Molbiol 2011-11-role of-proteins

138
Globular Proteins

Transcript of Molbiol 2011-11-role of-proteins

Page 1: Molbiol 2011-11-role of-proteins

Globular Proteins

Page 2: Molbiol 2011-11-role of-proteins

•  a variety of different kinds of secondary structure

Globular proteins are characterized as generally having:

•  spherical shape

•  good water solubility

•  a catalytic/regulatory/transport role i.e. a dynamic metabolic function

Page 3: Molbiol 2011-11-role of-proteins

Globular heme proteins contain heme as prosthetic group.

Functions of globular hemeproteins include:

•  electron carriers

•  part of enzyme active site

•  transport of O2 and CO2- hemoglobin

•  storage of O2-myoglobin

Page 4: Molbiol 2011-11-role of-proteins

•  II.  Globular  Hemeproteins  •  Contain  heme  as  prosthe.c  group  •  Role  of  heme  is  dependent  on  environment  created  by  3D  structure  of  protein  

•  Heme  of  cytochrome  →  electron  carrier  •  Heme  of  catalase  →  part  of  ac.ve  site  •  Heme  of  Hb  and  myoglobin  →  binds  O2  reversibly  

Page 5: Molbiol 2011-11-role of-proteins

•  A.  Structure  of  Heme  •  Complex  of  Protoporphyrin  IX  &  Fe2+    

•  Fe2+  bound  to  4  Ns,  other  2  bonds  perpendicular  to  plane  of  ring  available  for  bonding  

•  In  Hb,  one  of  these  aHached  to  N  terminus  of  His,  other  binds  O2.    

Page 6: Molbiol 2011-11-role of-proteins

Structure of heme

porphyrin heme (Fe-protoporphyrin IX)

Page 7: Molbiol 2011-11-role of-proteins

heme

“distal” histidine

“proximal” histidine

Page 8: Molbiol 2011-11-role of-proteins

B.  Structure  and  func9on  of  myoglobin    

•  It  is  a  heme  protein  present  in  heart  and  skeletal  muscle  

•  Reservoir  for  O2  and  carrier  of  O2  in  muscle  cell  

•  Single  polypep.de  chain  similar  to  polypep.des  in  Hb  

•  1.  α-­‐helical  content:  •  ~  80%  of  pep.de  in  8  

stretches  of  α-­‐helix  Labeled  A  to  H  

•  Terminated  by  Pro  or  β-­‐bends  and  loops  stabilized  by  H  bonds  and  ionic  bonds.  

 

Page 9: Molbiol 2011-11-role of-proteins

•  2.  Loca9on  of  polar  and  nonpolar  amino  acid  residues:  •  Interior  made  up  of  hydrophobic  amino  acids  stabilized  by  

hydrophobic  interac.ons  •  Surface  →  charged  amino  acids  –  form  H  bonds  with  water  

 •  3.  Binding  of  heme  group:  •  Heme  in  crevice  lined  with  non-­‐polar  amino  acids,  except  2  

His  residues  •  Proximal  his9dine  –  binds  directly  to  Fe2+  of  heme  •  Distal  his9dine  stabilizes  binding  of  O2  to  Fe2+  

Page 10: Molbiol 2011-11-role of-proteins
Page 11: Molbiol 2011-11-role of-proteins
Page 12: Molbiol 2011-11-role of-proteins

O2 Binding in Mb and Hb

Page 13: Molbiol 2011-11-role of-proteins
Page 14: Molbiol 2011-11-role of-proteins

 C.  Structure  and  func9on  of  hemoglobin  

 •  Found  exclusively  in  RBCs  →  transports  O2  

•  Hb  A  –  predominant  form  in  adults:  4  polypep.de  chains  -­‐-­‐  α2β2  

•  Each  subunit  –  heme-­‐binding  pocket  similar  to  myoglobin  

•  Can  transport  O2  and  CO2  •  O2-­‐binding  proper.es  affected  by  allosteric  effectors,  unlike  myoglobin  

Page 15: Molbiol 2011-11-role of-proteins

1.  Quaternary  structure  of  hemoglobin:    

•  2  iden.cal  dimers:  (αβ)1  and  (αβ)2  

•  dimers  held  together  by  hydrophobic  interac.ons  (on  contact  surfaces  of  subunits  as  well  as  internally)  but  ionic  and  H-­‐bonding  also  exist    

•  2  dimers  held  together  by  weak  polar  bonds    

•  different  conforma.on  in  deoxyHb  and  oxyHb  

Page 16: Molbiol 2011-11-role of-proteins

αβ dimer1 αβ dimer 2

Page 17: Molbiol 2011-11-role of-proteins

T and R forms of Hemoglobin

T = “taut” → deoxy Hb → low affinity for O2

R = “relaxed” → oxy Hb → high affinity for O2

Page 18: Molbiol 2011-11-role of-proteins

•  a.  T  form:  “taut”  form  •  deoxy  form  of  Hb  •  2  αβ  dimers  joined  by  ionic  and  H-­‐bonds  •  low  oxygen-­‐affinity  form  of  Hb  

•  b.  R  form:    •  binding  of  O2  disrupts  some  ionic  and  H-­‐bonds  between  αβ  dimers    

•  “relaxed”  form  •  high  oxygen-­‐affinity  form  of  Hb  

Page 19: Molbiol 2011-11-role of-proteins

 D.  Binding  of  oxygen  to  myoglobin  and  

hemoglobin    

•  D.  Binding  of  oxygen  to  myoglobin  and  hemoglobin  

•  Myoglobin  →  one  heme  →  binds  one  O2  

•  Hb  →  4  heme→  binds  4  O2  •  Hb  binding:  degree  of  satura.on  

(Y)  from  0  to  100%  •  1.  Oxygen  dissocia9on  curve:  •  plot  of  Y  against  PO2  •  myoglobin  :  higher  affinity  for  O2  

than  Hb  •  P50  is  1  mm  Hg  for  myoglobin  and  

26  mm  Hg  for  Hb  

Page 20: Molbiol 2011-11-role of-proteins
Page 21: Molbiol 2011-11-role of-proteins

•  a.  Myoglobin:  •  O2  dissocia.on  curve  hyperbolic  •  This  reflects  that  myo  binds  single  O2  •  Mb  +  O2              MbO2  they  exist  in  equilibrium  •  Exchange  between  Hb  and  Mb,  Mb  and  muscle  cells  depending  on  equilibrium  

•  Mb  binds  O2  released  from  Hb,  releases  when  O2  drops.    Mb  then  releases  the  O2  into  the  muscle  cell.    This  only  happens  when  there  is  an  O2  demand.  

Page 22: Molbiol 2011-11-role of-proteins

•  b.  Hemoglobin:  •  O2  dissocia.on  curve  is  sigmoidal    

•  Coopera.ve  bind  of  O2  (increased  affinity  for  Hb  with  more  binding)  

•  Heme-­‐heme  interac.on:  binding  of  O2  at  one  heme  increases  affinity  for  O2  at  others  

Page 23: Molbiol 2011-11-role of-proteins
Page 24: Molbiol 2011-11-role of-proteins

•  E.  Allosteric  effects  •  Ability  of  Hb  to  bind  O2  depends  on  allosteric  (“other  site”)  effectors:  – PO2  

– pH  of  environment  – PCO2-­‐  an  inc  will  cause  the  inc  in  unloading  of  O2.  – 2,3-­‐disphosphoglycerate  availability  

•  allosteric  factors  do  not  affect  myoglobin  

Page 25: Molbiol 2011-11-role of-proteins

•  1.  Heme-­‐heme  interac9ons:  •  structural  changes  in  one  heme  group  transmiHed  to  others  

•  affinity  for  last  O2  ~300X  affinity  for  first  O2  •  a.  Loading  and  unloading  of  oxygen:  •  more  O2  can  be  delivered  to  .ssues  with  small  changes  in  PO2  

•  Graph  showing  loading  and  unloading  at  different  par.al  pressures  of  O2.  Hb  alterna.vely  carries  O2  and  CO2  between  lungs  and  .ssues    

•  b.  Significance  of  sigmoidal  O2-­‐dissocia9on  curve  Compare  a  hyperbolic  curve  to  a  sigmoidal  curve  

•  A  sigmoidal  curve  gives  increasing  affinity  of  O2  for  Hb  with  increasing  par.al  pressure  while  a  hyperbolic  curve  is  a  straight  line  in  that  range.  

Page 26: Molbiol 2011-11-role of-proteins
Page 27: Molbiol 2011-11-role of-proteins

•  2.  Binding  of  CO2:  •  Most  of  the  CO2  in  the  blood  is  transported  as  bicarbonate:  

•  CO2  +  H2O            H2CO3  

•  H2CO3                  HCO3-­‐    +  H+  

•  Some  CO2  binds  to  the  terminal  –NH2  of  the  α  and  β  chains  forming  carbaminoHb.  

•   Binding  of  CO2  stabilizes  the  “taut”  form  of  Hb  (deoxyHb).    

Page 28: Molbiol 2011-11-role of-proteins

•  3.  Binding  of  CO:  •  CO  binds  reversibly  to  the  Fe2+  the  same  way  that  O2  does  

•  CO  +  Hb    HbCO  (carbon  monoxy  Hb)  •  Affinity  of  Hb  for  CO  is  220X  affinity  for  O2  

•  Binding  of  CO  to  Hb  increases  affinity  of  remaining  sites  for  O2  

•  O2  dissocia.on  curve  shigs  to  leg  (becomes  hyperbolic)  

•  >  60%  HbCO  fatal  •  treated  with  O2  therapy    

Page 29: Molbiol 2011-11-role of-proteins

4.  Bohr  Effect:    

•  Shig  of  O2  dissocia.on  curve  to  the  right  with  decrease  in  pH  or  increase  in  PCO2    

•  This  translates  to  a  decreased  affinity  of  Hb  for  O2  under  these  condi.ons,  therefore  you  unload  O2  easier  

Page 30: Molbiol 2011-11-role of-proteins

•  a.  Source  of  the  protons  that  lower  the  pH:  •  2  principle  sources  of  protons:  

–  lac.c  acid  produced  by  anaerobic  metabolism  in  muscles  –  increased  produc.on  of  CO2  by  cell  u.liza.on  of  O2  through  respira.on:  

•  CO2  +  H2O              H2CO3                  H+  +  HCO3-­‐  

–  in  lungs  the  equilibrium  of  this  reac.on  is  towards  the  leg  because  CO2  is  lost  through  exhaling  

•  the  decreased  affinity  of  Hb  for  O2  under  the  Bohr  effect  condi.ons  results  is  greater  off  loading  (release)  of  O2  in  the  .ssues.  

Page 31: Molbiol 2011-11-role of-proteins

The Effect of CO2 and H+ on O2 Binding

Bohr Effect:

Increased concentrations of CO2 and H+ promote the release of O2 from hemoglobin in the blood.

Page 32: Molbiol 2011-11-role of-proteins

How do CO2 and H+ promote the release of O2 from hemoglobin?

•  presence of “salt bridge” in T form

•  no ionic interaction in R form

Page 33: Molbiol 2011-11-role of-proteins

CO2 is bound to hemoglobin at protein interfaces, not Fe2+ center!

Page 34: Molbiol 2011-11-role of-proteins

•  Summary  reac.on  for  the  Bohr  effect:  •  HbO2  +  H+              HbH+  +  O2            OxyHb                      DeoxyHb        •  Equilibrium  shigs  to    the  right  when  H+  conc.  increases  (decrease  in  pH),  while  it  shigs  to  leg  when  PO2  increases.        

•  The  protonated  forms  of  the  terminal  α-­‐subunit  –NH2  groups  and  His  side-­‐chains  stabilize  the  T  form  (deoxy  form)  of  Hb.  

Page 35: Molbiol 2011-11-role of-proteins

•  5.  Effect  of    2,  3-­‐bis-­‐phosphoglycerate(BPG)  on  oxygen  affinity:  

•  Important  regulator  of  Hb  binding  O2  

•  Most  abundant  organic  phosphate  in  RBC  (conc.  ~  =  conc.  of  Hb)  

•  Synthesized  from  intermediate  of  glycolysis    

•  a.  Binding  of  2,3-­‐BPG  to  deoxyhemoglobin:  

•  Binds  to  deoxyHb  stabilizing  it  •  Decreases  affinity  of  Hb  for  O2  

Page 36: Molbiol 2011-11-role of-proteins

•  b.  Binding  site  of  2,3-­‐BPG:  •  1  molecule  of  2,3-­‐BPG  binds  to  a  

pocket  between  the  β-­‐chains  in  the  center  of  the  deoxyHb  center  

•  expelled  on  oxida.on  of  Hb  (pocket  disappears)  

•  c.  ShiX  of  oxygen-­‐dissocia9on  curve:  

•  Blood  stripped  of  2,3-­‐BPG  has  a  high  affinity  for  O2  

•  2,3-­‐BPG  shigs  the  O2-­‐dissocia.on  curve  to  the  right  allowing  decreased  affinity  of  Hb  for  O2  and  effec.ve  unloading  of  O2  in  .ssues  

•  similar  to  Bohr  effect  but  no  difference  between  lungs  and  .ssues  

Page 37: Molbiol 2011-11-role of-proteins
Page 38: Molbiol 2011-11-role of-proteins

•  d.  Response  of  2,3-­‐BPG  levels  to  chronic  hypoxia  or  anemia:  

•  2,3-­‐BPG  increases  in  chronic  hypoxia    •  chronic  hypoxia  can  be  caused  by    

– pulmonary  emphysema  or    – high  al.tudes  or  – chronic  anemia    

•  increased  2,3-­‐BPG  shigs  O2  dissocia.on  further  to  right  allowing  greater  unloading  of  O2  

Page 39: Molbiol 2011-11-role of-proteins
Page 40: Molbiol 2011-11-role of-proteins

•  e.  Role  of  2,3-­‐BPG  in  transfused  blood:  •  2,3-­‐BPG  essen.al  for  normal  transport  func.on  of  blood  

•  Without  normal  concs.  of  2,3-­‐BPG,  Hb  becomes  an  O2  trap  (doesn’t  unload;  high  affinity)  

•  Blood  for  transfusion  formerly  stored  in  acid-­‐citrate-­‐dextrose  medium  decreased  2,3-­‐BPG  conc.  →  “stripped”  blood  

•  Body  restores  conc.  of  2,3-­‐BPG  in  24  –  48  h  •  2,3-­‐BPG  can  be  restored  by  adding  inosin  

Page 41: Molbiol 2011-11-role of-proteins

Minor Hemoglobins

Page 42: Molbiol 2011-11-role of-proteins

Minor Hemoglobins

Page 43: Molbiol 2011-11-role of-proteins

Minor Hemoglobins

Embryonic form is Hb Gower 1 (ζ2ε2) (yolk sac).

HbF - 2 α chains, 2 γ chains (β-chain family) - major form in fetus and newborn (fetal liver –2 weeks).

HbA - 2 β chains, 2 α chains - major form in adult.

Fetal bone marrow begins synthesizing HbA around 8th month.

Page 44: Molbiol 2011-11-role of-proteins

Globin gene organization

Page 45: Molbiol 2011-11-role of-proteins

Steps in globin chain synthesis: 1.  Transcription

2.  Modification of mRNA precursor by splicing

3.  Translation by ribosomes & further modifications (i.e. glycosylation)

Page 46: Molbiol 2011-11-role of-proteins

Hemoglobinopathies

•  caused by abnormal structure of Hb •  characterized by low levels of normal Hb

Sickle-cell anemia (Hemoglobin S disease) Hemoglobin C disease Hemoglobin SC disease Thalassemias – α thalassemia

β thalassemia

Page 47: Molbiol 2011-11-role of-proteins

Sickle-cell anemia (HbS disease)

•  abnormal β chain. HbS = α2βS2

•  β chain mutation - glu 6 à val 6

•  glu is negatively charged, val is nonpolar. •  only has effect postnatally because HbF is major species in fetus

•  symptoms - hemolytic anemia, painful crises, poor circulation, frequent infections

•  heterozygotes - HbA and HbS both present - 1 in 10 African Americans; "sickle cell trait" - no symptoms, normal life span

Page 48: Molbiol 2011-11-role of-proteins

Sickle-cell anemia (HbS disease) •  glutamic acid is replaced by valine at position 6 of β chain

Page 49: Molbiol 2011-11-role of-proteins
Page 50: Molbiol 2011-11-role of-proteins

normal RBCs sickled RBCs

Page 51: Molbiol 2011-11-role of-proteins

Symptoms worsen when Hb is in deoxy form - decreased pO2, increased CO2, decreased pH, increased 2,3-BPG

Page 52: Molbiol 2011-11-role of-proteins

Low solubility of HbS causes aggregation and distortion of cell shape.

Page 53: Molbiol 2011-11-role of-proteins

HbS •  val instead of glu at position 6

HbA •  glu at position 6

HbC •  lys instead of glu at position 6

HbSC •  HbS as well as HbC present → 2 bands in electrophoresis

Page 54: Molbiol 2011-11-role of-proteins

HbC disease •  lys instead of glu at position 6

•  HbC homozygotes - mild, chronic hemolytic anemia. Not life- threatening

HbSC disease •  HbS as well as HbC present → 2 bands in electrophresis

•  usually undiagnosed until infarctive crisis occurs (childbirth, surgery) •  can be fatal

Page 55: Molbiol 2011-11-role of-proteins

Thalassemias

•  hereditary hemolytic diseases

•  most common genetic disorder in humans

•  heterogeneous collection of diseases

Page 56: Molbiol 2011-11-role of-proteins

β-thalassemias •  synthesis of β-chain decreased or absent

β-thalassemia minor (or trait) - one normal, one defective β-chain gene. Not life-threatening

β-thalassemia major - both genes defective. Normal at birth.

Severe anemia by age 1-2.

Treatment requires frequent transfusions → Leads to iron overload (hemosiderosis).

Death between 15-25 years old. Bone marrow transplant (BMT) is an option.

Page 57: Molbiol 2011-11-role of-proteins
Page 58: Molbiol 2011-11-role of-proteins

α-thalassemias

•  decreased or absent α chain synthesis

•  severity of disease depends upon the number of defective α genes:

0 defective - normal

1 defective - silent carrier of α-thalassemia. No symptoms

2 defective - α-thalassemia trait - no serious symptoms

3 defective - Hemoglobin H disease - moderately severe hemolytic anemia

all 4 defective - hydrops fetalis - fetal death (α chains needed for HbF)

Page 59: Molbiol 2011-11-role of-proteins

Methemoglobinemia  

•  1.  Forma9on  of  methemoglobin  •  Oxida.on  of  Fe2+  →  Fe3+  converts  Hb  and  myoglobin  to  metHb  and  metmyoglobin  

•  Cannot  bind  O2,    •  Oxida.on  by  drugs  like  nitrates,  H2O2  or  free  radicals  or  muta.on  in  α-­‐  or  β-­‐chain  of  globin  →  methemoglobinopathy  (HbM).  

•  a.  Reduc9on  of  methemoglobin:  •  Normal  oxida.on  corrected  by  NADH-­‐cytochrome  b5-­‐reductase  

•  RBCs  of  newborns  →  half  the  capacity  of  this  enzyme,  therefore  more  suscep.ble  to  oxida.on  

Page 60: Molbiol 2011-11-role of-proteins

Fibrous Proteins

Page 61: Molbiol 2011-11-role of-proteins

Fibrous  proteins  are  characterized  as  generally  having:    •     one  domina.ng  kind  of  secondary  structure          (i.e.  collagen  helix  in  collagen)  

•     a  long  narrow  rod-­‐like  structure  

•     low  water  solubility  

•     a  role  in  determining  .ssue/cellular  structure  and        func.on  (e.g.  collagen,  α-kera.n)  

Page 62: Molbiol 2011-11-role of-proteins

Collagen  -­‐  most  abundant  protein  in  body;  rigid,  insoluble      Elas.n  -­‐  stretchy,  rubber-­‐like,  lungs,  walls  of  large  blood  vessels,  ligaments      

Page 63: Molbiol 2011-11-role of-proteins

Structure  of  Collagen  

Tropocollagen  is  a  right-­‐handed  triple  helix    formed  of  α-­‐chains.  

Page 64: Molbiol 2011-11-role of-proteins

The  α-­‐chains  (individual  polypep.des  composing  tropocollagen)  consist  of  -­‐[Gly-­‐X-­‐Y]-­‐    repeats.    Proline  and  hydroxyproline/hydroxylysine  are  ogen  present  in  the  X  and  Y  posi.ons,  respec.vely.  

Structure  of  Collagen  

Page 65: Molbiol 2011-11-role of-proteins
Page 66: Molbiol 2011-11-role of-proteins
Page 67: Molbiol 2011-11-role of-proteins

Synthesis  of  collagen  

 

•     made  in  fibroblast,  osteoblasts  (bone),  chondroblasts  (car.lage)  

•     secreted  into  ECM  

•     enzyma.cally  modified  

•     aggregate  and  are  cross-­‐linked  

Page 68: Molbiol 2011-11-role of-proteins

Structure  of  tropocollagen  molecule  

Page 69: Molbiol 2011-11-role of-proteins

Biosynthesis  of  collagen  

1.  forma.on  of  pro-­‐α-­‐chains  -­‐  contains  signal  sequence  –  promotes  binding  of  polysome  to  RER  and  secre.on  into  the  cisternae;  signal  sequence  removed  

2.  some  pro  and  lys  residues  (in  the  Y  posi.on  of  gly-­‐X-­‐Y)  are  hydroxylated  by  prolyl  hydroxylase  and  lysyl  hydroxylase;  needs  molecular  O2  and  reducing  agent  like  ascorbic  acid  (from  vitamin  C).  

3.  glycosyla.on  -­‐  glucose  and  galactose  added  to  hydroxylysines;  pro-­‐α-­‐chains  join  to  form  procollagen.  N-­‐  and  C-­‐terminal  extensions  form  interchain  disulfide  bonds;  central  triple  helix  formed  because  of  favorable  alignment;  Transported  to  Golgi,  packaged,  and  secreted  as  procollagen.  

Page 70: Molbiol 2011-11-role of-proteins

Biosynthesis  of  collagen  

Page 71: Molbiol 2011-11-role of-proteins

Biosynthesis  of  collagen  (cont’d)  

4.    N-­‐procollagen  pep.dase  and  C-­‐procollagen  pep.dase  remove  terminal  extensions,  leaving  triple  helical  collagen  (occurs  extracellularly).  

5.    collagen  fibrils  -­‐  form  by  associa.on  of  collagen  molecules  with  about  a  3/4  overlap  with  other  molecules  (staggered,  parallel  arrays)  

5.    cross-­‐linking  -­‐  interchain  cross-­‐links  caused  by  lysyl  oxidase  (a  pyridoxal  phosphate  and  copper-­‐requiring  enzyme);  O2  required;  oxida.ve  deamina.on  of  lysines  and  hydroxylysines;  Allysine  (aldehyde)  reacts  with  amino  group  of  nearby  lysine  or  hydroxylysine  to  form  interchain  cross-­‐link.  Very  important  for  tensile  strength  of  collagen.  

Page 72: Molbiol 2011-11-role of-proteins
Page 73: Molbiol 2011-11-role of-proteins

Vitamin  C  (ascorbate)  deficiency  results  in  scurvy  (collagen  can’t  be  cross-­‐linked).  

Ascorbate  coenzyme  required  by  prolyl/lysyl  hydroxylase  in  hydroxyla.on  step.  

Page 74: Molbiol 2011-11-role of-proteins

Cross  links  formed  by  lysyl/prolyl  oxidase    -­‐  copper  coenzyme    Number  of  cross-­‐links  increases  with  age  →  causes  s.ffening,  decreased  elas.city  of  skin  and  joints.  

Cu2+/  vitamin  B6  

Page 75: Molbiol 2011-11-role of-proteins

Biosynthesis  of  collagen  (con’t)  In  the  final  step,  collagen  fibrils  form  spontaneously  from  tropocollagen.  

covalent  X-­‐links  between  Allysine  and  hydroxylysine    

tropocollagen  molecule  

triple  helix  of  α-­‐chains.  

Page 76: Molbiol 2011-11-role of-proteins

Types  of  Collagen  

Type Common disorders Representative Tissues

I

Ehlers-Danlos Osteogenesis Imperfecta Marfan’s

skin, bone, tendons, cornea

II - cartilage, intervertebral disks, vitreous body

III Ehlers-Danlos blood vessels, lymph nodes, dermis, early phases of wound repair

IV Alport’s Goodpasture’s

basement membranes

X - epiphyseal plates

Page 77: Molbiol 2011-11-role of-proteins

•     degrada.on  of  collagen  by  collagenase  allows  remodeling  of  ECM  

Collagen  Degrada.on  and  Disorders  

Ehlers-­‐Danlos  –  hyperextensive  joints,  hyperelas.city  of  skin,  aor.c  aneurisms,  rupture  of  colon,  skin  hemmorhages  due  to  muta.on  in  α-­‐chains    

Osteogenesis  Imperfecta  –  briHle  bone  disease,  mul.ple  fractures,  blue  sclera,  hearing  loss,  retarded  wound  healing    

Page 78: Molbiol 2011-11-role of-proteins

Ehlers-­‐Danlos  Syndrome    Hyperextension  of  skin  

Page 79: Molbiol 2011-11-role of-proteins

Osteogenesis  Imperfecta    (Blue  sclera)  

Page 80: Molbiol 2011-11-role of-proteins
Page 81: Molbiol 2011-11-role of-proteins

In  Utero  Radiograph:  

•     crumpled  long  bones  

•     beaded  ribs  

Page 82: Molbiol 2011-11-role of-proteins
Page 83: Molbiol 2011-11-role of-proteins

•     rubber-­‐like  proper.es  

•     connec.ve  .ssue  protein  

•     lungs,  large  blood  vessels,  elas.c  ligaments  

 Composi.on:        -­‐  small  nonpolar  amino  acids  (Gly,  Ala,  Val)      -­‐  

also  rich  in  Pro  and  Lys    -­‐  liHle  or  no  OH-­‐Pro  or  OH-­‐Lys    

Elas.n  

Page 84: Molbiol 2011-11-role of-proteins

Elas.n  

Page 85: Molbiol 2011-11-role of-proteins

•     3D  network  of  cross-­‐linked  polypep.des  

•     cross  links  involve  Lys    and  alLys    

•     4  Lys  can  be  cross-­‐linked  into  desmosine    

•     desmosines  account  for  elas.c  proper.es  

Elas.n  

Page 86: Molbiol 2011-11-role of-proteins

Elas.n  Degrada.on  and  Disorders  

•     in  lungs  -­‐  lung  alveolar  elas.n  in  constantly  exposed  to  neutrophil  elastase        α1-­‐AT  inhibits  elastase  thus  preven.ng  loss  of  lung  elas.city  

•     individuals  who  are  homozygotes  for  mutant  α1-­‐AT  are  very  suscep.ble  to  emphysema  

Page 87: Molbiol 2011-11-role of-proteins
Page 88: Molbiol 2011-11-role of-proteins

Enzymes

Page 89: Molbiol 2011-11-role of-proteins
Page 90: Molbiol 2011-11-role of-proteins
Page 91: Molbiol 2011-11-role of-proteins

Enzymes are biological catalysts.

Page 92: Molbiol 2011-11-role of-proteins

Some nomenclature… Active site = special pocket where substrate binds Specificity 1.  enzymes are specific for a single molecule or a structurally related group of substrates 2. usually only 1 enzyme per reaction type

Page 93: Molbiol 2011-11-role of-proteins

Some more nomenclature… Cofactor = inorganic component needed for enzyme

function

Page 94: Molbiol 2011-11-role of-proteins

Some more nomenclature… Coenzyme = nonprotein small organic component needed for enzyme function

Page 95: Molbiol 2011-11-role of-proteins

Holoenzyme - the enzyme protein plus its cofactor

Apoenzyme - enzyme protein without its cofactor

Prosthetic groups – a coenzyme that’s very tightly (usually covalently) attached to the protein, such as heme

Some more nomenclature…

Page 96: Molbiol 2011-11-role of-proteins
Page 97: Molbiol 2011-11-role of-proteins
Page 98: Molbiol 2011-11-role of-proteins
Page 99: Molbiol 2011-11-role of-proteins

How Enzymes Work Enzymes increase the rate of reactions without themselves being altered in the process of substrate conversion to product. This defines a catalyst.  Enzymes increase reaction rates by lowering the energy input needed to form a reactant complex that will eventually form product.  This occurs via the formation of a complex between enzyme and substrate (ES):

E + S ES E + Pk1 k2

k-1

Page 100: Molbiol 2011-11-role of-proteins

Steps in an Enzymatic Reaction

1.  Enzyme and substrate combine to form a complex.

2.  Complex goes through a transition state – not quite substrate or product

3.  A complex of the enzyme and the product is produced.

4.  Finally, the enzyme and product separate.

All of these steps are equilibria.

Page 101: Molbiol 2011-11-role of-proteins

Steps in an Enzymatic Reaction

Page 102: Molbiol 2011-11-role of-proteins

1.  Enzyme and substrate combine to form a complex.

Steps in an Enzymatic Reaction

Page 103: Molbiol 2011-11-role of-proteins

Steps in an Enzymatic Reaction

2. The complex goes through a transition state – not quite substrate or product

Page 104: Molbiol 2011-11-role of-proteins

Steps in an Enzymatic Reaction

3.  A complex of enzyme and product is produced (EP).

4.  The product is released.

Page 105: Molbiol 2011-11-role of-proteins

Factors that influence enzyme activity

Environmental factors •  temperature, pH

Cofactors •  metal ions

Effectors •  species that alter enzyme activity

Page 106: Molbiol 2011-11-role of-proteins

Effect of pH on enzyme activity

Page 107: Molbiol 2011-11-role of-proteins

Effect of pH on enzyme activity

Examples of optimum pH

Page 108: Molbiol 2011-11-role of-proteins

Effect of temperature on enzyme activity

•  exceeding normal temperature ranges always reduces enzyme reaction rates

•  optimum temperature is usually 25 - 40 ºC (but not always)

Page 109: Molbiol 2011-11-role of-proteins

Kinetics •  Kinetics is the study of the rate of change of reactants to products

•  Velocity (v) refers to the change in conc. of substrate or product per unit time

•  Rate (k) refers to the change in total quantity (of reactant or product) per unit time

•  Initial velocity (v0) is the change in reactant or product conc. during the linear phase of a reaction

Page 110: Molbiol 2011-11-role of-proteins

Michaelis-Menten Kinetics Three basic assumptions: 1: ES complex is in a steady state, i.e.

remains constant during the initial phase of a reaction

2: when enzyme is saturated all enzyme is in the form of ES complex 3: if all enzyme in ES then rate of product

formation is maximal:

Vmax = k2[ES]  

Page 111: Molbiol 2011-11-role of-proteins
Page 112: Molbiol 2011-11-role of-proteins

The Michaelis-Menten equation is a quantitative description of the relationship between the rate of an enzyme catalyzed reaction (v1), substrate concentration [S], the M-M rate constant (Km) and maximal velocity (Vmax)

Michaelis-Menten Kinetics

Page 113: Molbiol 2011-11-role of-proteins

Km is equal to the concentration of substrate required to attain half maximal velocity for any given reaction

Michaelis-Menten Kinetics

Page 114: Molbiol 2011-11-role of-proteins
Page 115: Molbiol 2011-11-role of-proteins
Page 116: Molbiol 2011-11-role of-proteins

•  Lineweaver and Burk manipulated the MM equation by taking its reciprocal values generating a double reciprocal plot

•  Leads to a linear graph of the reciprocals of velocity and substrate concentration

Lineweaver-Burk Analysis

Page 117: Molbiol 2011-11-role of-proteins

Lineweaver-Burk Plot

Page 118: Molbiol 2011-11-role of-proteins

Enzyme inhibition

•  many substances can inhibit enzyme activity:

substrate analogs

toxins

drugs

metal complexes

Page 119: Molbiol 2011-11-role of-proteins

Enzyme inhibition - 2 broad classes:

Irreversible inhibition •  forms covalent or very strong noncovalent bonds •  site of attack is amino acid group that participates in the normal enzymatic reaction

Reversible inhibition •  forms weak, noncovalent bonds that readily dissociate from an enzyme •  the enzyme is only inactive when the inhibitor is present

Page 120: Molbiol 2011-11-role of-proteins

Enzyme inhibition

Competitive inhibitor •  resembles the normal substrate and competes for the same site

Page 121: Molbiol 2011-11-role of-proteins

Enzyme inhibition

Examples of competitive inhibitors: •  methanol and ethylene glycol compete with ethanol for the binding sites to alcohol dehydrogenase

•  methotrexate competes with folic acid for dihydrofolate reductase

Page 122: Molbiol 2011-11-role of-proteins

Enzyme inhibition

Noncompetitive inhibitor •  materials that bind at a location other than the normal site •  results in a change in how the enzyme performs

Page 123: Molbiol 2011-11-role of-proteins

Enzyme inhibition

Examples of noncompetitive inhibitors: •  physostigmine is a cholinesterase inhibitor used in the treatment of glaucoma

•  captopril is an ACE inhibitor used in treatment of hypertension

•  allopurinol is a xanthine oxidase inhibitor used to treat gout

Page 124: Molbiol 2011-11-role of-proteins

Enzyme inhibition

Irreversible inhibitors •  permanently inactivate enzymes

•  heavy metals (Hg2+, Pb2+, Cd2+)

•  aspirin acetylates

•  fluorouracil

•  organophosphates

Page 125: Molbiol 2011-11-role of-proteins

Enzyme Inhibition - Summary Competitive •  Inhibitor binds at substrate site, inhibition is reversible as higher substrate competes for inhibitor, Vmax unchanged, Km increased

Noncompetitive •  Inhibitor binds at site other than substrate, ESI cannot form product, increased substrate does not compete, Km unchanged, Vmax decreased

Page 126: Molbiol 2011-11-role of-proteins

Competitive Inhibition

Page 127: Molbiol 2011-11-role of-proteins
Page 128: Molbiol 2011-11-role of-proteins

Uncompetitive Inhibition

Page 129: Molbiol 2011-11-role of-proteins

Noncompetetive model

Page 130: Molbiol 2011-11-role of-proteins

Enzyme Regulation •  Proteolytic cleavage to activate: Enzyme exists in inactive form (zymogen) that is activated by removal of a short peptide segment ( truncation) •  Covalent modification to increase or decrease activity, most common is phosphorylation •  Sequestration: enzyme forms inactive polymers

•  Allosteric (“other site”) regulation, both positive and negative ( homotropic, heterotropic) Induction-upregulation: increase gene expression, synthesis of more enzyme molecules

Repression-downregulation: decrease gene expression, decrease synthesis of enzyme molecules.

Page 131: Molbiol 2011-11-role of-proteins

Allosteric enzymes Are regulated by molecules called effectors (modifiers) that bind non-covalently at a site other than active site. They can alter Vmax or Km or both) 1. Homotrophic effectors – when the substrate itself is an effector

2. Heterotrophic effector – when the effector is different from a substrate (often it is an end-product - feedback inhibition)

Page 132: Molbiol 2011-11-role of-proteins

Allosteric enzymes show sigmoid curve (cooperative substrate binding like in Hb)

Page 133: Molbiol 2011-11-role of-proteins
Page 134: Molbiol 2011-11-role of-proteins

Feedback inhibition

Page 135: Molbiol 2011-11-role of-proteins
Page 136: Molbiol 2011-11-role of-proteins
Page 137: Molbiol 2011-11-role of-proteins

Enzymes Used in Clinical diagnoses

Tissue damage: Increased release of tissue enzymes in plasma

Enzyme assay is used for both diagnostic and prognostic purpose Eg: ALT – present in the liver will be appearing in the plasma if there is Liver damage or cell necrosis

Isoenzymes: Structurally different enzymes but catalyze the same reaction Eg: CK1, CK2, CK3 (creatine kinase, CK MB (CK 2) is present in the heart, its presence in plasma is indicative of myocardial infarction

Page 138: Molbiol 2011-11-role of-proteins

ALSO: Troponin T & Troponin I are also released in cardiac damage. Peaks in 8 – 24hr Sensitive and specific for cardiac tissue damage