Moleclular Simulation of CO2 Brine Mineral

download Moleclular Simulation of CO2 Brine Mineral

of 43

Transcript of Moleclular Simulation of CO2 Brine Mineral

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    1/43

    Molecular Simulation of Carbon Dioxide,

    Brine, and Clay Mineral Interactions

    Craig M. Tenney and Randall T. Cygan

    Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys

    National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND 2013-6721P

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    2/43

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    3/43

    injection wellabandoned wellfault

    caprock

    storagezone

    caprock jointing

    1 kmScale:

    Slide from: CFSES EFRC Science Review;

    Denver, CO; January 2012; Joe Bishop (SNL)

    Field-scale modeling

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    4/43

    log Time (s)

    -15 -12 -9 -6 -3 0 3 6 9 12 15

    logDistance

    (m)

    -9

    -6

    -3

    0

    3

    6

    Finite

    Element

    Analysis

    Continuum

    Methodsand

    Mesoscale

    Modeling

    MolecularMechanics

    Quantum

    Mechanics

    m

    m

    mm

    km

    min yearday Mamssns

    psfs

    e

    atoms

    nm

    blobs

    s ka

    bulk

    Multiscale simulation

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    5/43

    Geological carbon storageUp Close

    reservoir rock cap rock

    Source: Cooperative Research Centre

    for Greenhouse Gas Technologies,

    http://www.co2crc.com.au/

    Source: Hongkyu Yoon (SNL)

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    6/43

    Sub-pore scale

    interfacial tension 12 surface free energy

    contact angle indication of wettability

    C12S2S1 cosggg

    Source: Kuldeep Chaudhary (UT Austin)

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    7/43

    Pore- and field-scale

    capillary pressure pc overpressure required to

    displace current fluid withnew fluid

    relative permeability

    fractional permeability ofa fluid in the presence ofother fluid(s)

    rp

    c

    C12cos2 g

    liquid CO2

    Water (10% NaBr)

    10-3m

    Source: Kuldeep Chaudhary (UT Austin)

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    8/43

    Molecular simulation of aqueous andsupercritical CO2nanodroplets

    H

    Al

    Si

    Osiloxane surface

    (hydrophobic)

    gibbsite surface(hydrophilic)

    kaolinite

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    9/43

    Simulation details

    (20 x 20 x 17) nm

    3 kaolinite layers(bottom two fixed)

    330K, 20MPa10-15 ns

    CO2in H2O 600k atoms

    H2O in CO2 300k atoms

    brine systems 0.7 M NaCl

    0.2 M CaCl2

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    10/43

    siloxane (hydrophobic) surface0.7M NaCl in CO2initial configuration

    front view oblique view

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    11/43

    siloxane (hydrophobic) surface0.7M NaCl in CO2final configuration

    front view oblique view

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    12/43

    siloxane (hydrophobic) surface0.7M NaCl in CO2final configuration

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    13/43

    siloxane (hydrophobic) surface0.7M NaCl in CO2final configuration

    carbon dioxidewater

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    14/43

    siloxane (hydrophobic) surface0.7M NaCl in CO2final configuration

    water Na+ Cl

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    15/43

    gibbsite (hydrophilic) surfaceCO2in H2O initial configuration

    front view oblique view

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    16/43

    gibbsite (hydrophilic) surfaceCO2in H2O final configuration

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    17/43

    gibbsite (hydrophilic) surfaceCO2in H2O final configuration

    carbon dioxidewater

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    18/43

    gibbsite (hydrophilic) surfaceCO2in 0.7M NaCl final configuration

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    19/43

    gibbsite (hydrophilic) surfaceCO2in 0.7M NaCl final configuration

    carbon dioxidewater

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    20/43

    gibbsite (hydrophilic) surfaceCO2in 0.7M NaCl final configuration

    water Na+ Cl

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    21/43

    gibbsite (hydrophilic) surfaceCO2in 0.2M CaCl2final configuration

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    22/43

    gibbsite (hydrophilic) surfaceCO2in 0.2M CaCl2final configuration

    carbon dioxidewater

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    23/43

    gibbsite (hydrophilic) surfaceCO2in 0.2M CaCl2final configuration

    water Ca2+ Cl

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    24/43

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    25/43

    Acknowledgments

    Simulation development aided by discussions with

    Louise Criscenti (SNL)

    Ian Bourg (LBNL)

    This research is funded by the Center for Frontiersof Subsurface Energy Security(CFSES), a U.S.Department of Energy Office of Basic Energy

    Sciences Energy Frontier Research Center, under

    Contract No. DE-SC0001114.

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    26/43

    supplementary slides

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    27/43

    siloxane (hydrophobic) surfaceCO2in H2O

    initial final

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    28/43

    siloxane (hydrophobic) surfaceCO2in H2O final configuration

    top view front view

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    29/43

    siloxane (hydrophobic) surfaceCO2in H2O final configuration

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    30/43

    siloxane (hydrophobic) surfaceCO2in H2O final configuration

    carbon dioxidewater

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    31/43

    siloxane surface H2O in CO2

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    32/43

    siloxane surface H2O in CO2

    carbon dioxidewater

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    33/43

    siloxane surface 0.2M CaCl2in CO2

    water Ca2+ Cl

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    34/43

    siloxane surface 0.2M CaCl2in CO2

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    35/43

    siloxane surface 0.2M CaCl2in CO2

    carbon dioxidewater

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    36/43

    siloxane surface 0.2M CaCl2in CO2

    water Ca2+ Cl

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    37/43

    CO2and H2O in mica slit poresinitial configuration

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    38/43

    CO2and H2O in mica slit poresfinal configurations

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    39/43

    CO2and H2O in mica slit poresfinal configurations

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    40/43

    CO2and H2O in mica slit poresCO2density

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    41/43

    CO2and H2O in mica slit poresH2O density

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    42/43

    CO2and H2O in mica slit poresK+density

  • 8/12/2019 Moleclular Simulation of CO2 Brine Mineral

    43/43

    Summary

    kaolinite hydrophilic surface layers of water (and ions) completely displace CO2

    kaolinite hydrophobic surface strong CO2wetting in presence of water and brine

    weak water and brine wetting in presence of CO2 mica slit pores

    unconfined CO2is completely displaced by well-developed water layers

    strongly confined CO2displaces diffuse waterlayers, slightly altering contact angle