATGCAGACTCTTTTAATTCTCCTTTCAAAGTCCTTTTCATATTTCCCTCATGGTACTTGTTTGCTATCAGTCTCAATAATATATTTTCCTTTACATGGAATTTACCACCCACTTTGCATTCCAATGCTGAGGAGTGTGACTCGTCAAATATATACCGTGCACGGAGGACTGCAAATGACAAAAAGGAATCTCACCCTCATTGACGCTTTCTTTCAATAGGCTTGCACCTGCGCCTCCATTGGCAATACATTTCAAAATTACAATTCAAGGCCGAAGGCCCCAATTTTCAAGCTGAGCAGTTCCTTGTTCATTCGCAATTACTTAAGGAATCCCATTTGGTTCATTTTCCACCGCCTACTTATATGCTTAAATTCAGCAGGTTTACATGCTTCACTTCATGTTAAGTTTACGCGTGCAAGCTTCAGAAAACAAGCACATTGCAACCAAATCCAGTGACAGAGGTTAGACCTAAGCAGACACGGTAAGGTTGCAAGGCGTTTGCAAGCGCGTGTGCCTAATGCGACAGCATTGACGCACACAGCTCACAATGTTGCTGAACCAGCAAGCCAGAGATTGGAAGTTAATTGACATTGAATCAAGCACACCTTCAAGCATATCCCAAAGGTGCAAATTACGTTCAAACATCTATTGGCTCACGGAATTCTGCAATTCACAATGCATATCACATTTTGCTGCATTCTTCATCATCAATTGAGCTAAGACATTCATTGCAAAAACACATTTCGCGATTAGGATTCAATCAAAGAACGAGCGTGTTACCAAGAATTGATGTTCAGGAGCACGGCAGCATGAAAGCGCTTGCTGCTGCAAGCCATGCCACCCACGAGCAAATGATGCAGAGCCCAAGGGTTGGGAACCACACCACAGCTCACAAAGTCGTGAAAGATTGTTGTTGTTAGGAATGTGCAAATGATCCTTCCGCAGGTTCACCTACAGAAACCTTGTTACGACTTCTCCTTCCTCTAAGTGATAAGGTTCATTAAACTTTCCACTGCAATGTTCAAGAACTGAACACTGCTGCAGTCCGAATTATTCACCGGATCACTCAATCGGTAGGAGCGACGGGCGGTGTGTACAAAGGGCAGGGACGTAATCAGCACAAGCTGATGACTCAAGCTTACTAGGAATTCCTCGTTTAAGATTAATAATTGCAATAATCAATCCCCATCACGATGCATTTTTTCAAGATTACCCGACCTTTCCAGGCAAGGCAACAAACTCGTTGAACACATCAGTGTAGCGCGCGTGCAGCCCAGAACATCTAAGGGCATCACAGACCTGTTATTGCCTCAAACTTCCTTGCGTTATACACACAAAGTCCCTCTAAGAAGTTGCCCACATAACCGAAATTACGTGTAACTATTTAGCAGGTTAAGGTCTCGTTCGTTAACGGAATTAACCAGACAAATCACTCCACC JF921181 A. peruvianum AP0411-1 Clone 3 – 18S, ITS1, 5.8S, ITS2, 28S (D1-D3) TATCGATACGAACCTCCATCAGAGTTTCCTCTGAATTCGTTCTGTTCAGGCATAGTTCACCATCTTTCGGGTCCTAATAGATATGCTCAAACTCAAACCTCTGTCTGCTAATCGGTCGGCTGCTGGTGCAAGTATCCCAGCCAATACTTTCATTGCGCAAAAAGGTTTGCCCACCCACGAACTTGCACATCTGTTAGACTCCTTGGTCCGTGTTTCAAGACGGGTCAAGCAGAAACATTTTGCCAGCAACAATGTGCAAGGGCCTGCAGTGCCCAGGGAGGAGAGCCCTCCCCTTTTGGCAAGAAGGCACACACAAGAACACCAGACACACGTATCAAATCACAAATCATTGCAAACACATGCATTCCAATACCCACAGGCAAATTACCATTCATGTGCAAGGGTAATGATTTGCAGAAATAGACGCTGACATTCAAGGTAAGAACCATTGCGCCCACAAGTGGACGCAACAATCTCACCAAGTAGATCAATTCTGTTTGCTTTCTGTTCAGCAAATGCAGACTCGTTTAATTCTCTTTTCAAAGTCCTTTTCATATTTCCCTCATGGTACTTGTTTGCTATCAGTCTCAATAATATATTTTCCTTTACATGGAATTTACCACCCACTTTGCATTCCAATGCCGAGGAGTGTGACTCGTCAAATATATACCGTGCACGGAGGACTGCAAATGACAAAAAGGAATCTCACCCTCATTGACGCTTTCTTTCAATAGGCTTGCACCTGCGCCTCCATTGGCAATACATTTCAAAATTACAATTCAAGGCCGAAGGCCCCAATTTTCAAGCTGAGCAGTTCCTTGTTCATTCGCAATTACTTAAGGAATCCCATTTGGTTC

42
ATTTTCCACCGCCTACTTATATGCTTAAATTCAGCAGGTTTACATGCTTCACTTCATGTTAAGTTTACGCGTGCAAGCTTCAGAAAACAAACACATTGCAACCAAATCCAGTGACAGAGGTTAGACCTAAGCAGACACGGTAAGGTTGCAAGGCGTTTGCAAGCGCGTGTGTCTAATGCGACAGCATTGACGCACACAGCTCACAATGTTGCTGAACCAGCAAGCCAGAGATTGGAAGTTAATTGACATTGAATCAAGCACACCTTCAAGCATATCCCAAAGGTGCAAATTACGTTCAAACATCTATTGGCTCACGGAATTCTGCAATTCACAATGCATATCACATTTTGCTGCATTCTTCATCATCAATTGAGCTAAGACATTCATTGCAAAAACACATTTCGCGATTAGGATTCAATCAAAGAACGAGCGTGTTACCAAGAATTGATGTTCAGGAGCACGGCAGCATGAAAGCGCTTGCTGCTGCAAGCCATGCCACCCACGAGCAAATGATGCAGAGCCCAAGGGTTGGGAACCACACCACAGCTCACAAAGTCGTGAAAGATTGTTGTTGTTAGGAATGTGCAAATGATCCTTCCGCAGGTTCACCTACAGAAACCTTGTTACGACTTCTCCTTCCTCTAAGTGATAAGGTTCATTAAACTTTCCACTGCAATGTTCAAGAACTGAACACTGCTGCAGTCCGAATTATTCACCGGATCACTCAATCGGTAGGAGCGACGGGCGGTGTGTACAAAGGGCAGGGACGTAATCAGCACAAGCTGATGACTCAAGCTTACTAGGAATTCCTCGTTTAAGATTAATAATTGCAATAATCAATCCCCATCACGATGCATTTTTTCAAGATTACCCAACCTTTCCAGGCAAGGCAACAAACTCGTTGAACACATCAGTGTAGCGCGCGTGCAGCCCAGAACATCTAAGGGCATCACAGACCTGTTATTGCCTCAAACTTCCTTGCGTTATACACACAAAGTCCCTCTAAGAAGTTGCCCACATAACCGAAATTACGTGTAACTATTTAGCAGGTTAAGGTCTCGTTCGTTAACGGAATTAACCAGACAAATCACTCCACC JF921182 A. peruvianum AP0411-1 Clone 4 – 18S, ITS1, 5.8S, ITS2, 28S (D1-D3) CGAACGATTTGCACGTCAGTATCGATACGAACCTCCATCAGAGTTTCCTCTGAATTCGTTCTGTTCAGGCATAGTTCACCATCTTTCGGGTCCTAATAGATATGCTCAAACTCAAACCTCTGTCTGCTAATCGGTCGGCTGCTGGTGCAAGTATCCCAGCCAATACTTTCATTGCGCAAAAAGGTTTGCCCACCCACGAACTTGCACATCTGTTAGACCCCTTGGTCCGTGTTTCAAGACGGGCCAAGCAGAAACATTTTGCCAGCAACAATGTGCAAGGGCTTGCAGTGCCCAGGGAGGAGAGCCCTCCCCTTTTGGCAAGAAGGCACACACAAGAACACCAGACACACGTATCAAATCACAAATCATTGCAAACACATGCATTCCAATACCCACAGGCAAATTACCATTCATGTGCAAGGGTAATGATTTGCAGAAATAGACGCTGACATTCAAGGTAAGAACCATTGCGCCCACAAGTGGACGCAACAATCTCACCAAGTAGATCAATTCTGTTTGCTTTCTGTTCAGCAAATGCAGACTCTTTTAATTCTCTTTTCAAAGTCCTTTTCATATTTCCCTCATGGTACTTGTTTGCTATCAGTCTCAATAATATATTTTCCTTTACATGGAATTTACCACCCACTTTGCATTCCAATGCCGAGGAGTGTGACTCGTCAAATATATACCGTGCACGGAGGACTGCAAATGACAAAAAGGAATCTCACCCTCATTGACGCTTTCTTTCAATAGGCTTGCACCTGCGCCTCCATTGGCAATACATTTCAAAATTACAATTCAAGGCCGAAGGCCCCAATTTTCAAGCTGAGCAGTTCCTTGTTCATTCGCAATTACTTAAGGAATCCCATTTGGTTCATTTTCCACCGCCTACTTATATGCTTAAATTCAGCAGGTTTACATGCTTCACTTCATGTTAAGTTTACGCGTGCAAGCTTCAGAAAACAAACACATTGCAACCAAATCCAGTGACAGAGGTTAGACCTAAGCAGACACGGTAAGGTTGCAAGGCGTTTGCAAGCGCGTGTGTCTAATGCGACAGCATTGACGCACACAGCTCACAATGTTGCTGAACCAGCAAGCCAGAGATTGGAAGTTAATTGACATTGAATCAAGCACACCTTCAAGCATATCCCAAAGGTGCAAATTACGTTCAAACATCTATTGGCTCACGGAATTCTGCAATTCACAATGCATATCACATTTTGCTGCATTCTTCATCATCAATTGAGCTAAGACATTCATTGCAAAAACACATTTCGCGATTAGGATTCAATCAAAGAACGAGCGTGTTACCAAGAATTGATGTTCAGGAGCACGGCAGCATGAAAGCGCTTGCTGCTGCAAGCCAT

43
GCCACCCACGAGCAAATGATGCAGAGCCCAAGGGTTGGGAACCACACCACAGCTCACAAAGTCGTGAAAGATTGTTGTTGTTAGGAATGTGCAAATGATCCTTCCGCAGGTTCACCTACAGAAACCTTGTTACGACTTCTCCTTCCTCTAAGTGATAAGGTTCATTAAACTTTCCACTGCAATGTTCAAGAACTGAACACTGCTGCAGTCCGAATTATTCACCGGATCACTCAATCGGTAGGAGCGACGGGCGGTGTGTACAAAGGGCAGGGACGTAATCAGCACAAGCTGATGACTCAAGCTTACTAGGAATTCCTCGTTTAAGATTAATAATTGCAATAATCAATCCCCATCACGATGCATTTTTTCAAGATTACCCAACCTTTCCAGGCAAGGCAACAAACTCGTTGAACACATCAGTGTAGCGCGCGTGCAGCCCAGAACATCTAAGGGCATCACAGACCTGTTATTGCCTCAAACTTCCTTGCGTTATACACACAAAGTCCCTCTAAGAAGTTGCCCACATAACCGAAATTACGTGTAACTATTTAGCAGGTTAAGGTCTCGTTCGTTAACGGAATTAACCAGACAAATCACTCCACC JF921183 A. peruvianum AP0411-1 Clone 5 – 18S, ITS1, 5.8S, ITS2, 28S (D1-D3) CGAACGATTTGCACGTCAGTATCGATACGAACCTCCATCAGAGTTTCCTCTGAATTCGTTCTGTTCAGGCATAGTTCACCATCTTTCGGGTCCTAATAGATATGCTCAAACTCAAACCTCTGTCTGCTAATCGGTCGGCTGCTGGTGCAAGTATCCCAGCCAATACTTTCATTGCGCAAAAAGGTTTGCCCACCCACGAACTTGCACATCTGTTAGACTCCTTGGTCCGTGTTTCAAGACGGGTCAAGCAGAAACATTTTGCCAGCAACAATGTGCAAGGGCTTGCAGTGCCCAGGGAGGAGAGCCCTCCCCTTTTGGCAAGAAGGCACACACAAGAACACCAGACACACGTATCAAATCACAAATCATTGCAAACACATGCATTCCAATACCCACAGGCAAATTACCATTCATGTGCAAGGGTAATGATTTGCAGAAATAGACGCTGACATTCAAGGTAAGAACCATTGCGCCCACAAGTGGACGCAACAATCTCACCAAGTAGATCAATTCTGTTTGCTTTCTGTTCAGCAAATGCAGACTCTTTTAATTCTCTTTTCAAAGTCCTTTTCATATTTCCCTCATGGTACTTGTTTGCTATCAGTCTCAATAATATATTTTCCTTTACATGGAATTTACCACCCACTTTGCATTCCAATGCCGAGGAGTGTGACTCGTCAAATATATACCGTGCACGGAGGACTGCAAATGACAAAAAGGAATCTCACCCTCATTGACGCTTTCTTTCAATAGGCTTGCACCTGCGCCTCCATTGGCAATACATTTCAAAATTACAATTCAAGGCCGAAGGCCCCAATTTTCAAGCTGAGCAGTTCCTTGTTCATTCGCAATTACTTAAGGAATCCCATTTGGTTCATTTTCCACCGCCTACTTATATGCTTAAATTCAGCAGGTTTACATGCTTCACTTCATGTTAAGTTTACGCGTGCAAGCTTCAGAAAACAAACACATTGCAACCAAATCCAGTGACAGAGGTTAGACCTAAGCAGACACGGTAAGGTTGCAAGGCGTTTGCAAGCGCGTGTGTCTAATGCGACAGCATTGACGCACACAGCTCACAATGTTGCTGAACCAGCAAGCCAGAGATTGGAAGTTAATTGACATTGAATCAAGCACACCTTCAAGCATATCCCAAAGGTGCAAATTACGTTCAAACATCTATTGGCTCACGGAATTCTGCAATTCACAATGCATATCACATTTTGCTGCATTCTTCATCATCAATTGAGCTAAGACATTCATTGCAAAAACACATTTCGCGATTAGGATTCAATCAAAGAACGAGCGTGTTACCAAGAATTGATGTTCAGGAGCACGGCAGCATGAAAGCGCTTGCTGCTGCAAGCCATGCCACCCACGAGCAAATGATGCAGAGCCCAAGGGTTGGGAACCACACCACAGCTCACAAAGTCGTGAAAGATTGTTGTTGTTAGGAATGTGCAAATGATCCTTCCGCAGGTTCACCTACAGAAACCTTGTTACGACTTCTCCTTCCTCTAAGTGATAAGGTTCATTAAACTTTCCACTGCAATGTTCAAGAACTGAACACTGCTGCAGTCCGAATTATTCACCGGATCACTCAATCGGTAGGAGCGACGGGCGGTGTGTACAAAGGGCAGGGACGTAATCAGCACAAGCTGATGACTCAAGCTTACTAGGAATTCCTCGTTTAAGATTAATAATTGCAATAATCAATCCCCATCACGATGCATTTTTTCAAGATTACCCAACCTTTCCAGGCAAGGCAACAAACTCGTTGAACACATCAGTGTAGCGCGCGTGCAGCCCAGAGCATCTAAGGGCATCACAGACCTGTTATTGCCTCAAACTTCCTTGCGTTATACACACAAAGTCCCTCTAA

44
GAAGTTGCCCACATAACCGAAATTACGTGTAACTATTTAGCAGGTTAAGGTCTCGTTCGTTAACGGAATTAACCAGACAAATCACTCCACC JF921184 A. peruvianum AP0411-1 Clone 6 – 18S, ITS1, 5.8S, ITS2, 28S (D1-D3) GAACGATTTGCACGTCAGTATCGATACGAACCTCCATCAGAGTTTCCTCTGAATTCGTTCTGTTCAGGCATAGTTCACCATCTTTCGGGTCCTAATAGATATGCTCAAACTCAAACCTCTGTCTGCTAATCGGTCGGCTGCTGGTGCAAGTATCCCAGCCAATACTTTCATTGCGCAAAAAGGTTTGCCCACCCACGAACTTGCACATCTGTTAGACTCCTTGGTCCGTGTTTCAAGACGGGTCAAGCAGAAACATTTTGCCAGCAACAATGTGCAAGGGCTTGCAGTGCCCAGGGAGAAGAGCCCTCCCCTTTTGGCAAGAAGGCACACACAAGAACACCAGACACACGTATCAAATCACAAATCATTGCAAACACATGCATTCCAATACCCACAGGCAAATTACCATTCATGTGCAAGGGTAATGATTTGCAGAAATAGACGCTGACATTCAAGGTAAGAACCATTGCGCCCACAAGTGGACGCAACAATCTCACCAAGTAGATCAATTCTGTTTGCTTTCTGTTCAGCAAATGCAGACTCTTTTAATTCTCTTTTCAAAGTCCTTTTCATATTTCCCTCATGGTACTTGTTTGCTATCAGTCTCAATAATATATTTTCCTTTACATGGAATTTACCACCCACTTTGCATTCCAATGCCGAGGAGTGTGACTCGTCAAATATATACCGTGCACGGAGGACTGCAAATGACAAAAAGGAATCTCACCCTCATTGACGCTTTCTTTCAATAGGCTTGCACCTGCGCCTCCATTGGCAATACATTTCAAAATTACAATTCAAGGCCGAAGGCCCCAATTTTCAAGCTGAGCGGTTCCTTGTCCATTCGCAATTACTTAAGGAATCCCATTTGGTTCATTTTCCACCGCCTACTTATATGCTTAAATTCAGCAGGTTTACATGCTTCACTTCATGTTAAGTTTACGCGTGCAAGCTTCAGAAAACAAACACATTGCAACCAAATCCAGTGACAGAGGTTAGACCTAAGCAGACACGGTAAGGTTGCAAGGCGTTTGCAAGCGCGTGTGTCTAATGCGACAGCATTGACGCACACAGCTCACAATGTTGCTGAGCCAGCAAGCCAGAGATTGGAAGTTAATTGACATTGAATCAAGCACACCTTCAAGCATATCCCAAAGGTGCAAATTACGTTCAAACATCTATTGGCTCACGGAATTCTGCAATTCACAATGCATATCACATTTTGCTGCATTCTTCATCATCAATTGAGCTAAGACATTCATTGCAAAAACACATTTCGCGATTAGGATTCAATCAAAGAACGAGCGTGTTACCAAGAATTGATGTTCAGGAGCACGGCAGCATGAAAGCGCTTGCTGCTGCAAGCCATGCCACCCACGAGCAAATGATGCAGAGCCCAAGGGTTGGGAACCACACCACAGCTCACAAAGTCGTGAAAGATTGTTGTTGTTAGGAATGTGCAAATGATCCTTCCGCAGGTTCACCTACAGAAACCTTGTTACGACTTCTCCTTCCTCTAAGTGATAAGGTTCATTAAACTTTCCACTGCAATGTTCAAGGACTGAACACTGCTGCAGTCCGAATTATTCACCGGATCACTCAATCGGTAGGAGCGACGGGCGGTGTGTACAAAGGGCAGGGACGTAATCAGCACAAGCTGATGACTCAAGCTTACTAGGAATTCCTCGTTTAAGATTAATAATTGCAATAATCAATCCCCATCACGATGCATTTTTTCAAGATTACCCAACCTTTCCAGGCAAGGCAACAAACTCGTTGAACACATCAGTGTAGCGCGCGTGCAGCCCAGAACATCTAAGGGCATCACAGACCTGTTATTGCCTCAAACTTCCTTGCGTTATACACACAAAGTCCCTCTAAGAAGTTGCCCACATAACCGAAATTACGTGTAGCTATTTAGCAGGTTAAGGTCTCGTTCGTTAACGGAATTAACCAGACAAATCACTCCACC JF921185 A. peruvianum AP0411-1 Clone 7 – 18S, ITS1, 5.8S, ITS2, 28S (D1-D3) GATACGAACCTCCATCAGAGTTTCCTCTGAATTCGTTCTGTTCAGGCATAGTTCACCATCTTTCGGGTCCTAATAGATATGCTCAAACTCAAACCTCTGTCCGCTAATCGGTCGGCTGCTGGTGCAAGTATCCCAGCCAATACTTTCATTGCGCAAAAAGGTTTGCCCACCCACGAACTTGCACATCTGTTAGACTCCTTGGTCCGTGTTTCAAGACGGGTCAAGCAGAAACATTTTGCCAGCAACAATGTGCAAGGGCTTGCAGTGCCCAGGGAGGAGAGCCCT

45
CCCCTTTTGGCAAGAAGGCACACACAAGAACACCAGACACACGTATCAAATCACAAATCATTGCAAACACATGCATTCCAATACCCACAGGCAAATTACCATTCATGTGCAAGGGTAATGATCTGCAGAAATAGACGCTGACATTCAAGGTAAGAACCATTGCGCCCACAAGTGGACGCAACAATCTCACCAAGTAGATCAATTCTGTTTGCTTTCTGTTCAGCAAATGCAGACTCTTTTAATTCTCTTTTCAAAGTCCTTTTCATATTTCCCTCATGGTACTTGTTTGCTATCAGTCTCAATAATATATTTTCCTTTACATGGAATTTACCACCCACTTTGCATTCCAATGCCGAGGAGTGTGACTCGTCAAATATATACCGTGCACGGAGGACTGTAAATGACAAAAAGGAATCTCACCCTCATTGACGCTTTCTTTCAATAGGCTTGCACCTGTGCCTCCATTGGCAATACATTTCAAAATTACAATTCAAGGCCGAAGGCCCCAATTTTCAAGCTGAGCAGTTCCTTGTTCATTCGCAATTACTTAAGGAATCCCATTTGGTTCATTTTCCACCGCCTACTTATATGCTTAAATTCAGCAGGTTTACATGCTTCACTTCATGTTAAGTTTACGCGTGCAAGCTTCAGAAAACAAACACATTGCAACCAAATCCAGTGACAGAGGTTAGACCTAAGCAGACACGGTAAGGTTGCAAGGCGTTTGCAAGCGCGTGTGTCTAATGCGACAGCATTGACGCACACAGCTCACAATGTTGCTGAACCAGCAAGCCAGAGATTGGAAGTTAATTGACATTGAATCAAGCACACCTTCAAGCATATCCCAAAGGTGCAAATTACGTTCAAACATCTATTGGCTCACGGAATTCTGCAATTCACAATGCATATCACATTTTGCTGCATTCTTCATCATCAATTGAGCTAAGACATTCATTGCAAAAACACATTTCGCGATTAGGATTCAATCAAAGAACGAGCGTGTTACCAAGAATTGATGTTCAGGAGCACGGCAGCATGAAAGCGCTTGCTGCTGCAAGCCATGCCACCCACGAGCAAATGATGCAGAGCCCAAGGGTTGGGAACCACACCACAGCTCACAAAGTCGTGAAAGATTGTTGTTGTTAGGAATGTGCAAATGATCCTTCCGCAGGTTCACCTACAGAAACCTTGTTACGACTTCTCCTTCCTCTAAGTGATAAGGTTCATTAAACTTTCCACTGCAATGTTCAAGAACTGAACACTGCTGCAGTCCGAATTATTCACCGGATCACTCAATCGGTAGGAGCGACGGGCGGTGTGTACAAAGGGCAGGGACGTAATCAGCACAAGCTGATGACTCAAGCTTACTAGGAATTCCTCGTTTAAGATTAATAATTGCAATAATCAATCCCCATCACGATGCATTTTTTCAAGATTACCCAACCTTTCCAGGCAAGGCAACAAACTCGTTGAACACATCAGTGTAGCGCGCGTGCAGCCCAGAACATCTAAGGGCATCACAGACCTGTTATTGCCTCAAACTTCCTTGCGTTATACACACAAAGTCCCTCTAAGAAGTTGCCCACATAACCGAAATTACGTGTAACTATTTAGCAGGTTAAGGTCTCGTTCGTTAACGGAATTAACCAGACAAATCACTCCACC JF921186 A. peruvianum AP0411-1 Clone 8 – 18S, ITS1, 5.8S, ITS2, 28S (D1-D3) TATCGATACGAACCTCCATCAGAGTTTCCTCTGAATTCGTTCTGTTCAGGCATAGTTCACCATCTTTCGGGTCCTAATAGATATGCTCAAACTCAAACCTCTGTCTGCTAATCGGTCGGCTGCTGGTGCAAGTATCCCAGCCAATACTTTCATTGCGCAAAAAGGTTTGCCCACCCACGAACTTGCACATCTGTTAGACTCCTTGGTCCGTGTTTCAAGACGGGTCAAGCAGAAACATTTTGCCAGCAACAATGTGCAAGGGCTTGCAGTGCCCAGGGAGGAGAGCCCTCCCCTTTTGGCAAGAAGGCACACACAAGAATACCAGACACACGTATCAAATCACAAATCATTGCAAACACATGCATTCCAATACCCACAGGCAAATTACCATTCATGTGCAAGGGTAATGATTTGCAGAAATAGACGCTGACATTCAAGGTAAGAACCATTGCGCCCACAAGTGGACGCAACAATCTCACCAAGTAGATCAATTCTGTTTGCTTTCTGTTCAGCAAATGCAGGCTCTTTTAATTCTCTTTTCAAAGTCCTTTTCATATTTCCCTCATGGTACTTGTTTGCTATCAGTCTCAATAATATATTTTCCTTTACATGGAATTTACCACCCACTTTGCATTCCAATGCCGAGGAGTGTGACTCGTCAAATATATACCGTGCACGGAGGACTGCAAATGACAAAAAGGAATCTCACCCTCATTGACGCTTTCTTTCAATAGGCTTGCACCTGCGCCTCCATTGGTAATACATTTCAAAATTACAATTCAAGGCCGAAGGCCCCAATT

46
TTCAAGCTGAGCAGTTCCTTGTTCATTCGCAATTACTTAAGGAATCCCATTTGGTTCATTTTCCACCGCCTACTTATATGCTTAAATTCAGCAGGTTTACATGCTTCACTTCATGTTAAGTTTACGCGTGCAAGCTTCGGAAAACAAACACATTGCAACCAAATCCAGTGACAGAGGTTAGACCTAAGCAGACACGGTAAGGTTGCAAGGCGTTTGCAAGCGCGTGTGTCTAATGCGACAGCATTGACGCACACAGCTCACAATGTTGCTGAACCAGCAAGCCAGAGATTGGAAGTTAATTGACATTGAATCAAGCACACCTTCAAGCATATCCCAAAGGTGCAAATTACGTTCAAACATCTATTGGCTCACGGAATTCTGCAATTCACAATGCATATCACATTTTGCTGCATTCTTCATCATCAATTGAGCTAAGACATTCATTGCAAAAACACATTTCGCGATTAGGATTCAATCAAAGAACGAGCGTGTTACCAAGAATTGATGTTCAGGAGCACGGCAGCATGAAAGCGCTTGCTGCTGCAAGCCATGCCACCCACGAGCAAATGATGCAGAGCCCAAGGGTTGGGAACCACACCACAGCTCACAAAGTCGTGAAAGATTGTTGTTGTTAGGAATGTGCAAATGATCCTTCCGCAGGTTCACCTACAGAAACCTTGTTACGACTTCTCCTTCCTCTAAGTGATAAGGTTCATTAAACTTTCCACTGCAATGTTCAAGAACTGAACACTGCTGCAGTCCGAATTATTCACCGGATCACTCAATCGGTAGGAGCGACGGGCGGTGTGTACAAAGGGCAGGGACGTAATCAGCACAAGCTGATGACTCAAGCTTACTAGGAATTCCTCGTTTAAGATTAATAATTGCAATAATCAATCCCCATCACGATGCATTTTTTCAAGATTACCCAACCTTTCCAGGCAAGGCAACAAACTCGTTGAACACATCAGTGTAGCGCGCGTGCAGCCCAGAACATCTAAGGGCATCACAGACCTGTTATTGCCTCAAACTTCCTTGCGTTATACACACAAAGTCCCTCTAAGAAGTTGCCCACATAACCGAAATTACGTGTAACTATTTAGCAGGTTAAGGTCTCGTTCGTTAACGGAATTAACCAGACAAATCACTCCACC JF921187 A. peruvianum AP0411-1 Clone 9 – 18S, ITS1, 5.8S, ITS2, 28S (D1-D3) TACGAACCTCCATCAGAGTTTCCTCTGAATTCGTTCTGTTCAGGCATAGTTCACCATCTTTCGGGTCCTAATAGATATGCTCAAACTCAAACCTCTGTCTGCTAATCGGCCGGCTGCTGGTGCAAGTATCCCAGCCAATACTTTCATTGCGCAAAAAGGTTTGCCCACCCACGAACTTGCACATCTGTTAGACTCCTTGGTCCGTGTTTCAAGACGGGTCAAGCAGAAACATTTTGCCAGCAACAATGTGCAAGGGCTTGCAGTGCCCAGGGAGGAGAGCCCTCCCCTTTTGGCAAGAAGGCACACACAAGAACACCAGACACACGTATCAAATCACAAATCATTGCAAACACATGCATTCCAATACCCACAGGCAAATTACCATTCATGTGCAAGGGTAATGATTTGCAGAAATAGACGCTGACATTCAAGGTAAGAACCATTGCGCCCACAAGTGGACGCAACAATCTCACCAAGTAGATCAATTCTGTTTGCTTTCTGTTCAGCAAATGCAGACTCTTTTAATTCTCTTTTCAAAGTCCTTTTCATATTTCCCTCATGGTACTTGTTTGCTATCAGTCTCAATAATATATTTTCCTTTACATGGAATTTACCACCCACTTTGCATTCCAATGCCGAGGAGTGTGACTCGTCAAATATATACCGTGCACGGAGGACTGCAAATGACAAAAAGGAATCTTACCCTCATTGACGCTTTCTTTCAATAGGCTTGCACCTGCGCCTCCATTGGCAATACATTTCAAAATTACAATTCAAGGCCGAAGGCCCCAATTTTCAAGCTGAGCAGTTCCTTGTTCATTCGCAATTACTTAAGGAATCCCATTTGGTTCATTTTCCACCGCCTACTTATATGCTTAAATTCAGCAGGTTTACATGCTTCACTTCATGTTAAGTTTACGCGTGCAAGCTTCAGAAAACAAACACATTGCAACCAAATCCAGTGACAGAGGTTAGACCTAAGCAGACACGGTAAGGTTGCAAGGCGTTTGCAAGCGCGTGTGTCTAATGCGACAGCATTGACGCACACAGCTCACAATGTTGTTGAACCAGCAAGCCAGAGATTGGAAGTTAATTGACATTGAATCAAGCACACCTTCAAGCATATCCCAAAGGTGCAAATTACGTTCAAACATCTATTGGCTCACGGAATTCTGCAATTCACAATGCATATCACATTTTGCTGCATTCTTCATCATCAATTGAGCTAAGACATTCATTGCAAAAACACATTTC

47
GCGATTAGGATTCAATCAAAGAACGAGCGTGTTACCAAGAATTGATGTTCAGGAGCACGGCAGCATGAAAGCGCTTGCTGCTGCAAGCCATGCCACCCACGAGCAAATGATGCAGAGCCCAAGGGTTGGGAACCACACCACAGCTCACAAAGTCGTGAAAGATTGTTGTTGTTAGGAATGTGCAAATGATCCTTCCGCAGGTTTACCTACAGAAACCTTGTTACGACTTCTCCTTCCTCTAAGTGATAAGGTTCATTAAACTTTCCACTGCAATGTTCAAGAACTGAACACTGCTGCAGTCCGAATTATTCACCGGATCACTCAATCGGTAGGAGCGACGGGCGGTGTGTACAAAGGGCAGGGACGTAATCAGCACAAGCTGATGACTCAAGCTTACTAGGAATTCCTCGTTTAAGATTAATAATTGCAATAATCAATCCCCATCACGATGCATTTTTTCAAGATTACCCAACCTTTCCAGGCAAGGCAACAAACTCGTTGAACACATCAGTGTAGCGCGCGTGCAGCCCAGAACATCTAAGGGCATCACAGACCTGTTATTGCCTCAAACTTCCTTGCGTTATACACACAAAGTCCCTCTAAGAAGTTGCCCACATAACCGAAATTACGTGTAACTATTTAGCAGGTTAAGGTCTCGTTCGTTAACGGAATTAACCAGACAAATCACTCCACC JF921188 A. peruvianum AP0411-1 Clone 10 – 18S, ITS1, 5.8S, ITS2, 28S (D1-D3) GATACGAACCTCCATCAGAGTTTCCTCTGAATTCGTTCTGTTCAGGCATAGTTCACCATCTTTCGGGTCCTAATAGATATGCTCAAACTCAAACCTCTGTCTGCTAATCGGTCGGCTGCTGGTGCAAGTATCCCAGCCAATACTTTCATTGCGCAAAAAGGTTTGCCCACCCACGAACTTGCACATCTGTTAGACTCCTTGGTCCGTGTTTCAAGACGGGTCAAGCAGAAACATTTTGCCAGCAACAATGTGCAAGGGCTTGCAGTGCCCAGGGAGGAGAGCCCTCCCCTTTTGGCAAGAAGGCACACACAAGAACACCAGATACACGTATCAAATCACAAATCATTGCAAACACATGCATTCCAATACCCACAGGCAAATTACCATTCATGTGCAAGGGTAATGATTTGCAGAAATAGACGCTGACATTCAAGGTAAGAACCATTGCGCCCACAAGTGGACGCAACAATCTCACCAAGTAGATCAATTCTGTTTGCTTTCTGTTCAGCAAATGCAGACTCTTTTAATTCTCTTTTCAAAGTCCTTTTCATATTTCCCTCATGGTACTTGTTTGCTATCAGTCTCAATAATATATTTTCCTTTACATGGAATTTACCACCCACTTTGCATTCCAATGCCGAGGAGTGTGACTCGTCAAATATATACCGTGCACGGAGGACTGCAAATGACAAAAAGGAATCTCACCCTCATTGACGCTTTCTTTCAATAGGCTTGCACCTGCGCCTCCATTGGCAATACATCTCAAAATTACAATTCAAGGCCGGAGGCCCCAATTTTCAAGCTGAGCAGTTCCTTGTTCATTCGCAATTACTTAAGGAATCCCATTTGGTTCATTTTCCACCGCCTACTTATATGCTTAAATTCAGCAGGTTTACATGCTTCACTTCATGTTAAGTTTACGCGTGCAAGCTTCAGAAAACAAACACATTGCAACCAAATCCAGTGACAGAGGTTAGACCTAAGCAGACACGGTAAGGTTGCAAGGCGTTTGCAAGCGCGTGTGTCTAATGCGACAGCATTGACGCACACAGCTCACAATGTTGCTGGACCAGCAAGCCAGAGATTGGAAGTTAATTGACATTGAATCAAGCACACCTTCAAGCATATCCCAAAGGTGCAAATTACGTTCAAACATCTATTGGCTCACGGAATTCTGCAATTCACAATGCATATCACATTTTGCTGCATTCTTCATCATCAATTGAGCTAAGACATTCATTGCAAAAACACATTTCGCGATTAGGATTCAATCAAAGAACGAGCGTGTTACCAAGAATTGATGTTCAGGAGCACGGCAGCATGAAAGCGCTTGCTGCTGCAAGCCATGCCACCCACGAGCAAATGATGCAGAGCCCAAGGGTTGGGGACCACACCACAGCTCACAAAGTCGTGAAAGATTGTTGTTGTTAGGAATGTGCAAATGATCCTTCCGCAGGTTCACCTACAGAAACCTTGTTACGACTTCTCCTTCCTCTAAGTGATAAGGTTCATTAAACTTTCCACTGCAATGTTCAAGAACTGAACACTGCTGCAGTCCGAATTATTCACCGGATCACTCAATCGGTAGGAGCGACGGGCGGTGTGTACAAAGGGCAGGGACGTAATCAGCACAAGCTGATGACTCAAGCTTACTAGGAATTCCTCGTTTAAGATTAATAATTGCAATAATCAATCCCCATCACGATGCATTTTTTCAAGATTACCCAACCTTTCCAGGCAAGGCAACAAACTCGTTGAACACATC

48
AGTGTAGCGCGCGTGCAGCCCAGAACATCTAAGGGCATCACAGACCTGTTATTGCCTCAAACTTCCTTGCGTTATACACACAAAGTCCCTCTAAGAAGTTGCCCACATAACCGAAATTACGTGTAACTATTTAGCAGGTTAAGGTCTCGTTCGTTAACGGAATTAACCAGACAAATCACTCCACCA JF921189 A. peruvianum AP0411-1 Clone 11 – 18S, ITS1, 5.8S, ITS2, 28S (D1-D3) ATACGAACCTCCATCAGAGTTTCCTCTGAATTCGTTCTGTTCAGGCATAGTTCACCATCTTTCGGGTCCTAATAGATATGCTCAAACTCAAACCTCTGTCTGCTAATCGGTCGGCTGCTGGTGCAAGTATCCCAGCCAATACTTTCATTGCGCAAAAAGGTTTGCCCACCCACGAACTTGCACATCTGTTAGACTCCTTGGTCCGTGTTTCAAGACGGGTCAAGCAGAAACATTTTGCCAGCAACAATGTGCAAGGGCTTGCAGTGCCCAGGGAGGAGAGCCCTCCCCTTTTGGCAAGAAGGCACACACAAGAATACCAGACACACGTATCAAATCACAAATCATTGCAAACACATGCATTCCAATACCCACAGGCAAATTACCATTCATGTGCAAGGGTAATGATTTGCAGAAATAGACGCTGACATTCAAGGTAAGAACCATTGCGCCCACAAGTGGACGCAACAATCTCACCAAGTAGATCAATTCTGTTTGCTTTCTGTTCAGCAAATGCAGACTCTTTTAATTCTCTTTTCAAAGTCCTTTTCATATTTCCCTCATGGTACTTGTTTGCTATCAGTCTCAATAATATATTTTCCTTTACATGGAATTTACCACCCACTTTGCATTCCAATGCCGAGGAGTGTGACTCGTCAAATATATACCGTGCACGGAGGACTGCAAATGACAAAAAGGAATCTCACCCTCATTGACGCTTTCTTTCAATAGGCTTGCACCTGCGCCTCCATTGGCAATACATTTCAAAATTACAATTCAAGGCCGAAGGCCCCAATTTTCAAGCTGAGCAGTTCCTTGTTCATTCGCAATTACTTAAGGAATCCCATTTGGTTCATTTTCCACCGCCTACTTATATGCTTAAATTCAGCAGGTTTACATGCTTCACTTCATGTTAAGTTTACGCGTGCAAGCTTCAGAAAACAAACACATTGCAACCAAATCCAGTGACAGAGGTTAGACCTAAGCAGACACGGTAAGGTTGCAAGGCGTTTGCAAGCGCGTGTGTCTAATGCGACAGCATTGACGCACACAGCTCACAATGTTGCTGAACCAGCAAGCCAGAGATTGGAAGTTAATTGACATTGAATCAAGCACACCTTCAAGCATATCCCAAAGGTGCAAATTACGTTCAAACATCTATTGGCTCACGGAATTCTGCAATTCACAATGCATATCACATCTTGCTGCATTCTTCATCATCAATTGAGCTAAGACATTCATTGCAAAAACACATTTCGCGATTAGGATTCAATCAAAGAACGGGCGTGTTACCAAGAATTGATGTTCAGGAGCACGGCAGCATGAAAGCGCTTGCTGCTGCAAGCCATGCCACCCACGAGCAAATGATGCAGAGCCCAAGGGTTGGGAACCACACCACAGCTCACAAAGTCGTGAAAGATTGTTGTTGTTAGGAATGTGCAAATGATCCTTCCGCAGGTTCACCCACAGAAACCTTGTTACGACTTCTCCTTCCTCTAAGTGATAAGGTTCATTAAACTTTCCACTGCAATGTTCAAGAACTGAACACTGCTGCAGTCCGAATTATTCACCGGATCACTCAATCGGTAGGAGCGACGGGCGGTGTGTACAAAGGGCAGGGACGTAATCAGCACAAGCTGATGACTCAAGCTTACTAGGAATTCCTCGTTTAAGATTAATAATTGCAATAATCAATCCCCATCACGATGCATTTTTTCAAGATTACCCAACCTTTCCAGGCAAGGCAACAAACTCGTTGAACACATCAGTGTAGCGCGCGTGCAGCCCAGAACATCTAAGGGCATCACAGACCTGTTATTGCCTCAAACTTCCTTGCGTTATACACACAAAGTCCCTCTAAGAAGTTGCCCACATAACCGAAATTACGTGTAACTATTTAGCAGGTTAAGGTCTCGTTCGTTAACGGAATTAACCAGACAAATCACTCCACC JF921190 A. peruvianum AP0411-1 Clone 12 – 18S, ITS1, 5.8S, ITS2, 28S (D1-D3) TACGAACCTCCATCAGAGTTTCCTCTGAATTCGTTCTGTTCAGGCATAGTTCACCATCTTTCGGGTCCTAATAGATATGCTCAAACTCAAACCTCTGTCTGCTAATCGGTCGGCTGCTGGTGCAAGTATCCCAGCCAATACTTTCATTGCGCAAAAAGGTTTGCCCACCCAC

49
GAACTTGCACATCTGTTAGACTCCTTGGTCCGTGTTTCAAGACGGGTCAAGCAGAAACATTTTGCCAGCAACAATGTGCAAGGGCTTGCAGTGCCCAGGGAGGAGAGCCCTCCCCTTTTGGCAAGAAGGCACACACAAGAACACCAGACACACGTATCAAATCACAAATCATTGCAAACACATGCATTCCAATACCCACAGGCAAATTACCATTCATGTGCAAGGGTAATGATTTGCAGAAATAGACGCTGACATTCAAGGTAAGAACCATTGCGCCCACAAGTGGACGCAACAATCTCACCAAGTAGATCAATTCTGTTTGCTTTCTGTTCAGCAAATGCAGACTCTTTTAATTCTCTTTTCAAAGTCCTTTTCATATTTCCCTCATGGTACTTGTTTGCTATCAGTCTCAATAATATATTTTCCTTTACATGGAATTTACCACCCACTTTGCATTCCAATGCCGAGGAGTGTGACTCGTCAAATATATACCGTGCACGGAGGACTGCAAATGACAAAAAGGAATCTCACCCTCATTGACGCTTTCTTTCAATAGGCTTGCACCTGCGCCTCCATTGGCAATACATTTCAAAATTACAATTCAAGGCCGAAGGCCCCAATTTTCAAGCTGAGCAGTTCCTTGTTCATTCGCAATTACTTAAGGAATCCCATTTGGTTCATTTTCCACCGCCTACTTATATGCTTAAATTCAGCAGGTTTACATGCTTCACTTCATGTTAAGTTTACGCGTGCAAGCTTCAGAAAACAAACACATTGCAACCAAATCCAGTGACAGAGGTTAGACCTAAGCAGACACGGTAAGGTTGCAAGGCGTTTGCAAGCGCGTGTGTCTAATGCGACAGCATTGACGCACACAGCTCACAATGTTGCTGAACCAGCAAGCCAGAGATTGGAAGTTAATTGACATTGAATCAAGCACACCTTCAAGCATATCCCAAAGGTGCAAATTACGTTCAAACATCTATTGGCTCACGGAATTCTGCAATTCACAATGCATATCACATTTTGCTGCATTCTTCATCATCAATTGAGCTAAGACATTCATTGCAAAAACACATTTCGCGATTAGGATTCAATCAAAGAACGAGCGTGTTACCAAGAATTGATGTTCAGGAGCACGGCAGCATGAAAGCGCTTGCTGCTGCAAGCCATGCCACCCACGAGCAAATGATGCAGAGCCCAAGGGTTGGGAACCACACCACAGCTCACAAAGTCGTGAAAGATTGTTGTTGTTAGGAATGTGCAAATGATCCTTCCGCAGGTTCACCTACAGAAACCTTGTTACGACTTCTCCTTCCTCTAAGTGATAAGGTTCATTAAACTTTCCACTGCAATGTTCAAGAACTGAACACTGCTGCAGTCCGAATTATTCACCGGATCACTCAATCGGTAGGAGCGACGGGCGGTGTGTACAAAGGGCAGGGACGTAATCAGCACAAGCTGATGACTCAAGCTTACTAGGAATTCCTCGTTTAAGATTAATAATTGCAATAATCAATCCCCATCACGATGCATTTTTTCAAGATTACCCAACCTTTCCAGGCAAGGCAACAAACTCGTTGAACACATCAGTGTAGCGCGCGTGCAGCCCAGAACATCTAAGGGCATCACAGACCTGTTATTGCCTCAAACTTCCTTGCGTTATACACACAAAGTCCCTCTAAGAAGTTGCCCACATAACCGAAATTACGTGTAACTATTTAGCAGGTTAAGGTCTCGTTCGTTAACGGAATTAACCAGACAAATCACTCCACC JF921191 A. peruvianum AP0411-1 Clone 13 – 18S, ITS1, 5.8S, ITS2, 28S (D1-D3) GATACGAACCTCCATCAGAGTTTCCTCTGAATTCGTTCTGTTCAGGCATAGTTCACCATCTTTCGGGTCCTAATAGATATGCTCAAACTCAAACCTCTGTCTGCTAATCGGTCGGCTGCTGGTGCAAGTATCCCAGCCAATACTTTCATTGCGCAAAAAGGTTTGCCCACCCACGAACTTGCACATCTGTTAGACTCCTTGGTCCGTGTTTCAAGACGGGTCAAGCAGAAACATTTTGCCAGCAACAATGTGCAAGGGCTTGCAGTGCCCAGGGAGGAGAGCCCTCCCCTTTTGGCAAGAAGGCACACACAAGAACACCAGACACACGTATCAAATCACAAATCATTGCAAACACATGCATTCCAATACCCACAGGCAAATTACCATTCATGTGCAAGGGTAATGATTTGCAGAAATAGACGCTGACATTCAAGGTAAGAACCATTGCGCCCACAAGTGGACGCAACAATCTCACCAAGTAGATCAATTCTGTTTGCTTTCTGTTCAGCAAATGCAGACTCTTTTAATTCTCTTTTCAAAGTCCTTTTCATATTTCCCTCATGGTACTTGTTTGCTATCAGTCTCAATAATATATTTTCCTTTACATGGAATTTACCACCCACTTTGCATTCCAATGCCGAGGAGTGTGACTCGTCAAATATATACCGTGCACGGAGGACTGCAA

50
ATGACAAAAAGGAATCTCACCCTCATTGACGCTTTCTTTCAATAGGCTTGCACCTGCGCCTCCATTGGCAATACATTTCAAAATTACAATTCAAGGCCGAAGGCCCCAATTTTCAAGCTGAGCAGTTCCTTGTTCATTCGCAATTACTTAAGGAATCCCATTTGGTTCATTTTCCACCGCCTACTTATATGCTTAAATTCAGCAGGTTTACATGCTTCACTTCATGTTAAGTTTACGCGTGCAAGCTTCAGAAAACAAACACATTGCAACCAAATCCAGTGACAGAGGTTAGACCTAAGCAGACACGGTAAGGTTGCAAGGCGTTTGCAAGCGCGTGTGTCTAATGCGACAGCATTGACGCACACAGCTCACAATGTTGCTGAACCAGCAAGCCAGAGATTGGAAGTTAATTGACATTGAATCAAGCACACCTTCAAGCATATCCCAAAGGTGCAAATTACGTTCAAACATCTATTGGCTCACGGAATTCTGCAATTCACAATGCATATCACATTTTGCTGCATTCTTCATCATCAATTGAGCTAAGACATTCATTGCAAAAACACATTTCGCGATTAGGATTCAATCAAAGAACGAGCGTGTTACCAAGAATTGATGTTCAGGAGCACGGCAGCATGAAAGCGCTTGCTGCTGCAAGCCATGCCACCCACGAGCAAATGATGCAGAGCCCAAGGGTTGGGAACCACACCACAGCTCACAAAGTCGTGAAAGATTGTTGTTGTTAGGAATGTGCAAATGATCCTTCCGCAGGTTCACCTACAGAAACCTTGTTACGACTTCTCCTTCCTCTAAGTGATAAGGTTCATTAAACTTTCCACTGCAATGTTCAAGAACTGAACACTGCTGCAGTCCGAATTATTCACCGGATCACTCAATCGGTAGGAGCGACGGGCGGTGTGTACAAAGGGCGGGGACGTAATCAGCACAAGCTGATGACTCAAGCTTACTAGGAATTCCTCGTTTAAGATTAATAATTGCAATAATCAATCCCCATCACGATGCATTTTTTCAAGATTACCCAACCTTTCCAGGCAAGGCAACAAACTCGTTGAACACATCAGTGTAGCACGCGTGCAGCCCAGAACATCTAAGGGCATCACAGACCTGTTATTGCCTCAAACTTCCTTGCGTTATACACACAAAGTCCCTCTAAGAAGTTGCCCACATAACCGAAATTACGTGTAACTATTTAGCAGGTTAAGGTCTCGTTCGTTAACGGAATTAACCAGACAAATCACTCCACC JF921192 A. peruvianum AP0411-1 Clone 14 – 18S, ITS1, 5.8S, ITS2, 28S (D1-D3) AACCTCCATCAGAGTTTCCTCTGAATTCGTTCTGTTCAGGCATAGTTCACCATCTTTCGGGTCCTAATAGATATGCTCAAACTCAAACCTCTGTCTGCTAATCGGTCGGCTGCTGGTGCAAGTATCCCAGCCAATACTTTCATTGCGCAAAAAGGTTTGCCCACCCACGAACTTGCACATCTGTTAGACTCCTTGGTCCGTGTTTCAAGACGGGTCAAGCAGAAACATTTTGCCAGCAACAATGTGCAAGGGCTTGCAGTGCCCAGGGAGGAGAGCCCTCCCCTTTTGGCAAGAAGGCACACACAAGAACACCAGACACACGTATCAAATCACAAATCATTGCAAACACATGCATTCCAATACCCACAGGCAAATTACCATTCATGTGCAAGGGTAATGATTTGCAGAAATAGACGCTGACATTCAAGGTAAGAACCATTGCGCCCACAAGTGGACGCAACAATCTCACCAAGTAGATCAACTCTGTTTGCTTTCTGTTCAGCAAATGCAGACTCTTTTAATTCTCTTTTCAAAGTCCTTTTCATATTTCCCTCATGGTACTTGTTTGCTATCAGTCTCAATAATATATTTTCCTTTACATGGAATTTACCACCCACTTTGCATTCCAATGCCGAGGAGTGTGACTCGTCAAATATATACCGTGCACGGAGGACTGCAAATGACAAAAAGGAATCTCACCCTCATTGACGCTTTCTTTCAATAGGCTTGCACCTGCGCCTCCATTGGCAATACATTTCAAAATTACAATTCAAGGCCGAAGGCCCCAATTTTCAAGCTGAGCAGTTCCTTGTTCATTCGCAATTACTTAAGGAATCCCATTTGGTTCATTTTCCACCGCCTACTTATATGCTTAAATTCAGCAGGTTTACATGCTTCACTTCATGTTAAGTTTACGCGTGCAAGCTTCAGAAAACAAACACATTGCAACCAAATCCAGTGACAGAGGTTAGACCTAAGCAGACACGGTAAGGTTGCAAGGCGTTTGCAAGCGCGTGTGTCCAATGCGACAGCATTGACGCACACAGCTCACAATGTTGCTGGACCAGCAAGCCAGAGATTGGAAGTTAATTGACATTGAATCAAGCACACCTTCAAGCATATCCCAAAGGTGCAAATTACGTTCAAACATCTATTGGCTCACGGAATTCCGCAATTCACAATGCATATCACATTTT

51
GCTGCATTCTTCATCATCAATTGAGCTAAGACATTCATTGCAAAAACACATTTCGCGATTAGGATTCAATCAAAGAACGAGCGTGTTACCAAGAATTGATGTTCAGGAGCACGGCAGCATGAAAGCGCTTGCTGCTGCAAGCCATGCCACCCACGAGCAAATGATGCAGAGCCCAAGGGTTGGGAACCACACCACAGCTCACAAAGTCGTGAAAGATTGTTGTTGTTAGGAATGTGCAAATGATCCTTCCGCAGGTTCACCTACAGAAACCTTGTTACGACTTCTCCTTCCTCTAAGTGATAAGGTTCATTAAACTTTCCACTGCAATGTTCAAGAACTGAACACTGCTGCAGTCCGAATTATTCACCGGATCACTCAATCGGTAGGAGCGACGGGCGGTGTGTACAAAGGGCAGGGACGTAATCAGCACAAGCTGATGACTCAAGCTTACTAGGAATTCCTCGTTTAAGATTAATAATTGCAATAATCAATCCCCATCACGATGCATTTTTTCAAGATTACCCAACCTTTCCAGGCAAGGCAACAAACTCGTTGAACACATCAGTGTAGCGCGCGTGCAGCCCAGAACATCTAAGGGCATCACAGACCTGTTATTGCCTCAAACTTCCTTGCGTTATACACACAAAGTCCCTCTAAGAAGTTGCCCACATAACCGAAATTACGTGTAACTATTTAGCAGGTTAAGGTCTCGTTCGTTAACGGAATTAACCAGACAAATCACTCCACC JF921193 A. peruvianum AP0411-1 Clone 15 – 18S, ITS1, 5.8S, ITS2, 28S (D1-D3) GATACGAACCTCCATCAGAGTTTCCTCTGAATTCGTTCTGTTCAGGCATAGTTCACCATCTTTCGGGTCCTAATAGATATGCTCAAACCCAAACCTCTGTCTGCTAATCGGTCGGCTGCTGGTGCAAGTATCCCAGCCAATACTTTCATTGCGCAAAAAGGTTTGCCCACCCACGAACTTGCACATCTGTTAGACTCCTTGGTCCGTGTTTCAAGACGGGTCAAGCAGAAACATTTTGCCAGCAACAATGTGCAAGGGCTTGCAGTGCCCAGGGAGGAGAGCCCTCCCCTTTTGGCAAGAAGGCACACACAAGAACACCAGACACACGTATCAAATCACAAATCATTGCAAACACATGCATTCCAATACCCACAGGCAAATTACCATTCATGTGCAAGGGTAATGATTTGCAGAAATAGACGCTGACATTCAAGGTAAGAACCATTGCGCCCACAAGTGGACGCAACAATCTCACCAAGTAGATCAATTCTGTTTGCTTTCTGTTCAGCAAATGCAGACTCTTTTAATTCTCTTTTCAAAGTCCTTTTCATATTTCCCTCATGGTACTTGTTTGCTATCAGTCTCAATAATATATTTTCCTTTACATGGAATTTACCACCCACTTTGCATTCCAATGCCGAGGAGTGTGACTCGTCAAATATATACCGTGCACGGAGGACTGCAAATGACAAAAAGGAATCTCACCCTCATTGACGCTTTCTTTCAATAGGCTTGCACCTGCGCCTCCATTGGCAATACATTTCAAAATTACAATTCAAGGCCGAAGGCCCCAATTTTCAAGCTGAGCAGTTCCTTGTTCATTCGCAATTACTTAAGGAATCCCATTTGGTTCATTTTCCACCGCCTACTTATATGCTTAAATTCAGCAGGTTTACATGCTTCACTTCATGTTAAGTTTACGCGTGCAAGCTTCAGAAAACAAACACGTTGCAACCAAATCCAGTGACAGAGGTTAGACCTAAGCAGACACGGTAAGGTTGCAAGGCGTTTGCAAGCGCGTGTGTCTAATGCGACAGCATTGACGCACACAGCTCACAATGTTGCTGAACCAGCAAGCCAGAGATTGGAAGTTAATTGACATTGAATCAAGCACACCTTCAAGCATATCCCAAAGGTGCAAATTACGTTCAAACATCTATTGGCTCACGGAATTCTGCAATTCACAATGCATATCACATTTTGCTGCATTCTTCATCATCAATTGAGCTAAGACATTCATTGCAAAAACACATTTCGCGATTAGGATTCAATCAAAGAACGAGCGTGTTACCAAGAATTGATGTTCAGGAGCACGGCAGCATGAAAGCGCTTGCTGCTGCAAGCCATGCCACCCACGAGCAAATGATGCAGAGCCCAAGGGTTGGGAACCACACCACAGCTCACAAAGTCGTGAAAGATTGTTGTTGTTAGGGATGTGCAAATGATCCTTCCGCAGGTTCACCTACAGAAACCTTGTTACGACTTCTCCTTCCTCTAAGTGATAAGGTTCATTAAACTTTCCACTGCAACGTTCAAGAACTGAACACTGCTGCAGTCCGAATTATTCACCGGATCACTCAATCGGTAGGAGCGACGGGCGGTGTGTACAAAGGGCAGGGACGTAATCAGCACAAGCTGATGACTCAAGCTTACTAGGAATTCCTCGTTTAAGATTAATAATTGCAATAATCAATCCCCATCACGATG

52
CATTTTTTCAAGATTACCCAACCTTTCCAGGCAAGGCAACAAACTCGTTGAACACATCAGTGTAGCGCGCGTGCAGCCCAGAACATCTAAGGGCATCACAGACCTGTTATTGCCTCAAACTTCCTTGCGTTATACACACAAAGTCCCTCTAAGAAGTTGCCCACATAACCGAAATTACGTGTAACTATTTAGCAGGTTAAGGTCTCGTTCGTTAACGGAATTAACCAGACAAATCACTCCACC JF921194 A. peruvianum AP0411-1 Clone 16 – 18S, ITS1, 5.8S, ITS2, 28S (D1-D3) TACGAACCTCCATCAGAGTTTCCTCTGAATTCGTTCTGTTCAGGCATAGTTCACCATCTTTCGGGTCCTAATAGATATGCTCAAACTCAAACCTCTGTCTGCTAATCGGTCGGCTGCTGGTGCAAGTATCCCAGCCAATACTTTCATTGCGCAAAAAGGTTTGCCCACCCACGAACTTGCACATCTGTTAGACTCCTTGGTCCGTGTTTCAAGACGGGTCAAGCAGAGACATTTTGCCAGCAACAATGTGCAAGGGCTTGCAGTGCCCAAGGAGGAGAGCCCTCCCCTTTTGGCAAGAAGGCACACACAAGAACACCAGACACACGTATCAAATCACAAATCATTGCAAACACATGCATTCCAATACCCACAGGCAAATTACCATTCATGTGCAAGGGTAATGATTTGCAGAAATAGACGCTGACATTCAAGGTAAGAACCATTGCGCCCACAAGTGGACGCAACAATCTCACCAAGTAGATCAATTCTGTTTGCTTTCTGTTCAGCAAATGCAGACTCTTTTAATTCTCTTTTCAAAGTCCTTTTCATATTTCCCTCATGGTACTTGTTTGCTATCAGTCTCAATAATATATTTTCCTTTACATGGAATTTACCACCCACTTTGCATTCCAATGCCGAGGAGTGTGACTCGTCAAATATATACCGTGCACGGAGGACTGCAAATGACAAAAAGGAATCTCACCCTCATTGACGCTTTCTTTCAATAGGCTTGCACCTGCGCCTCCATTGGCAATACATTTCAAAATTACAATTCAAGGCCGAAGGCCCCAATTTTCAAGCTGAGCAGTTCCTTGTTCATTCGCAATTACTTAAGGAATCCCATTTGGTTCATTTTCCACCGCCTACTTATATGCTTAAATTCAGCAGGTTTACATGCTTCACTTCATGTTAAGTTTACGCGTGCAAGCTTCAGAAAACAAACACATTGCAACCAAATCCAGTGACAGAGGTTAGACCTAAGCAGACACGGTAAGGTTGCAAGGCGTTTGCAAGCGCGTGTGTCTAATGCGACAGCATTGACGCACACAGCTCACAATGTTGCTGAACCAGCAAGCCAGAGATTGGAAGTTAATTGACATTGAATCAAGCACACCTTCAAGCATATCCCAAAGGTGCAAATTACGTTCAAACATCTATTGGCTCACGGAATTCTGCAATTCACAATGCATATCACATTTTGCTGCATTCTTCATCATCAATTGAGCTAAGACATTCATTGCAAAAACACATTTCGCGAGTAGGATTCAATCAAAGAACGAGCGTGTTACCAAGAATTGATGTTCAGGAGCACGGCAGCATGAAAGCGCTTGCTGCTGCAAGCCATGCCACCCACGAGCAAATGATGCAGAGCCCAAGGGTTGGGAACCACACCACAGCTCACAAAGTCGTGAAAGATTGTTGTTGTTAGGAATGTGCAAATGATCCTTCCGCAGGTTCACCTACAGAAACCTTGTTACGACTTCTCCTTCCTCTAAGTGATAAGGTTCATTAAACTTTCCACTGCAATGTTCAAGAACTGAACACTGCTGCAGTCCGAATTATTCACCGGATCACTCAATCGGTAGGAGCGACGGGCGGTGTGTACAAAGGGCAGGGACGTAATCAGCACAAGCTGATGACTCAAGCTTACTAGGAATTCCTCGTTTAAGATTAATAATTGCAATAATCAATCCCCATCACGATGCATTTTTTCAAGATTACCCAACCTTTCCAGGCAAGGCAACAAACTCGTTGAACACATCAGTGTAGCGCGCGTGCAGCCCAGAACATCTAAGGGCATCACAGACCTGTTATTGCCTCAAACTTCCTTGCGTTATACACACAAAGTCCCTCTAAGAAGTTGCCCACATAACCGAAATTACGTGTAACTATTTAGCAGGTTAAGGTCTCGTTCGTTAACGGAATTAACCAGACAAATCACTCCACC JF921195 A. peruvianum AP0411-1 Clone 17 – 18S, ITS1, 5.8S, ITS2, 28S (D1-D3) ATACGAACCTCCATCAGAGTTTCCTCTGAATTCGTTCTGTTCAGGCATAGTTCACCATCTTTCGGGTCCTAATAGATATGCTCAAACTCAAACCTCTGTCTGCTAATCGGTCGGCT

53
GCTGGTGCAAGTATCCCAGCCAATACTTTCATTGCGCAAAAAGGTTTGCCCACCCACGAACTTGCACATCTGTTAGACTCCTTGGTCCGTGTTTCAAGACGGGTCAAGCAGAAACATTTTGCCAGCAACAATGTGCAAGGGCTTGCAGTGCCCAGGGAGGAGAGCCCTCCCCTTTTGGCAAGAAGGCACACACAAGAACACCAGACACACGTATCAAATCACAAATCATTGCAAACACATGCATTCCAATACCCACAGGCAAATTACCATTCATGTGCAAGGGTAATGATTTGCAGAAATAGACGCTGACATTCAAGGTAAGAACCATTGCGCCCACAAGTGGACGCAACAATCTCACCAAGTAGATCAATTCTGTTTGCTTTCTGTTCAGCAAATGCAGACTCTTTTAATTCTCTTTTCAAAGTCCTTTTCATATTTCCCTCATGGTACTTGTTTGCTATCAGCCTCAATAATATATTTTCCTTTACATGGAATTTACCACCCACTTTGCATTCCAATGCCGAGGAGTGTGACTCGTCAAATATATACCGTGCACGGAGGACTGCAAATGACAAAAAGGAATCTCACCCTCATTGACGCTTTCTTTCAATAGGCTTGCACCTGCGCCTCCATTGGCAATACATTTCAAAATTACAATTCAAGGCCGAAGGCCCCAATTTTCAAGCTGAGCAGTTCCTTGTTCATTCGCAATTACTTAAGGAATCCCATTTGGTTCATTTTCCACCGCCTACTTATATGCTTAAATTCAGCAGGTTTACATGCTTCACTTCATGTTAAGTTTACGCGTGCAAGCTTCAGAAAACAAACACATTGCAACCAAATCCAGTGACGGAGGTTAGACCTAAGCAGACACGGTAAGGTTGCAAGGCGTTTGCAAGCGCGTGTGTCTAATGCGACAGCATTGACGCACACAGCTCACAATGTTGCTGAACCAGCAAGCCAGAGATTGGAAGTTAATTGACATTGAATCAAGCACACCTTCAAGCATATCCCAAAGGTGCAAATTACGTTCAAACATCTATTGGCTCACGGAATTCTGCAATTCACAATGCATATCACATTTTGCTGCATTCTTCACCATCAATTGAGCTAAGACATTCATTGCAAAAACACATTTCGCGATTAGGATTCAATCAAAGAACGAGCGTGTTACCAAGAATTGATGTTCAGGAGCACGGCAGCATGAAAGCGCTTGCTGCTGCAAGCCATGCCACCCACGAGCAAATGATGCAGAGCCCAAGGGTTGGGAACCACACCACAGCTCGCAAAGTCGTGAAAGATTGTTGTTGTTAGGAATGTGCAAATGATCCTTCCGCAGGTTCACCTACAGAAACCTTGTTACGACTTCTCCTTCCTCTAAGTGATAAGGTTCATTAAACTTTCCACTGCAATGTTCAAGAACTGAACACTGCTGCAGTCCGAATTATTCACCGGATCACTCAATCGGTAGGAGCGACGGGCGGTGTGTACAAAGGGCAGGGACGTAATCAGCACAAGCTGATGACTCAAGCTTACTAGGAATTCCTCGTTTAAGATTAATAATTGCAATAATCAATCCCCATCACGATGCATTTTTTCAAGATTACCCAACCTTTCCAGGCAAGGCAACAAACTCGTTGAACACATCAGTGTAGCGCGCGTGCAGCCCAGAACATCTAAGGGCATCACAGACCTGTTATTGCCTCAAACTTCCTTGCGTTATACACACAAAGTCCCTCTAAGAAGTTGCCCACATAACCGAAATTACGTGTAACTATTTAGCAGGTTAAGGTCTCGTTCGTTAACGGAATTAACCAGACAAATCACTCCACC JF921196 A. peruvianum AP0411-1 Clone 18 – 18S, ITS1, 5.8S, ITS2, 28S (D1-D3) CGATACGAACCTCCATCAGAGTTTCCTCTGAATTCGTTCTGTTCAGGCATAGTTCACCATCTTTCGGGTCCTAATAGATATGCTCAAACTCAAACCTCTGTCTGCTAATCGGTCGGCTGCTGGTGCAAGTATCCCAGCCAATACTTTCATTGCGCAAAAAGGTTTGCCCACCCACGAACTTGCACATCTGTTAGACTCCTTGGTCCGTGTTTCAAGACGGGTCAAGCAGAAACATTTTGCCAGCAACAATGTGCAAGGGCTTGCAGTGCCCAGGGAGGAGAGCCCTCCCCTTTTGGCAAGAAGGCACACACAAGAACACCAGACACACGTATCAAATCACAAATCATTGCAAACACATGCATTCCAATACCCACAGGCAAATTACCATTCATGTGCAAGGGTAATGATTTGCAGAAATAGACGCTGACATTCAAGGTAAGAACCATTGCGCCCACAAGTGGACGCAACAATCTCACCAAGTAGATCAATTCTGTTTGCTTTCTGTTCAGCAAATGCAGACTCTTTTAATTCTCTTTTCAAAGTCCTTTTCATATTTCCCTCATGGTACTTGTTTGCTATCAGTCTCAATAATATATTTTCCTTTACATGGAATTTACCACCCACTTTG

54
CATTCCAATGCCGAGGAGTGTGACTCGTCAAATATATACCGTGCACGGAGGACTGCAAATGACAAAAAGGAATCTCACCCTCATTGACGCTTTCTTTCAATAGGCTTGCACCTGCGCCTCCATTGGCAATACATTTCAAAATTACAATTCAAGGCCGAAGGCCCCAATTTTCAAGCTGAGCAGTTCCTTGTTCATTCGCAATTACTTAAGGAATCCCATTTGGTTCATTTTCCACCGCCTACTTATATGCTTAAATTCAGCAGGTTTACATGCTTCACTTCATGTTAAGTTTACGCGTGCAAGCTTCAGAAAACAAACACATTGCAACCAAATCCAGTGACAGAGGTTAGACCTAAGCAGACACGGTAAGGTTGCAAGGCGTTTGCAAGCGCGTGTGTCTAATGCGACAGCATTGACGCACACAGCTCACAATGTTGCTGAACCAGCAAGCCAGAGATTGGAAGTTAATTGACATTGAATCAAGCACACCTTCAAGCATATCCCAAAGGTGCAAATTACGTTCAAACATCTATTGGCTCACGGAATTCTGCAATTCACAATGCATATCACATTTTGCTGCATTCTTCATCATCAATTGAGCTAAGACATTCATTGCAAAAACACATTTCGCGATTAGGATTCAATCAAAGAACGAGCGTGTTACCAAGAATTGATGTTCAGGAGCACGGCAGCATGAAAGCGCTTGCTGCTGCAAGCCATGCCACCCACGAGCAAATGATGCAGAGCCCAAGGGTTGGGAACCACACCACAGCTCACAAAGTCGTGAAAGATTGTTGTTGTTAGGAATGTGCAAATGATCCTTCCGCAGGTTCACCTACAGAAACCTTGTTACGACTTCTCCTTCCTCTAAGTGATAAGGTTCATTAAACTTTCCACTGCAATGTTCAAGAACTGAACACTGCTGCAGTCCGAATTATTCACCGGATCACTCAATCGGTAGGAGCGACGGGCGGTGTGTACAAAGGGCAGGGACGTAATCAGCACAAGCTGATGACTCAAGCTTACTAGGAATTCCTCGTTTAAGATTAATAATTGCAATAATCAATCCCCATCACGATGCATTTTTTCAAGATTACCCAACCTTTCCAGGCAAGGCAACAAACTCGTTGAACACATCAGTGTAGCGCGCGTGCAGCCCAGAACATCTAAGGGCATCACAGACCTGTTATTGCCTCAAACTTCCTTGCGTTATACACACAAAGTCCCTCTAAGAAGTTGCCCACATAACCGAAATTACGTGTAACTATTTAGCAGGTTAAGGTCTCGTTCGTTAACGGAATTAACCAGACAAATCACTCCACC JF921197 A. peruvianum AP0411-1 Clone 19 – 18S, ITS1, 5.8S, ITS2, 28S (D1-D3) CGAACGATTTGCACCCCAGTATCGATACGAACCTCCATCAGAGTTTCCTCTGAATTCGTTCTGTTCAGGCATAGTTCACCATCTTTCGGGTCCTAATAGATATGCTCAAACTCAAACCTCTGTCTGCTAATCGGTCGGCTGCTGGTGCAAGTATCCCAGCCAATACTTTCATTGCGCAAAAAGGTTTGCCCACCCACGAACTTGCACATCTGTTAGACTCCTTGGTCCGTGTTTCAAGACGGGTCAAGCAGAAACATTTTGCCAGCAACAATGTGCAAGGGCTTGCAGTGCCCAGGGAGGAGAGCCCTCCCCTTTTGGCAAGAAGGCACACACAAGAACACCAGACACACGTATCAAATCACAAATCATTGCAAACACATGCATTCCAATACCCACAGGCAAATTACCATTCATGTGCAAGGGTAATGATTTGCAGAAATAGACGCTGACATTCAAGGTAAGAACCATTGCGCCCACAAGTGGACGCAACAATCTCACCAAGTAGATCAATTCTGTTTGCTTTCTGTTCAGCAAATGCAGACTCTTTTAATTCTCTTTTCAAAGTCCTTTTCATATTTCCCTCATGGTACTTGTTTGCTATCAGTCTCAATAATATATTTTCCTTTACATGGAATTTACCACCCACTTTGCATTCCAATGCCGAGGAGTGTGACTCGTCAAATATATACCGTGCACGGAGGACTGCAAATGACAAAAAGGAATCTCACCCTCATTGACGCTTTCTTTCAATAGGCTTGCACCTGCGCCTCCATTGGCAATACATTTCAAAATTACAATTCAAGGCCGAAGGCCCCAATTTTCAAGCTGAGCAGTTCCTTGTTCATTCGCAATTACTTAAGGAATCCCATTTGGTTCATTTTCCACCGCCTACTTATATGCTTAAATTCAGCAGGTTTACATGCTTCACTTCATGTTAAGTTTACGCGTGCAAGCTTCAGAAAACAAACACATTGCAACCAAATCCAGTGACAGAGGTTAGACCTAAGCAGACACGGTAAGGTTGCAAGGCGTTTGCAAGCGCGTGTGTCTAATGCGACAGCATTGACGCACACAGCTCACAATGTTGCTGAACCAGCAAGCCAGAGATTGGAAGTTAATTGACATTGAATCAAGCACACCTT

55
CAAGCATATCCCAAAGGTGCAAATTACGTTCAAACATCTATTGGCTCACGGAATTCTGCAATTCACAATGCATATCACATTTTGCTGCATTCTTCATCATCAATTGAGCTAAGACATTCATTGCAAAAACACATTTCGCGATTAGGATTCAATCAAAGAACGAGCGTGTTACCAAGAATTGATGTTCAGGAGCACGGCAGCATGAAAGCGCTTGCTGCTGCAAGCCATGCCACCCACGAGCAAATGATGCAGAGCCCAAGGGTTGGGAACCACACCACAGCTCACAAAGTCGTGAAAGATTGTTGTTGTTAGGAATGTGCAAATGATCCTTCCGCAGGTTCACCTACAGAAACCTTGTTACGACTTCTCCTTCCTCTAAGTGATAAGGTTCATTAAACTTTCCACTGCAATGTTCAAGAACTGAACACTGCTGCAGTCCGAATTATTCACCGGATCACTCAATCGGTAGGAGCGACGGGCGGTGTGTACAAAGGGCAGGGACGTAATCAGCACAAGCTGATGACTCAAGCTTACTAGGAATTCCTCGTTTAAGATTAATAATTGCAATAATCAATCCCCATCACGATGCATTTTTTCAAGATTACCCAACCTTTCCAGGCAAGGCAACAAACTCGTTGAACACATCAGTGTAGCGCGCGTGCAGCCCAGAACATCTAAGGGCATCACAGACCTGTTATTGCCTCAAACTTCCTTGCGTTATACACACAAAGTCCCTCTAAGAAGTTGCCCACATAACCGAAATTACGTGTAACTATTTAGCAGGTTAAGGTCTCGTTCGTTAACGGAATTAACCAGACAAATCACTCCACC JF921198 A. peruvianum AP0411-1 Clone 20 – 18S, ITS1, 5.8S, ITS2, 28S (D1-D3) GATACGAACCTCCATCAGAGTTTCCTCTGAATTCGTTCTGTTCAGGCATAGTTCACCATCTTTCGGGTCCTAATAGATATGCTCAAACTCAAACCTCTGTCTGCTAATCGGTCGGCTGCTGGTGCAAGTATCCCAGCCAATACTTTCATTGCGCAAAAAGGTTTGCCCACCCACGAACTTGCACATCTGTTAGACTCCTTGGTCCGTGTTTCAAGACGGGTCAAGCAGAAACATTTTGCCAGCAACAATGTGCAAGGGCTTGCAGTGCCCAGGGAGGAGAGCCCTCCCCTTTTGGCAAGAAGGCACACACAAGAACACCAGACACACGTATCAAATCACAAATCATTGCAAACACATGCATTCCAATACCCACAGGCAAATTACCATTCATGTGCAAGGGTAATGATTTGCAGAAATAGACGCTGACATTCAAGGTAAGAACCATTGCGCCCACAAGTGGACGCAACAATCTCACCAAGTAGATCAATTCTGTTTGCTTTCTGTTCAGCAAATGCAGACTCTTTTAATTCTCTTTTCAAAGTCCTTTTCATATTTCCCTCATGGTACTTGTTTGCTATCAGTCTCAATAATATATTTTCCTTTACATGGAATTTACCACTCACTTTGCATTCCAATGCCGAGGAGTGTGACTCGTCAAATATATACCGTGCACGGAGGACTGCAAATGACAAAAAGGAATCTCACCCTCATTGACGCTTTCTTTCAATAGGCTTGCACCTGCGCCTCCATTGGCAATACATTTCAAAATTACAATTCAAGGCCGAAGGCCCCAATTTTCAAGCTGAGCAGTTCCTTGTTCATTCGCAATTACTTAAGGAATCCCATTTGGTTCATTTTCCACCGCCTACTTATATGCTTAAATTCAGCAGGTTTACATGCTTCACTTCATGTTAAGTTTACGCGTGCAAGCTTCAGAAAACAAACACATTGCAACCAAATCCAGTGACAGAGGTTAGACCTAAGCAGACACGGTAAGGTTGCAAGGCGTTTGCAAGCGCGTGTGTCTAATGCGACAGCATTGACGCACACAGCTCACAATGTTGCTGAACCAGCAAGCCAGAGATTGGAAGTTAATTGACATTGAATCAAGCACACCTTCAAGCATATCCCAAAGGTGCAAATTACGTTCAAACATCTATTGGCTCACGGAATTCTGCAATTCACAATGCATATCACATTTTGCTGCATTCTTCATCATCAATTGAGCTAAGACATTCATTGCAAAAACACATTTCGCGATTAGGATTCAATCAAAGAACGAGCGTGTTACCAAGAATTGATGTTCAGGAGCACGGCAGCATGAAAGCGCTTGCTGCTGCAAGCCATGCCACCCACGAGCAGATGATGCAGAGCCCAAGGGTTGGGAACCACACCACAGCTCACAAAGTCGTGAAAGATTGTTGTTGTTAGGAATGTGCAAATGATCCTTCCGCAGGTTCACCTACAGAAACCTTGTTACGACTTCTCCTTCCTCTAAGTGATAAGGTTCATTAAACTTTCCACTGCAATGTTCAAGAACTGAACACTGCTGCAGTCCGAATTATTCACCGGATCACTCAATCGGTAGGAGCGACGGGCGGTGTGTACAAAGGGCAGGGACGTAATCAGCACAAGCTGATGACTCAAGCTT

56
ACTAGGAATTCCTCGTTTAAGATTAATAATTGCAATAATCAATCCCCATCACGATGCATTTTTTCAAGATTACCCAACCTTTCCAGGCAAGGCAACAAACTCGTTGAACACATCAGTGTAGCGCGCGTGCAGCCCAGAACATCTAAGGGCATCACAGACCTGTTATTGCCTCAAACTTCCTTGCGTTATACACACAAAGTCCCTCTAAGAAGTTGCCTACATAACCGAAATTACGTGTAACTATTTAGCAGGTTAAGGTCTCGTTCGTTAACGGAATTAACCAGACAAATCACTCCACC

57
APPENDIX 2
JF921171 A. ostenfeldii CCMP1773 Clone 1 – 18S, ITS1, 5.8S, ITS2, 28S (D1-D3) CAAAAGGGGGGGAAAAAAACCCCGTTCTTTCCAGGGGGAAAGGGCCCCCACTACCGTAAACCCTTCACCCCTAATCAAATTTTTTGGGGGTCGAGGGGCCCGTAAAGCACTAAATGGGAACCCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTGTAATACGACTCACTATAGGGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCCCTTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAACGAGACCTTAACCTGCTAAATAGTTACACGTAATTTCGGTTATGTGGGCAACTTCTTAGAGGGACTTTGTGTGTATAACGCAAGGAAGTTTGAGGCAATAACAGGTCTGTGATGCCCTTAGATGTTCTGGGCTGCACGCGCGCTACACTGATGTGTTCAACGAGTTTGTTGCCTTGCCTGGATAGGTTGGGTAATCTTGAAAAAATGCATCGTGATGGGGATTGATTATTGCAATTATTAATCTTAAACGAGGAATTCCTAGTAAGCTTGAGTCATCAGCTTGTGCTGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCTTACCGATTGAGTGATCCGGTGAATAATTCGGACTGCAGCAGTGTTCAGTTCTTGAACATTGCAGTGGAAAGTTTAATGAACCTTATCACTTAGAGGAAGGAGAAGTCGTAACAAGGTTTCTGTAGGTGAACCTGCGGAAGGATCATTTGCACATCCCTAACCACATCAATCTTTCACGACTTTGTGAGCTGTGGTGTGATTCCCAAGCCTTGGGCTCTGCATCATTTGCTCGTGGGTGGCATGGCTTGCAGCAGCAAGTGCTTTCATGCTGCCGTGCTCCCGAACATTATTTCTTGGCTACACGTCGTTCTTTGATTGAATCCTAATCGCGAAATGTGTTTTTGCAATGAATGTCTTAGCTCAATTGATGATGAAGAATGCAGCAAAATGTGATATGCATTGTGAATTGCAGAATTCCGTGAGCCAATAGATGTTTGAACGCAATTTGCACCTTTGGGATATGCTTGAAGGTGTGCTTGATTCAATGTCAATTAACTTCCAATATCTGGCTTGCTGGTTCAGCAACATTGTGAGCTGTGTGTGTCAATGCGTGTGCATTCGACTCACGCGCTTGCAAACGCCTTGCATCCTTATCGTGTCTGCTTAGGTTGAACCTCTGTCATGTGCATTGGTTGCAATGTGTTTGTGTCTGAAGCTTGCACGCGTAAACTTAACATGAAGTGAAGCATGTAAACCTGCTGAATTTAAGCATATAAGTAGGCGGTGGAAAATGAACCAAATGGGATTCCTTAAGTAATTGCGAATGAACAAGGAACTGCTCAGCTTGAAAATTGGGGCCTTCGGCCTTGAATTGTAATTTTGAAATGTATTGCCAATGGAGGCGCAGGTGCAAGCCTATTGAAAGAAAGCGTCAATGAGGGTGAGATTCCTTTTTGTCATTTGCAGTCCTCCGTGCACGGTATATATTTGACGAGTCACACTCCTTGGCATTGGAATGCAAAGTGGGTGGTAAATTCCATGTAAAGGAAAATATATTATTGAGACTGATAGCACACAAGTACCATGAGGGAAATATGAAAAGGACTTTGAAAAGAGAATTAAAAGAGTCTGCATTTGCTGAACAGAAAGCAAACAGAATTGATCTACTTGGTGAGATTGTTGCGTCCACTTGTGGGTGCAATGGTTCTTGCCTTGAATGTCAGCGTCTATTTCTGCAAATTATTACCCTTGCATATGAATTGTAATTTGCCTGTGGGCATTGGAATGCATGTGTTTGCAATGATTTGTGATTTGATACATGTGTCTGGTGTTCGCGTGTGTGCCTTCTTGCTAACACGGGGAGGGCTCTCCTCCCTGGGCACTGCATGCCCTTGCACATTGTTGCTGGCAAAATGTTTCTGCTTGACCCYTCTTRAAACACGGACCAAGGAAGGGCGAATTCCAGCACACTGGCGGCCGT

58
JF921172 A. ostenfeldii CCMP1773 Clone 2 – 18S, ITS1, 5.8S, ITS2, 28S (D1-D3) GGGGGGAAAAAACCCCGTTCTATTCAGGGGCGGATGGGCCCCCCTTACGTTGAAACCCTTCCCCCCTAAATCAAAGTTTTTTTGGGGGTCGAGGGTGCGGTAAAAGCACTAAATCGGAAACCCTAAAGGGAGCCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTGTAATACGACTCACTATAGGGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCCCTTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAACGAGACCTTAACCTGCTAAATAGTTACACGTAATTTCGGTTATGTGGGCAACTTCTTAGAGGGACTTTGTGTGTATAACGCAAGGAAGTTTGAGGCAATAACAGGTCTGTGATGCCCTTAGATGTTCTGGGCTGCACGCGCGCTACACTGATGTGTTCAACGAGTTTGTTGCCTTGCCTGGAAAGGTTGGGTAATCTTGAAAAAATGCATCGTGATGGGGATTGATTATTGCAATTATTAATCTTAAACGAGGAATTCCTAGTAAGCTTGAGTCATCAGCTTGTGCTGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCCTACCGATTGAGTGATCCGGTGAATAATTCGGACTGCAGCAGTGTTCAGTTCTTGAACATTGCAGTGGAAAGTTTAATGAACCTTATCACTTAGAGGAAGGAGAAGTCGTAACAAGGTTTCTGTAGGTGAACCTGCGGAAGGATCATTTGCACATCCCTAACCACATCAATCTTTCACGACTTTGTGAGCTGTGGTGTGATTCCCAAGCCTTGGGCTCTGCATCATTTGCTCGTGGGTGGCATGGCTTGCAGCAGCAAGTGCTTTCATGCTGCCGTGCTCCCGAACATTATTTCTTGGCTACACGTCGTTCTTTGATTGAATCCTAATCGCGAAATGTGTTTTTGCAATGAATGTCTTAGCTCAATTGATGATGAAGAATGCAGCAAAATGTGATATGCATTGTGAATTGCAGAATTCCGTGAGCCAATAGATGTTTGAACGCAATTTGCACCTTTGGGATATGCTTGAAGGTGTGCTTGATTCAATGTCAATTAACTTCCAATATCTGGCTTGCTGGTTCAGCAACATTGTGAGCTGTGTGTGTCAATGCGTGTGCATTCGACTCACGCGCTTGCAAACGCCTTGCATCCTTATCGTGTCTGCTTAGGTTGAACCTCTGTCATGTGCATTGGTTGCAATGTGTTTGTGTCTGAAGCTTGCACGCGTAAACTTAACATGAAGTGAAGCATGTAAACCTGCTGAATTTAAGCATATAAGTAGGCGGTGGAAAATGAACCAAATGGGATTCCTTAAGTAATTGCGAATGAACAAGGAACTGCTCAGCTTGAAAATTGGGGCCTTCGGCCTTGAATTGTAATTTTGAAATGTATTGCCAATGGAGGCGCAGGTGCAAGCCTATTGAAAGAAAGCGTCAATGAGGGTGAGATTCCTTTTTGTCATTTGCAGTCCTCCGTGCACGGTATATATTTGACGAGTCACACTCCTTGGCATTGGAATGCAAAGTGGGTGGTAAATTCCATGTAAAGGAAAATATATTATTGAGGCTGATAGCAAACAAGTACCATGAGGGAAATATGAAAAGGACTTTGAAAAGAGAATTAAAAGAGTCTGCATTTGCTGAACAGAAAGCAAACAGAATTGATCTACTTGGTGAGATTGTTGCGTCCACTTGTGGGTGCAATGGTTCTTGCCTTGAATGTCAGCGTCTATTTCTGCAAATTATTACCCTTGCATATGAATTGTAATTTGCCTGTGGGCATTGGAATGCATGTGTTTGCAATGATTTGTGATTTGATACATGTGTCTGGTGTTCGCGTGTGTGCCTTCTTGCTAACACGGGGAGGGCTCTCCTCCCTGGGCACTGCATGCCCTTGCACATTGTTGCTGGCAAAATGTTTCTGCTTGACCCGTCTTGAAACACGGACCAAAGGGCGAATTCCAGCACACTGGCGGCCGTT JF921173 A. ostenfeldii CCMP1773 Clone 3 – 18S, ITS1, 5.8S, ITS2, 28S (D1-D3) CGAAAAAAAACCCGTTCTTTTTCAAGGGGCGGAAGGGCCCCCCTTACCTGGGAACCCTTCCACCCTTAATTCAAATTTTTTTGGGGGTGGAGGGTGCCGTAAAACCACTAAAT

59
TGGGAACCCTAAAGGGGAGCCCCCCGATTTAGAGCTGGACGGGGAAGGCCGGCGAACGTGCGGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTGTAATACGACTCACTATAGGGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCCCTTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAACGAGACCTTAACCTGCTAAATAGTTACACGTAATTTCGGTTATGTGGGCAACTTCTTAGAGGGACTTTGTGTGTATAACGCAAGGAAGTTTGAGGCAATAACAGGTCTGTGATGCCCTTAGATGTTCTGGGCTGCACGCGCGCTACACTGATGTGTTCAACGAGTTTGTTGCCTTGCCTGGAAAGGTTGGGTAATCTTGAAAAAATGCATCGTGATGGGGATTGATTATTGCAATTATTAATCTTAAACGAGGAATTCCTAGTAAGCTTGAGTCATCAGCTTGTGCTGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCCTACCGATTGAGTGATCCGGTGAATAATTCGGACTGCAGCAGTGTTCAGTTCTTGAACATTGCAGTGGAAAGTTTAATGAACCTTATCACTTAGAGGAAGGAGAAGTCGTAACAAGGTTTCTGTAGGTGAACCTGCGGAAGGATCATTTGCACATCCCTAACCACATCAATCTTTCACGACTTTGTGAGCTGTGGTGTGATTCCCAAGCCTTGGGCTCTGCATCATTTGCTCGTGGGTGGCATGGCTTGCAGCAGCAAGTGCTTTCATGCTGCCGTGCTCCCGAACATTATTTCTTGGCTACACGTCGTTCTTTGATTGAATCCTAATCGCGAAATGTGTTTTTGCAATGAATGTCTTAGCTCAATTGATGATGAAGAATGCAGCAAAATGTGATATGCATTGTGAATTGCAGAATTCCGTGAGCCAATAGATGTTTGAACGCAATTTGCACCTTTGGGATATGCTTGAAGGTGTGCTTGATTCAATGTCAATTAACTTCCAATATCTGGCTTGCTGGTTCAGCAACATTGTGAGCTGTGTGTGTCAATGCGTGTGCATTCGACTCACGCGCTTGCAAACGCCTTGCATCCTTATCGTGTCTGCTTAGGTTGAACCTCTGTCATGTGCATTGGTTGCAATGTGTTTGTGTCTGAAGCTTGCACGCGTAAACTTAACATGAAGTGAAGCATGTAAACCTGCTGAATTTAAGCATATAAGTAGGCGGTGGAAAATGAACCAAATGGGATTCCTTAAGTAATTGCGAATGAACAAGGAACTGCTCAGCTTGAAAATTGGGGCCTTCGGCCTTGAATTGTAATTTTGAAATGTATTGCCAATGGAGGCGCAGGTGCAAGCCTATTGAAAGAAAGCGTCAATGAGGGTGAGATTCCTTTTTGTCATTTGCAGTCCTCCGTGCACGGTATATATTTGACGAGTCACACTCCTTGGCATTGGAATGCAAAGTGGGTGGTAAATTCCATGTAAAGGAAAATATATTATTGAGACTGATAGCAAACAAGTACCATGAGGGAAATATGAAAAGGACTTTGAAAAGAGAATTAAAAGAGTCTGCATTTGCTGAACAGAAAGCAAACAGAATTGATCTACTTGGTGAGATTGTTGTGTCCACTTGTGGGTGCAATGGTTCTTGCCTTGAATGTCAGCGTCTATTTCTGCAAATTATTACCCTTGCATATGAATTGTAATTTGCCTGTGGGCATTGGAATGCATGTGTTTGCAATGATTTGTGATTTGATACATGTGTCTGGTGTTCGCGTGTGTGCCTTCTTGCTAACACGGGGAGGGCTCTCCTCCCTGGGCACTGCATGCCCTTGCACATTGTTGCTGGCAAAATGTTTCTGCTTGACCCYTCTTRAAACASGGACCAAGGAAGGGCGAATTCCAGCACACTGGCGGCCGTACTAGTGG JF921174 A. ostenfeldii CCMP1773 Clone 4 – 18S, ITS1, 5.8S, ITS2, 28S (D1-D3) GTTCAAAAGGGGGGGAAAAAAACCCCGTTTATTTCAAGGGGCGAATGGCCCCCCTTTCGGGGAACCCTTCCACCCCTAAATCCAGGTTTTTTGGGGGTTCGAGGGGGCCGTAAAAGCACTAAAATCGGAACCCTAAAAGGGAGCCCCCGATTTAGACCTGGCGGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAG

60
GGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTGTAATACGACTCACTATAGGGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCCCTTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAACGAGACCTTAACCTGCTAAATAGTTACACGTAATTTCGGTTATGTGGGCAACTTCTTAGAGGGACTTTGTGTGTATAACGCAAGGAAGTTTGAGGCAATAACAGGTCTGTGATGCCCTTAGATGTTCTGGGCTGCACGCGCGCTACACCGATGTGTTCAACGAGTTTGTTGCCTTGCCTGGAAAGGTTGGGTAATCTTGAAAAAATGCATCGTGATGGGGATTGATTATTGCAATTATTAATCTTAAACGAGGAATTCCTAGTAAGCTTGAGTCATCAGCTTGTGCTGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCCTACCGATTGAGTGATCCGGTGAATAATTCGGACTGCAGCAGTGTTCAGTTCTTGAACATTGCAGTGGAAAGTTTAATGAACCTTATCACTTAGAGGAAGGAGAAGTCGTAACAAGGTTTCTGTAGGTGAACCTGCGGAAGGATCATTTGCACATCCCTAACCACATCAATCTTTCACGACTTTGTGAGCTGTGGTGTGATTCCCAAGCCTTGGGCTCTGCATCATTTGCTCGTGGGTGGCATGGCTTGCAGCAGCAAGTGCTTTCATGCTGCCGTGCTCCCGAACATTATTTCTTGGCTACACGTCGTTCTTTGATTGAATCCTAATCGCGAAATGTGTTTTTGCAATGAATGTCTTAGCTCAATTGATGATGAAGAATGCAGCAAAATGTGATATGCATTGTGAATTGCAGAATTCCGTGAGCCAATAGATGTTTGAACGCAATTTGCACCTTTGGGATATGCTTGAAGGTGTGCTTGATTCAATGTCAATTAACTTCCAATATCTGGCTTGCTGGTTCAGCAACATTGTGAGCTGTGTGTGTCAATGCGTGTGCATTCGACTCACGCGCTTGCAAACGCCTTGCATCCTTATCGTGTCTGCTTAGGTTGAACCTCTGTCATGTGCATTGGTTGCAATGTGTTTGTGTCTGAAGCTTGCACGCGTAAACTTAACATGAAGTGAAGCATGTAAACCTGCTGAATTTAAGCATATAAGTAGGCGGTGGAAAATGAACCAAATGGGATTCCTTAAGTAATTGCGAATGAACAAGGAACTGCTCAGCTTGAAAATTGGGGCCTTCGGCCTTGAATTGTAATTTTGAAATGTATTGCCAATGGAGGCGCAGGTGCAAGCCTATTGAAAGAAAGCGTCATTGAGGGTGAGATTCCTTTTTGTCATTTGCAGTCCTCCGTGCACGGTATATATTTGACGAGTCACACTCCTTGGCATTGGAATGCAAAGTGGGTGGTAAATTCCATGTAAAGGAAAATATATTATTGAGACTGATAGCAAACAAGTACCATGAGGGAAATATGAAAAGGACTTTGAAAAGAGAATTAAAAGAGTCTGCATTTGCTGAACAGAAAGCAAACAGAATTGATCTACTTGGTGAGATTGTTGCGCCCACTTGTGGGTGCAATGGTTCTTGCCTTGAATGTCAGCGTCTATTTCTGCAAATTATTACCCTTGCATATGAATTGTAATTTGCCTGTGGGCATTGGAATGCATGTGTTTGCAATGATTTGTGATTTGATACATGTGTCTGGTGTTCGCGTGTGTGCCTTCTTGCTAACACGGGGAGGGCTCTCCTCCCTGGGCACWGCATGCCCTTGCACATTGTTGCTGGCAAAATGTTTCTGCTTGACCCGTYTTGAARCACGGACCAAGGAAGGGCGAATTCCAG JF921175 A. ostenfeldii CCMP1773 Clone 5 – 18S, ITS1, 5.8S, ITS2, 28S (D1-D3) AAGGGGGGGAAAAAAAACCCGTTTTTTTCCCAGGGGCGAATGGGCCCCCCTAACGTGAAACCCTTCCACCCTAATCCAAGTTTTTTGGGGGTCGAGGGGCCCGTAAAGCACTAATTTCGAAACCTAAAGGGGAGCCCCCGATTTAGAGCTTGACGGGAAAAGCCGGCGAACGTGGCGAGAAAGGAAGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATT

61
AAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTGTAATACGACTCACTATAGGGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCCCTTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAACGAGACCTTAACCTGCTAAATAGTTACACGTAATTTCGGTTATGTGGGCAACTTCTTAGAGGGACTTTGTGTGTATAACGCAAGGCAGTTTGAGGCAATAACAGGTCTGTGATGCCCTTAGATGTTCTGGGCTGCACGCGCGCTACACTGATGTGTTCAACGAGTTTGTTGCCTTGCCTGGAAAGGTCGGGTAATCTTGAAAAAATGCATCGTGATGGGGATTGATTATTGCAATTATTAATCTTAAACGAGGAATTCCTAGTAAGCTTGAGTCATCAGCTTGTGCTGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCCTACCGATTGAGTGATCCGGTGAATAATTCGGACTGCAGCAGTGTTCAGTTCTTGAACATTGCAGTGGAAAGTTTAATGAACCTTATCACTTAGAGGAAGGAGAAGTCGTAACAAGGTTTCTGTAGGTGAACCTGCGGAAGGATCATTTGCACATCCCTAACCACATCAATCTTTCACGACTTTGTGAGCTGTGGTGTGATTCCCAAGCCTTGGGCTCTGCATCATTTGCTCGTGGGTGGCATGGCTTGCAGCAGCAAGTGCTTTCATGCTGCCGTGCTCCCGAACATTATTTCTTGGCTACACGTCGTTCTTTGATTGAATCCTAATCGCGAAATGTGTTTTTGCAATGAATGTCTTAGCTCAATTGATGATGAAGAATGCAGCAAAATGTGATATGCATTGTGAATTGCAGAATTCCGTGAGCCAATAGATGTTTGAACGCAATTTGCACCTTTGGGATATGCTTGAAGGTGTGCTTGATTCAATGTCAATTAACTTCCAATATCTGGCTTGCTGGTTCAGCAACATTGTGAGCTGTGTGTGTCAATGCGTGTGCATTCGACTCACGCGCTTGCAAACGCCTTGCATCCTTATCGTGTCTGCTTAGGTTGAACCTCTGTCATGTGCATTGGTTGCAATGTGTTTGTGTCTGAAGCTTGCACGCGTAAACTTAACATGAAGTGAAGCATGTAAACCTGCTGAATTTAAGCATATAAGTAGGCGGTGGAAAATGAACCAAATGGGATTCCTTAAGTAATTGCGAATGAACAAGGAACTGCTCAGCTTGAAAATTGGGGCCTTCGGCCTTGAATTGTAAATTTTTGAAAATGTATTGCCAATGGAGGCGCAGGTGCAAGCCTATTGAAAAGAAAGCGTCAATGAGGGTGAGATTCCTTTTTGTCATTTGCAGTCCTCCGTGCRCGGTATATATTTGACGAGTCWCACTCCTTGGCATTGGAATGCAAAGTGGGTGGTAAATTCCATGTAAAGGAAAATATATTATTGAGACTGATAGCAAACAAGTRCCATGAGGGAAATATGAAAAGGACTTTGAAAAGAGAATTAAAAGAGTCTGCATTTGCTGAACAGAAAGCAAACAGAATTGATCTACTTGGTGAGATTGTTGCGTCCACTTGTGGGTGCAATGGTTCTTGCCTTGAATGTCAGCGTCTATTTCTGCAAATTATTACCCTTGCATATGAATTGTAATTTGCCCGTGGGCATTGGAATGCATGTGTTTGCAATGATTTGTGATTTGATACATGTGTCTGGTGTTCGCGTGTGTGCCTTCTTGCTAACACGGGGAGGGCTCTCCTCCCTGGGCACTGCATGCCCTTGCACATTGTTGCTGGCAAAATGTTTCTGCTTG JF921176 A. ostenfeldii CCMP1773 Clone 6 – 18S, ITS1, 5.8S, ITS2, 28S (D1-D3) CCCCGTTTTATTCACGGGGGGGGATGGGCCCCCCCTTTCCGGGGAAACCCTTCCCCCCCTAAATCCAAGTTTTTTTGGGGGGTGGAGGGGGCCCGTAAAAGCACTTAAATTGGAAACCCCTAAAGGGAAGCCCCCGAATTAAGAGCTTGACGGGGAAAGGCCGGGGAACCGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAACGAGACCTTAACCTGCTAAATAGTTACACGTAATTTCGGTTATGTGGGCAACTTCTTAGAGGGACTTTGTGTGTATAACGCAAGGAAGTTTGAGGCAATAACAGGTCTGTGATGCCCTTAGATGTTCTGGGCTGCACGCGCGCTACACTGATGTGATCAACGAGTTTGTTGCCTTGC

62
CTGGAAAGGTTGGGTAATCTTGAAAAAATGCATCGTGATGGGGATTGATTATTGCAATTATTAATCTTAAACGAGGAATTCCTAGTAAGCTTGAGTCATCAGCTTGTGCTGATTAACAGGCTGCCCTTTGTACACACCGCTCTGGGCTGCACGCGCGCTACACTGATGTGATCAACGAGTTTGTTGCCTTGCCTGGAAAGGTTGGGTAATCTTGAAAAAATGCATCGTGATGGGGATTGATTATTGCAATTATTAATCTTAAACGAGGAATTCCTAGTAAGCTTGAGTCATCAGCTTGTGCTGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCCTACCGATTGAGTGATCCGGTGAATAATTCGGACTGCAGCAGTGTTCAGTTCTTGAACATTGCAGTGGAAAGTTTAATGAACCTTATCACTTAGAGGAAGGAGAAGTCGTAACAAGGTTTCTGTAGGTGAACCTGCGGAAGGATCATTTGCACATCCCTAACCACATCAATCTTTCACGACTTTGTGAGCTGTGGTGTGATTCCCAAGCCTCGGGCTCTGCATCATTTGCTCGTGGGTGGCATGGCTTGCAGCAGCAAGTGCTTTCATGCTGCCGTGCTCCCGAACATTATTTCTTGGCTACACGTCGTTCTTTGATTGAATCCTAATCGCGAAATGTGTTTTTGCAATGAATGTCTTAGCTCAATTGATGATGAAGAATGCAGCAAAATGTGATATGCATTGTGAATTGCAGAATTCCGTGAGCCAATAGATGTTTGAACGCAATTTGCACCTTTGGGATATGCTTGAAGGTGTGCTTGATTCAGTGTCAATTAACTTCCAATATCTGGCTTGCTGGTTCAGCAACATTGTGAGCTGTGTGTGTCAATGTGTGTGCATTCGACTCACGCGCTTGCAAACGCCTTGCATCCTTATCGTGTCTGCTTAGGTTGAACCTCTGTCATGTGCATTGGTTGCAATGTGTTTGTGTCTGAAGCTTGCACGCGTAAACTTAACATGAAGTGAAGCATGTAAACCTGCTGAATTTAAGCATATAAGTAGGCGGTGGAAAATGAACCAAATGGGATTCCTTAAGTAATTGCGAATGAACAAGGAACTGCTCAGCTTGAAAATTGGGGCCTTCGGCCTTGAATTGTAATTTTGAAATGTATTGCCAATGGAGGCGCAGGTGCAAGCCTATTGAAAGAAAGCGTCAATGAGGGTGAGATTCCTTTTTGTCATTTGCAGTCCTCCGTGCACGGTATATATTTGACGAGTCACACTCCTTGGCATTGGAATGCAAAGTGGGTGGTAAATTCCATGTAAAGGAAAATATATTATTGAGACTGATAGCAAACAAGTACCATGAGGGAAATATGAAAAGGACTTTGAAAAGAGAATTAAAAGAGTCTGCATTTGCTGAACAGAAAGCAAACAGAATTGATCTACTTGGTGAGATTGTTGCGTCCACTTGTGGGTGCAATGGTTCTTGCCTTGAATGTCAGCGTCTATTTCTGCAAATTATTACCCTTGCATATGAATTGTAATTTGCCTGTGGGCATTGGAATGCATGTGCTTGCAATGATTTGTGATTTGATACATGTGTCTGGTGTTCGCGTGTGTGCCTTCTTGCTAACACGGGGAGGGCTCTCCTCCCTGGGCACTGCATGCCCTTGCACATTGTTGCTGGCAAAATGTTTCTGCTTGACCCGTYTTRAAACACGGACCAAGGAAGGGCGAATTCCAGCACACTGGCGGCCG JF921177 A. ostenfeldii CCMP1773 Clone 7 – 18S, ITS1, 5.8S, ITS2, 28S (D1-D3) GGGAAAAAAACCCCGTTTTTTCCAGGGGGAGATGGGGCCCCCTTTCCGGAAACCCATCCCCCCTTAATCCAATTTTTTTGGGGGTTGGGGGGGCCGTAAAAGCCATTAATTCGGAACCCTAAAAGGGAGCCCCCCGATTTAGAACTTGACGGGGGAAAACCGGCGAACGTGGCGAGAAAAGAAGGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGCCGCGGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTCCATTTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTGTAATACGACTCACTATAGGGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCCCTTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAACGAGACCTTAACCTGCTAAATAGTTACACGTAATTTCGGTTATGTGGGCAACTTCTTAGAGGGACTTTGTGTGTATAACGCAAGGAAGTTTGGGGCAATAACAGGTCTGTGATGCCCTTAGATGTTCTGGGCTGCACGCGCGCTACACTGATGTG

63
TTCAACGAGTTTGTTGCCTTGCCTGGAAAGGTTGGGTAATCTTGAAAAAATGCATCGTGATGGGGATTGATTATTGCAATTATTAATCTTAAACGAGGAATTCCTAGTAAGCTTGAGTCATCAGCTTGTGCTGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTCCTACCGATTGAGTGATCCGGTGAATAATTCGGACTGCAGCAGTGTTCAGTTCTTGAACATTGCAGTGGAAAGTTTAATGAACCTTATCACTTAGAGGAAGGAGAAGTCGTAACAAGGTTTCTGTAGGTGAACCTGCGGAAGGATCATTTGCACATCCCTAACCACATCAATCTTTCACGACTTTGTGAGCTGTGGTGTGATTCCCAAGCCTTGGGCTCTGCATCATTTGCTCGTGGGTGGCATGGCTTGCAGCAGCAAGTGCTTTCATGCTGCCGTGCTCCCGAACATTATTTCTTGGCTACACGTCGTTCTTTGATTGAATCCTAATCGCGAAATGTGTTTTTGCAATGAATGTCTTAGCTCAATTGATGATGAGGAATGCAGCAAAATGTGATATGCATTGTGAATTGCAGAATTCCGTGAGCCAATAGATGTTTGAACGCAATTTGCACCTTTGGGATATGCTTGAAGGTGTGCTTGATTCAATGTCAATTAACTTCCAATATCTGGCTTGCTGGTTCAGCAACATTGTGAGCTGTGTGTGTCAATGCGTGTGCATTCGACTCACGCGCTTGCAAACGCCTTGCATCCTTATCGTGTCTGCTTAGGTTGAACCTCTGTCATGTGCATTGGTTGCAATGTGTTTGTGTCTGAAGCTTGCACGCGTAAACTTAACATGAAGTGAAGCATGTAAACCTGCTGAATTAAGCATATAAGTAGGCGGTGGAAAATGAACCAAATGGGATTCCTTAAGTAATTGCGAATGAACAAGGAACTGCTCAGCTTGAAAATTGGGGCCTTCGGCCTTGAATTGTAATTTTGAAATGTATTGCCAATGGAGGCGCAGGTGCAAGCCTATTGAAAGAAAGCGTCAATGAGGGTGAGATTCCTTTTTGTCATTTGCAGTCCTCCGTGCACGGTATATATTTGACGAGCCACACTCCTTGGCATTGGAATGCAAAGTGGGTGGTAAATTCCATGTAAAGGAAAATATATTATTGAGACTGATAGCAAACAAGTACCATGAGGGAAATATGAAAAGGACTTTGAAAAGAGAATTAAAAGAGTCTGCATTTGCTGAACAGAAAGCAAACAGAATTGATCTACTTGGTGAGATTGTTGTGTCCACTTGTGGGTGCAATGGTTCTTGCCTTGAATGTCAGCGTCTATTTCTGCAAATTATTACCCTTGCATATGAATTGTAATTTGCCTGTGGGCATTGGAATGCATGTGTTTGCAATGATTTGTGATTTGATACATGTGTCTGGTGTTCGCGTGTGTGCCTTCTTGCTAACACGGGGAGGGCTCTCCTCCCTGGGCACTGCATGCCCTTGCACATTGTTGCTGGCAAAATGTTTCTGCTTGACCCGTCTWGAAACRCGGACCAAGGAAGGGCGAATTCCAGCACACTGGCGGCCGTACTAGTGG JF921178 A. ostenfeldii CCMP1773 Clone 8 – 18S, ITS1, 5.8S, ITS2, 28S (D1-D3) CCAGGGGGGGGAGTGGGCCCCCCATATACGGGGAAACCCATTCCCCCCCTTTAATCAAAATTTTTTTGGGGGGTGCGAGGGGGCCGGGTAAAAGCCCTTTAATTTGGGAACCCTAAAAAGGGAGCCCCCCGGATTTTAGAGCCTTGACGGGGAAAACCCGGGGAACCGGGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGGAGCGGGCGTATGGGCGCTGGCAAATGTAGCCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCCTTATGCGCCCGCTACAGGGCGCGTCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTGTAATACGACTCACTATAGGGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCCCTTTGGTGGAGTGATTTGTCTGGTTAATTCCGTTAACGAACGAGACCTTAACCTGCTAAATAGTTACACGTAATTTCGGTTATGTGGGCAACTTCTTAGAGGGACTTTGTGTGTATAACGCAAGGAAGTTTGAGGCAATAACAGGTCTGTGATGCCCTTAGATGCTCTGGGCTGCACGCGCGCTACACTGATGTGTTCAACGAGTTTGTTGCCTTGCCTGGAAAGGTTGGGTAATCTTGAAAAAATGCATCGTGATGGGGATTGATTATTGCAATTATTAATCTTAAACGAGGAATTCCTAGTAAGCTTGAGTCATCAGCTTGTGCTGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTC

64
CTACCGATTGAGTGATCCGGTGAATAATTCGGACTGCAGCAGTGTTCAGTTCTTGAACATTGCAGTGGAAAGTTTAATGAACCTTATCACTTAGAGGAAGGAGAAGTCGTAACAAGGTTTCTGTAGGTGAACCTGCGGAAGGATCATTTGCACATCCCTAACCACATCAATCTTTCACGACTTTGTGAGCTGTGGTGTGATTCCCAAGCCTTGGGCTCTGCATCATTTGCTCGTGGGTGGCATGGCTTGCAGCAGCAAGTGCTTTCATGCTGCCGTGCTCCCGAACATTATTTCTTGGCTACACGTCGTTCTTTGATTGAATCCTAATCGCGAAATGTGTTTTTGCAATGAATGTCTTAGCTCAATTGATGATGAAGAATGCAGCAAGATGTGATATGCATTGTGAATTGCAGAATTCCGTGAGCCAATAGATGTTTGAACGCAATTTGCACCTTTGGGATATGCTTGAAGGTGTGCTTGATTCAATGTCAATTAACTTCCAATATCTGGCTTGCTGGTTCAGCAACATTGTGAGCTGTGTGTGTCAATGCGTGTGCATTCGACTCACGCGCTTGCAAACGCCTTGCATCCTTATCGTGTCTGCTTAGGTTGAACCTCTGTCATGTGCATTGGTTGCAATGTGTTTGTGTCTGAAGCTTGCACGCGTAAACTTAACATGAAGTGAAGCATGTAAACCTGCTGAATTTAAGCATATAAGTAGGCGGTGGAAAATGAACCAAATGGGATTCCTTAAGTAATTGCGAATGAACAAGGAACTGCTCAGCTTGAAAATTGGGGCCTTCGGCCTTGAATTGTAATTTTGAAATGTATTGCCAATGGAGGCGCAGGTGCAAGCCTATTGAAAGAAAGCGTCAATGAGGGTGAGATTCCTTTTTGTCATTTGCAGTCCTCCGTGCACGGTATATATTTGACGAGTCACACTCCTTGGCATTGGAATGCAAAGTGGGTGGTAAATTCCATGTAAAGGAAAATATATTATTGAGACTGATAGCAAACAAGTACCATGAGGGAAATATGAAAAGGACTTTGAAAAGAGAATTAAAAGAGTCTGCATTTGCTGAACAGAAAGCAAACAGAATTGATCTACTTGGTGAGATTGTTGCGTCCACTCGTGGGTGCAATGGTTCTTGCCTTGAATGTCAGCGTCTATTTCTGCAAATTATTACCCTTGCATATGAATTGTAATTTGCCTGTGGGCATTGGAATGCATGTGTTTGCAATGATTTGTGATTTGATACATGTGTCTGGTGTTCGCGTGTGTGCCTTCTTGCTAACACGGGGAGGGCTCTCCTCCCTGGGCACTGCATGCCCTTGCACATTGTTGCTGGCAAAATGTTTCTGCTTGACCCGTCTTGAAACRSGGACCAAGGAAGGGCGAATTCCAGCACACTGGCGGCCG

65
APPENDIX 3
Gel pictures of cross reactivity tests; 1) A. peruvianum (AP0411-1), 2) A. tamarense (clade 1), 3) A. hiranoi, 4) A. ostenfeldii, 5) A. monilatum, 6) A. minutum, 7) A. tamarense (clade 4), 8) A. tamarense (clade 2), 9) A. andersoni, 10) Negative control, 11) A. peruvianum, 12) A. ostenfeldii (CCMP1773), 13) B2-NR, 14) C10-NR, 15) D4-NR, 16) AOF0933, 17) AONOR4, 18) Negative control.
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18