Module3 direct stiffness- rajesh sir

87
Structural Analysis - III Di t Stiff M th d Direct Stiffness Method Dr. Rajesh K. N. Assistant Professor in Civil Engineering Assistant Professor in Civil Engineering Govt. College of Engineering, Kannur Dept. of CE, GCE Kannur Dr.RajeshKN Dept. of CE, GCE Kannur Dr.RajeshKN 1

description

GCE Kannur

Transcript of Module3 direct stiffness- rajesh sir

Page 1: Module3 direct stiffness- rajesh sir

Structural Analysis - III

Di t Stiff M th dDirect Stiffness Method

Dr. Rajesh K. N.Assistant Professor in Civil EngineeringAssistant Professor in Civil EngineeringGovt. College of Engineering, Kannur

Dept. of CE, GCE Kannur Dr.RajeshKNDept. of CE, GCE Kannur Dr.RajeshKN

1

Page 2: Module3 direct stiffness- rajesh sir

Module IIIModule III

Direct stiffness method

• Introduction – element stiffness matrix – rotation transformation

Direct stiffness method

matrix – transformation of displacement and load vectors and stiffness matrix – equivalent nodal forces and load vectors –assembly of stiffness matrix and load vector – determination of assembly of stiffness matrix and load vector determination of nodal displacement and element forces – analysis of plane truss beam and plane frame (with numerical examples) – analysis of grid space frame (without numerical examples) grid – space frame (without numerical examples)

Dept. of CE, GCE Kannur Dr.RajeshKN

2

Page 3: Module3 direct stiffness- rajesh sir

Introduction

• The formalised stiffness method involves evaluating the displacement transformation matrix CMJ correctlyp y

• Generation of matrix CMJ is not suitable for computer programming

H th l ti f di t tiff th d • Hence the evolution of direct stiffness method

Dept. of CE, GCE Kannur Dr.RajeshKN3

Page 4: Module3 direct stiffness- rajesh sir

Direct stiffness method

• We need to simplify the assembling process of SJ , the Jassembled structure stiffness matrix

• The key to this is to use member stiffness matrices for actions The key to this is to use member stiffness matrices for actions and displacements at BOTH ends of each member

If b di l d i h f • If member displacements are expressed with reference to global co-ordinates, the process of assembling SJ can be made simplesimple

Dept. of CE, GCE Kannur Dr.RajeshKN

4

Page 5: Module3 direct stiffness- rajesh sir

Member oriented axes (local coordinates) d t t i t d ( l b l di t )and structure oriented axes (global coordinates)

Lδx

y

L

Local axes

LδL

Lδ sinLδ θLδ θ

xYYYY

cosLδ θ

θ

Global axes yGlobal axesGlobal axesθ

XXXX

Dept. of CE, GCE Kannur Dr.RajeshKN

Global axes

Page 6: Module3 direct stiffness- rajesh sir

1. Plane truss member

Stiffness coefficients in local coordinates

13

2 4

y

0 0

Degrees of freedom

1

⎛ ⎞⎜ ⎟

Unit displacement

xEAL

EAL

⎜ ⎟⎝ ⎠corr. to DOF 1

0 0EA EA⎡ ⎤−⎢ ⎥

[ ]

0 0

0 0 0 0

0 0M

L L

SEA EA

⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥−⎢ ⎥

=Member stiffness matrix in local coordinates

Dept. of CE, GCE Kannur Dr.RajeshKN

0 0 0 0L L⎢ ⎥

⎢⎢⎣ ⎦

⎥⎥

Page 7: Module3 direct stiffness- rajesh sir

Transformation of displacement vector

θ

Displacements in global

22 2 cosU D θ=

p gcoordinates: U1 and U2

Displacements in local di D d D

2D

DY iU D θ

12 2 sinU D θ= − θ

1 11 12 1 2cos sinU U U D Dθ θ= + = −

coordinates: D1 and D2

1DY

11 1 cosU D θ=

21 1 sinU D θ=2 21 22 1 2sin cosU U U D Dθ θ= + = +

1 1cos sinU Dθ θ−⎧ ⎫ ⎧ ⎫⎡ ⎤

⎧ ⎫ ⎧ ⎫⎡ ⎤

1 1

2 2

cos sinsin cos

U DU D

θ θθ θ

⎧ ⎫ ⎧ ⎫⎡ ⎤=⎨ ⎬ ⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭ ⎩ ⎭

X 1 1

2 2

cos sinsin cos

D UD U

θ θθ θ

⎧ ⎫ ⎧ ⎫⎡ ⎤∴ =⎨ ⎬ ⎨ ⎬⎢ ⎥−⎣ ⎦⎩ ⎭ ⎩ ⎭

Dept. of CE, GCE Kannur Dr.RajeshKN

{ } [ ]{ }D R U=

Page 8: Module3 direct stiffness- rajesh sir

C id i b th d

⎧ ⎫ ⎧ ⎫

Considering both ends,

1 1

2 2

cos sin 0 0sin cos 0 00 0 i

D UD UD U

θ θθ θ

θ θ

⎧ ⎫ ⎧ ⎫⎡ ⎤⎪ ⎪ ⎪ ⎪⎢ ⎥−⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥3 3

4 4

0 0 cos sin0 0 sin cos

D UD U

θ θθ θ

⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪−⎩ ⎭ ⎣ ⎦ ⎩ ⎭

{ } [ ]{ }LOCAL T GLOBALD R D=

[ ] [ ]R O⎡ ⎤[ ] [ ] [ ][ ] [ ]T

R OR

O R⎡ ⎤

= ⎢ ⎥⎣ ⎦

Rotation matrix

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 9: Module3 direct stiffness- rajesh sir

Transformation of load vector Actions in global

θcoordinates: F1 and F2

22 2 cosF A θ= 1 11 12 1 2cos sinF F F A Aθ θ= + = −22 2

12 2 sinF A θ= − θ 2A 2 21 22 1 2sin cosF F F A Aθ θ= + = +

Y

11 1 cosF A θ=

21 1 sinF A θ=1A 1 1

2 2

cos sinsin cos

F AF A

θ θθ θ

−⎧ ⎫ ⎧ ⎫⎡ ⎤=⎨ ⎬ ⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭ ⎩ ⎭

11 1

1 1cos sinA Fθ θ⎧ ⎫ ⎧ ⎫⎡ ⎤=⎨ ⎬ ⎨ ⎬⎢ ⎥

X2 2sin cosA Fθ θ⎨ ⎬ ⎨ ⎬⎢ ⎥−⎩ ⎭ ⎣ ⎦ ⎩ ⎭

{ } [ ]{ }A R F=

Dept. of CE, GCE Kannur Dr.RajeshKN

{ } [ ]{ }A R F=

Page 10: Module3 direct stiffness- rajesh sir

C id i b th dConsidering both ends,

1 1

2 2

cos sin 0 0sin cos 0 0

A FA F

θ θθ θ

⎧ ⎫ ⎧ ⎫⎡ ⎤⎪ ⎪ ⎪ ⎪⎢ ⎥−⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬

3 3

4 4

0 0 cos sin0 0 sin cos

A FA F

θ θθ θ

⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪−⎩ ⎭ ⎣ ⎦ ⎩ ⎭

{ } [ ]{ }LOCAL T GLOBALi.e., A R A=

Dept. of CE, GCE Kannur Dr.RajeshKN

10

Page 11: Module3 direct stiffness- rajesh sir

Transformation of stiffness matrix

{ } [ ]{ }LOCAL M LOCALA S D=

[ ]{ } [ ][ ]{ }T GLOBAL M T GLOBALR A S R D=

{ } [ ] [ ][ ]{ }1GLOBAL T M T GLOBALA R S R D−=

[ ]{ } [ ][ ]{ }T GLOBAL M T GLOBAL

[ ] [ ]1 TR R−{ } [ ] [ ][ ]{ }GLOBAL T M T GLOBAL

{ } [ ]{ }A S D

[ ] [ ]T TR R=

{ } [ ]{ }GLOBAL MS GLOBALA S D= [ ] [ ] [ ][ ]TMS T M TS R S R=where,

Member stiffness matrix in global coordinates

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 12: Module3 direct stiffness- rajesh sir

[ ] [ ] [ ][ ]TS R S R=

T⎡ ⎤ ⎡ ⎤ ⎡ ⎤

[ ] [ ] [ ][ ]MS T M TS R S R=

0 0 1 0 1 0 0 00 0 0 0 0 0 0 0

Tc s c ss c s cEA

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0c s c sLs c s c

−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

2 2c cs c cs⎡ ⎤− −⎢ ⎥ M b tiff t i 2 2

2 2

cs s cs sEAL c cs c cs

⎢ ⎥− −⎢ ⎥=⎢ ⎥− −⎢ ⎥

Member stiffness matrix in global coordinatesfor a plane truss member

2 2cs s cs s⎢ ⎥− −⎣ ⎦

p

Dept. of CE, GCE Kannur Dr.RajeshKN

12

Page 13: Module3 direct stiffness- rajesh sir

2. Plane frame memberStiffness coefficients in local coordinates

2 52

4

5

Degrees of freedom0 0 0 0EA EA⎡ ⎤

13

46

Degrees of freedom

3 2 3 2

0 0 0 0

12 6 12 60 0

L LEI EI EI EI

L L L L

⎡ ⎤−⎢ ⎥⎢ ⎥⎢ ⎥−⎢ ⎥⎢ ⎥

[ ]2 2

6 4 6 20 0

0 0 0 0Mi

EI EI EI EIL L L LS

EA EA

⎢ ⎥⎢ ⎥−⎢ ⎥=⎢ ⎥−⎢ ⎥

Member stiffness matrix in local coordinates

3 2 3 2

0 0 0 0

12 6 12 60 0

L LEI EI EI EI

L L L L

−⎢ ⎥⎢ ⎥⎢ ⎥− − −⎢ ⎥⎢ ⎥

Dept. of CE, GCE Kannur Dr.RajeshKN

2 2

6 2 6 40 0EI EI EI EIL L L L

⎢ ⎥⎢ ⎥−⎢ ⎥⎣ ⎦

Page 14: Module3 direct stiffness- rajesh sir

Transformation of displacement vector

1 1

2 2

cos sin 0 0 0 0sin cos 0 0 0 0

D UD U

θ θθ θ

⎧ ⎫ ⎧ ⎫⎡ ⎤⎪ ⎪ ⎪ ⎪⎢ ⎥−⎪ ⎪ ⎪ ⎪⎢ ⎥

3 3

4 4

0 0 1 0 0 00 0 0 cos sin 0

D UD Uθ θ

⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥

=⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥5 5

6 6

0 0 0 sin cos 00 0 0 0 0 1

D UD U

θ θ⎪ ⎪ ⎪ ⎪⎢ ⎥−⎪ ⎪ ⎪ ⎪⎢ ⎥

⎣ ⎦⎩ ⎭ ⎩ ⎭

{ } [ ]{ }LOCAL T GLOBALD R D=

[ ] [ ]R O⎡ ⎤

{ } [ ]{ }LOCAL T GLOBAL

[ ] [ ] [ ][ ] [ ]T

R OR

O R⎡ ⎤

= ⎢ ⎥⎣ ⎦

Rotation matrix

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 15: Module3 direct stiffness- rajesh sir

Transformation of load vector

{ } [ ]{ }LOCAL T GLOBALA R A={ } [ ]{ }

cos sin 0 0 0 0θ θ⎡ ⎤⎢ ⎥

[ ]

sin cos 0 0 0 00 0 1 0 0 0

R

θ θ⎢ ⎥−⎢ ⎥⎢ ⎥

= ⎢ ⎥[ ]0 0 0 cos sin 00 0 0 sin cos 0

TRθ θθ θ

= ⎢ ⎥⎢ ⎥⎢ ⎥−⎢ ⎥0 0 0 0 0 1⎢ ⎥⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 16: Module3 direct stiffness- rajesh sir

Transformation of stiffness matrix

{ } [ ]{ }GLOBAL MS GLOBALA S D=

[ ] [ ] [ ][ ]TMS T M TS R S R= Member stiffness matrix in

global coordinatesglobal coordinates

EA EA⎡ ⎤

0 0 0 00 0 0 0

c ss c

⎡ ⎤⎢ ⎥−⎢ ⎥3 2 3 2

0 0 0 0

12 6 12 60 0

EA EAL L

EI EI EI EIL L L L

⎡ ⎤−⎢ ⎥⎢ ⎥⎢ ⎥−⎢ ⎥⎢ ⎥

[ ] 0 0 1 0 0 00 0 0 00 0 0 0

T c ss c

R

⎢ ⎥⎢ ⎥

= ⎢ ⎥⎢ ⎥⎢ ⎥−⎢ ⎥

[ ]2 2

6 4 6 20 0

0 0 0 0M

EI EI EI EIL L L LS

EA EAL L

⎢ ⎥⎢ ⎥−⎢ ⎥=⎢ ⎥−⎢ ⎥

Where, ,

0 0 0 0 0 1⎢ ⎥⎣ ⎦

3 2 3 2

12 6 12 60 0

6 2 6 40 0

L LEI EI EI EI

L L L LEI EI EI EI

⎢ ⎥⎢ ⎥⎢ ⎥− − −⎢ ⎥⎢ ⎥⎢ ⎥

Dept. of CE, GCE Kannur Dr.RajeshKN

2 20 0L L L L

⎢ ⎥−⎢ ⎥⎣ ⎦

Page 17: Module3 direct stiffness- rajesh sir

Assembling global stiffness matrixg gPlane truss

2Force

21

331

3

2 4

13

Action/displacement components in local coordinates of members

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 18: Module3 direct stiffness- rajesh sir

4 4

3

4

3

4

2 6

1 562

514

3

Action/displacement components in 2

5

6Action/displacement components in

global coordinates of the structure

Dept. of CE, GCE Kannur Dr.RajeshKN

1 5

Page 19: Module3 direct stiffness- rajesh sir

1 2 3 4Global DOF

11 12 13 14

1 1 1 1

21 22 23 24

2 2

2 2

12

M M M Ms s s ss s s s

c cs c cscs s cs sEA

− −⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥

1 2 3 4

[ ] 1 1 1 1

31 32 33 34

1 1 1 1

41 42 43 44

1 2 2

2 2

234

M M M M

M M M M

M

s s s ss s s s

cs s cs sEASc cs c csL

− −⎢ ⎥ ⎢ ⎥= =− −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦41 42 43 44

1 1 1 1

2 2 4M M M M

s s s scs s cs s⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎣ ⎦

1 2 3 4 5 6

12

× × × ×⎡ ⎤⎢ ⎥× × × ×⎢ ⎥ C t ib ti f

[ ]

234JS

× × × ×⎢ ⎥× × × ×⎢ ⎥

= ⎢ ⎥

Contribution of Member 1 to global stiffness matrix[ ]

45

J ⎢ ⎥× × × ×⎢ ⎥⎢ ⎥⎢ ⎥

Dept. of CE, GCE Kannur Dr.RajeshKN

6⎢ ⎥⎣ ⎦

Page 20: Module3 direct stiffness- rajesh sir

3 4 5 6Global DOF

11 12 13 14

2 2 2 2

21 22 23 24

34

M M M Ms s s ss s s s⎡ ⎤⎢ ⎥⎢ ⎥

3 4 5 6

[ ] 2 2

2

2 2

31 32 33 34

2 2 2 2

41 42 43 44

456

M M M M

M M M

M

M

s s s ss s s ss s s s

S = ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦2 2 2 2

6M M M M

s s s s⎣ ⎦

1 2 3 4 5 6

12

⎡ ⎤⎢ ⎥⎢ ⎥ C t ib ti f

[ ]

234JS

⎢ ⎥× × × ×⎢ ⎥

= ⎢ ⎥× × × ×⎢ ⎥

Contribution of Member 2 to global stiffness matrix

456

× × × ×⎢ ⎥⎢ ⎥× × × ×⎢ ⎥⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

6⎢ ⎥× × × ×⎣ ⎦

Page 21: Module3 direct stiffness- rajesh sir

11 12 13 14 1⎡ ⎤1 2 5 6

Global DOF

[ ]

11 12 13 14

3 3 3 3

21 22 23 24

3 3 3 3

12

M M M M

M M M M

s s s ss s s s

S

⎡ ⎤⎢ ⎥⎢ ⎥[ ] 3 3

3

3 3

31 32 33 34

3 3 3 3

41 42 43 44

56

M M M M

M M M

M

Ms s s s

S = ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

41 42 43 44

3 3 3 36

M M M Ms s s s⎢ ⎥⎣ ⎦

1 2 3 4 5 6

12

× × × ×⎡ ⎤⎢ ⎥

1 2 3 4 5 6

[ ]

23

JS

⎢ ⎥× × × ×⎢ ⎥⎢ ⎥

= ⎢ ⎥

Contribution of Member 3 to global stiffness matrix[ ]

45

JS ⎢ ⎥⎢ ⎥⎢ ⎥× × × ×⎢ ⎥

stiffness matrix

Dept. of CE, GCE Kannur Dr.RajeshKN

6⎢ ⎥× × × ×⎣ ⎦

Page 22: Module3 direct stiffness- rajesh sir

Assembled global stiffness matrix

11 12 13 1411 12 13 14s s s ss s s s+ + 1⎡ ⎤

1 2 3 4 5 6

1 1 1 1

21 22 23 24

1 1 1 1

3 3 3 3

21 22 23 24

3 3 3 3

M M M M

M M M M

M M M M

M M M M

s s s s

s s s s

s s s s

s s s s

+ +

+ +

1

2

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥

[ ]31 32 3 11 12 13 14

2 2 2 2

21 22 23 24

3 34

1 1 1 1

41 42 43 44

M M M MM M M M

J

s s s s

s s s s

s s s s

sS

ss s

+ +=

+ +

3

4

⎢ ⎥⎢ ⎥⎢ ⎥

31 3

2 2 2 2

31 32 33

1 1

2

2

1 1

23 3 32

M M M M

M MM M

M M M M

MMs s

s s s s

s s

s s

s

s s

s

+ +

+ 34

2

33 34

3

4

5MM ss +

⎢ ⎥⎢ ⎥⎢ ⎥41 42 43 44

2

41 42 43 44

3 2 23 32 36

M M M MM M M Ms s s ss s s s+ +⎢ ⎥⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 23: Module3 direct stiffness- rajesh sir

Imposing boundary conditions2

p g yPlane truss example

21

1

2

0U U U U= = = =Boundary conditions are:3

311 2 5 6 0U U U UBoundary conditions are:

{ }GLOBALD

11 12 13 1411 12 13 14s s s ssF s s s+ +⎧ ⎫ U⎧ ⎫⎡ ⎤

{ }GLOBALD

3 3 3 31 1 1 1

2 21 221 22 23 24

1 1 1 1

23 24

1

2 3 3 3 3

M MM M M M

M M M M

M M

M M M M

s s s s

s s s s

sF

F

s s s

s s s s

+ +

+ +

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪

1

2

U

U

⎧ ⎫⎡ ⎤⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥11 12 13 14

2 2 2 2

21 22 23 24

2

31 32 33 34

1 1 1 1

41 42 43 44

1

3

1 1 1 24 2 2

M M M M M M M

M M M

M

M M M M M

s s s s

s s s

s s s s

s s s s

F

F s

+ +=

+ +

⎪ ⎪⎨ ⎬⎪ ⎪ 4

3U

U

⎪ ⎪⎢ ⎥⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥21 1 1 1 24

5

2 2M M MM M M M M

F

F

s⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

31 32 33 34

2 2 2 2

41 42 43 44

31 32 33 34

3 3 3 3

41 42 43 44

4

5M M M MM M M Ms ss s s s s U

U

+ +⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥

⎣ ⎦⎩ ⎭Dept. of CE, GCE Kannur Dr.RajeshKN

6F⎩ ⎭41 42 43 44

2 2 2 2

41 42 43 44

3 3 3 3 6M MM M M MM Mss s s s ss s U+ +⎣ ⎦⎩ ⎭

Page 24: Module3 direct stiffness- rajesh sir

Reduced equation system q y(after imposing boundary conditions)

33 34

1 1

43 44

11 12

2 2

21 22

3 3MM M MF U

F U

s ss s+ +⎧ ⎫ ⎧ ⎫⎡ ⎤=⎨ ⎬ ⎨ ⎬⎢ ⎥+ +⎩ ⎭ ⎣ ⎦⎩ ⎭1 2 1 24 4M MM M

F Us sss⎢ ⎥+ +⎩ ⎭ ⎣ ⎦⎩ ⎭

•This reduced equation system can be solved to get the unknown displacement components

3 4,U U

{ } [ ]{ }LOCAL T GLOBALD R D=•From

{ }LOCALD can be found out.

{ } { }D D=F h b

Dept. of CE, GCE Kannur Dr.RajeshKN

{ } { }LOCAL MiD D=•For each member,

Page 25: Module3 direct stiffness- rajesh sir

{ } { } [ ]{ }A A S D{ } { } [ ]{ }Mi MLi Mi MiA A S D= +Member end actions

Where,

Fixed end actions on the member, { }MLiA

Member stiffness matrix, [ ]MiS

[ ]

in local coordinates

Displacement components of the member, [ ]MiD

{ } { } [ ]{ }LOCAL T GLOBALMi D R DD ==As we know,

{ } { } [ ][ ]{ }i i iM ML M i iT GLOBALA A S R D∴ = +

Dept. of CE, GCE Kannur Dr.RajeshKN

25

Page 26: Module3 direct stiffness- rajesh sir

Direct Stiffness Method: Procedure

STEP 1: Get member stiffness matrices for all members [ ]MiS

STEP 2: Get rotation matrices for all members [ ]TiR

STEP 3: Transform member stiffness matrices from local coordinates into global coordinates to get [ ]MSiS[ ]MSi

STEP 4: Assemble global stiffness matrix [ ]JS

STEP 5: Impose boundary conditions to get the reduced stiffness matrix [ ]S[ ]FFS

Dept. of CE, GCE Kannur Dr.RajeshKN

26

Page 27: Module3 direct stiffness- rajesh sir

STEP 6: Find equivalent joint loads from applied loads on each q j ppmember (loads other than those applied at joints directly)

STEP 7 T f b ti f l l di t i t l b l STEP 7: Transform member actions from local coordinates into global coordinates to get the transformed load vector

STEP 8: Find combined load vector by adding the above transformed load vector and the loads applied directly at joints

[ ]CA

STEP 9: Find the reduced load vector by removing members in h l d di b d di i

[ ]FCAthe load vector corresponding to boundary conditions

STEP 10: Get displacement components of the structure in global coordinates { } [ ] { }1

F FF FCD S A−=

Dept. of CE, GCE Kannur Dr.RajeshKN

27

Page 28: Module3 direct stiffness- rajesh sir

{ } [ ]{ }LOCAL T GLOBALD R D=STEP 11: Get displacement components of each member in local coordinates

STEP 12: Get member end actions from

{ } { } [ ][ ]{ }Mi MLi Mi iT GLOB iALR DA A S∴ = +

{ } { } [ ][ ]R RC RF FA A S D= − +STEP 13: Get reactions from

{ }RCA represents combined joint loads (actual and equivalent) applied directly to the supports.q ) pp y pp

Dept. of CE, GCE Kannur Dr.RajeshKN

28

Page 29: Module3 direct stiffness- rajesh sir

• Problem 1:

1 Member stiffness matrices in local co ordinates

1EA ⎡ ⎤⎡ ⎤

1. Member stiffness matrices in local co-ordinates (without considering restraint DOF)

[ ]1

1 001.155

0 0 0 0M

EAS L

⎡ ⎤⎡ ⎤⎢ ⎥⎢ ⎥= =⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦0 0 0 0⎣ ⎦ ⎣ ⎦

[ ] 1 0⎡ ⎤ [ ] 1 2 0⎡ ⎤

Dept. of CE, GCE Kannur Dr.RajeshKN

[ ]2

1 00 0MS ⎡ ⎤

= ⎢ ⎥⎣ ⎦

[ ]3

1 2 00 0MS ⎡ ⎤

= ⎢ ⎥⎣ ⎦

Page 30: Module3 direct stiffness- rajesh sir

2. Rotation (transformation) matrices

[ ]1

cos sin 0.5 0.866i 0 866 0 5TRθ θθ θ

−⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

[ ]160 sin cos 0.866 0.5T

θ θ θ=−⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

[ ]290

0 11 0TR

θ

−⎡ ⎤= ⎢ ⎥⎣ ⎦90 1 0θ =− ⎣ ⎦

[ ]3150

0.866 0.50.5 0.866TR

θ =−

− −⎡ ⎤= ⎢ ⎥−⎣ ⎦⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

30

Page 31: Module3 direct stiffness- rajesh sir

3. Member stiffness matrices in global co-ordinates(Transformed member stiffness matrices)

[ ] [ ] [ ][ ]1 1 1 1T

MS T M TS R S R=

0.5 0.866 1 0 0.5 0.86610 866 0 5 0 0 0 866 0 51 155

T− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦0.866 0.5 0 0 0.866 0.51.155⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

0 216 0 375−⎡ ⎤0.216 0.3750.375 0.649

−⎡ ⎤= ⎢ ⎥−⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 32: Module3 direct stiffness- rajesh sir

[ ]2

0 1 1 0 0 11 0 0 0 1 0

T

MSS− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

0 0⎡ ⎤= ⎢ ⎥0 1= ⎢ ⎥⎣ ⎦

[ ]3

0.866 0.5 1 0 0.866 0.510 5 0 866 0 0 0 5 0 8662

T

MSS− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

[ ]3 0.5 0.866 0 0 0.5 0.8662MS ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

0.375 0.217⎡ ⎤⎢ ⎥0.217 0.125

= ⎢ ⎥⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

32

Page 33: Module3 direct stiffness- rajesh sir

4. Global stiffness matrix

0 216 0 0 375 0 375 0 0 217⎡ ⎤

(by assembling transformed member stiffness matrices)

[ ] 0.216 0 0.375 0.375 0 0.2170.375 0 0.217 0.649 1 0.125FFS

+ + − + +⎡ ⎤= ⎢ ⎥− + + + +⎣ ⎦

0.591 0.1580 158 1 774

−⎡ ⎤= ⎢ ⎥⎣ ⎦0.158 1.774 ⎢ ⎥−⎣ ⎦

This is the reduced global stiffness matrix, since restraint DOF were not considered. Hence, boundary conditions are automatically incorporated automatically incorporated.

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 34: Module3 direct stiffness- rajesh sir

5. Loads

{ }0

5FCA ⎧ ⎫= ⎨ ⎬−⎩ ⎭

6. Joint displacements6. Joint displacements

0 772⎧ ⎫{ } [ ] { }1

F FF FCD S A−=0.7722.89

−⎧ ⎫= ⎨ ⎬−⎩ ⎭

Dept. of CE, GCE Kannur Dr.RajeshKN

34

Page 35: Module3 direct stiffness- rajesh sir

7. Member forces

{ } { } [ ][ ]{ }Mi MLi Mi iT GLOB iALR DA A S∴ = +

Member 1

{ } { } [ ][ ]{ }

{ } { } [ ][ ]{ }1 1 1 1 1TM M G LM L BAL OR DA A S= + [ ][ ]{ }1 1 1T GLOBALM R DS=

1 0.5 0.86601 155

0.772⎡ ⎤ −⎡ ⎤⎢ ⎥= ⎢ ⎥⎢−⎧

⎥⎫

⎨ ⎬1.833

=⎧ ⎫⎨ ⎬1.155

0.866 0.50 0 2.89⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦⎨ ⎬−⎩ ⎭ 0⎨ ⎬

⎩ ⎭

Dept. of CE, GCE Kannur Dr.RajeshKN

35

Page 36: Module3 direct stiffness- rajesh sir

{ } [ ][ ]{ }R DA SM b 2 { } [ ][ ]{ }2 2 2 2T GLOBALM M R DA S=Member 2

0.7722

1 0 0 10 0 1 0 .89

−⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦

−⎧ ⎫⎨

⎦ −⎩⎣⎬⎭

2.890⎧

=⎫

⎨ ⎬⎩ ⎭

Member 3

{ } [ ][ ]{ }3 3 3 3T GLOBALM M R DA S=

1 2 0 0.866 0.50 0 0.5 0.866

0.7722.89

− −⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥−⎣ ⎦

−⎧ ⎫⎨

⎣ ⎦⎬−⎩ ⎭

1.0570

=⎧ ⎫⎨ ⎬⎩ ⎭⎣ ⎦ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭

Dept. of CE, GCE Kannur Dr.RajeshKN

36

Page 37: Module3 direct stiffness- rajesh sir

• Problem 2 :

10kN m5

48

4m

0kN mCB

20kN 24

6 794m

1

9

4m 1

2A EI is constant.

1

2

3Displacements in global co-ordinates

Dept. of CE, GCE Kannur Dr.RajeshKN

37

global co ordinates

Page 38: Module3 direct stiffness- rajesh sir

2 56

9 21 4

3 64

626 9 2

5

1 1

Ki ti 1Kinematic indeterminacy

DOF in local co-ordinates

12

33

Dept. of CE, GCE Kannur Dr.RajeshKN

38

Page 39: Module3 direct stiffness- rajesh sir

0 0 0 0

12 6 12 6

EA EAL L

EI EI EI EI

⎡ ⎤−⎢ ⎥⎢ ⎥⎢ ⎥

3 2 3 2

2 2

12 6 12 60 0

6 4 6 20 0

EI EI EI EIL L L LEI EI EI EIL L L L

⎢ ⎥⎢ ⎥−⎢ ⎥⎢ ⎥⎢ ⎥−⎢ ⎥

Member stiffness matrix [ ]

0 0 0 0

12 6 12 6

MiL L L LS

EA EAL L

EI EI EI EI

⎢ ⎥=⎢ ⎥−⎢ ⎥⎢ ⎥⎢ ⎥

of a 2D frame member in local coordinates

3 2 3 2

2 2

12 6 12 60 0

6 2 6 40 0

EI EI EI EIL L L LEI EI EI EIL L L L

⎢ ⎥− − −⎢ ⎥⎢ ⎥⎢ ⎥−⎢ ⎥⎣ ⎦L L L L⎢ ⎥⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

39

Page 40: Module3 direct stiffness- rajesh sir

1. Member stiffness matrices in local co-ordinates ( ith t id i t i t DOF)

6Local DOFMember 1

(without considering restraint DOF)

[ ] 4EIS ⎡ ⎤= ⎢ ⎥ [ ]1EI EI= =

6Global DOF

[ ]1MSL

= ⎢ ⎥⎣ ⎦[ ]1EI EI

Member 2

6 9Global DOF3 6Local DOF

Member 2

[ ]4 2EI EI

L LS

⎡ ⎤⎢ ⎥⎢ ⎥

6 9Global DOF

0.5EI EI⎡ ⎤[ ]2 2 4ML LSEI EIL L

= ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

0.5EI EI⎡ ⎤

= ⎢ ⎥⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

40

Page 41: Module3 direct stiffness- rajesh sir

2. Rotation (transformation) matrices

In this case, transformation matrices are:

[ ] [ ]1 1TR = corresponding to local DOF 6

[ ]2

1 00 1TR ⎡ ⎤

= ⎢ ⎥⎣ ⎦

corresponding to local DOFs 3 & 6⎣ ⎦

3. Member stiffness matrices in global co-ordinates(Transformed member stiffness matrices)

[ ]1MSS EI= [ ]2

0.50.5MS

EI EIS

EI EI⎡ ⎤

= ⎢ ⎥⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

⎣ ⎦

Page 42: Module3 direct stiffness- rajesh sir

4 A bl d ( d d d) l b l tiff t i

6 9Gl b l DOF

4. Assembled (and reduced) global stiffness matrix

[ ] 0.5EI EIS

IE⎡ + ⎤= ⎢ ⎥

6 9Global DOF

2 0.5EI ⎡ ⎤

= ⎢ ⎥[ ]0.5FFS

EI EI= ⎢ ⎥⎣ ⎦ 0.5 1

EI= ⎢ ⎥⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 43: Module3 direct stiffness- rajesh sir

5. Loads20

13.33 13.33B

C

2013.33 20

13.33BC20

B 20 20C C20

Fi d d ti A

Combined (Eqlt.+ actual) joint loads

A Fixed end actions A (Loads in global co-ordinates)

{ }13.33

13 33FCA−⎧ ⎫

= ⎨ ⎬⎩ ⎭

Loads corresponding to global DOF 6, 9:

Dept. of CE, GCE Kannur Dr.RajeshKN

43

{ }13.33FC ⎨ ⎬

⎩ ⎭Loads corresponding to global DOF 6, 9:

Page 44: Module3 direct stiffness- rajesh sir

6 Joint displacements

11 431 ⎧ ⎫

6. Joint displacements

{ } [ ] { }1F FF FCD S A−=

11.4319.04

1EI

−⎧=

⎫⎨ ⎬⎩ ⎭

Dept. of CE, GCE Kannur Dr.RajeshKN

44

Page 45: Module3 direct stiffness- rajesh sir

7. Member end actions

{ } { } [ ][ ]{ }Mi MLi Mi iT GLOB iALR DA A S∴ = +

: fixed end actions for member i{ }MLiA

Member 1

{ } { } [ ][ ]{ }1 1 1 1 1TM M G LM L BAL OR DA A S= +

{ } [ ]{ }DA S { } { }4 10 11 43EI⎡ ⎤{ } [ ]{ }1 1 1ML M GLOBALDA S= + { } { }0 11.43

11.43L EI

⎡ ⎤= + −⎢ ⎥⎣ ⎦= −

This is the member end action corresponding to local DOF 6 f M b 1 i b d h d f

Dept. of CE, GCE Kannur Dr.RajeshKN

45

of Member 1. i.e., member end moment at the top edge of Member 1.

Page 46: Module3 direct stiffness- rajesh sir

Member 2{ } { } [ ]{ }2 2 2 2M ML M GLOBALA A DS= +

Member 2

13.33 11.4313.33 1

0.59.04

10.5

EI EIEI EI EI

−⎧ ⎫ ⎧ ⎫+⎡ ⎤

= ⎢ ⎥⎣

⎨ ⎬ ⎨−⎩ ⎭ ⎩⎦⎬⎭

13.33 1.91−⎧ ⎫ ⎧ ⎫+⎨ ⎬ ⎨= ⎬

11.42=⎧ ⎫⎨ ⎬

Th th b ti di t l l DOF 3

13.33 13.325+⎨ ⎬ ⎨

⎩ ⎭⎬− ⎩ ⎭ 0⎨ ⎬

⎩ ⎭

These are the member actions corresponding to local DOFs 3 and 6 of Member 2. i.e., member end moments of Member 2.

Dept. of CE, GCE Kannur Dr.RajeshKN

46

Page 47: Module3 direct stiffness- rajesh sir

11.43

0B 0BC11.43

Member end moments

A

Dept. of CE, GCE Kannur Dr.RajeshKN

47

Page 48: Module3 direct stiffness- rajesh sir

• Problem 3 :

10 kips0.24 kips/in.

20 kips1000 kips-in

75 in

100 in 50 in 50 in100 in 50 in 50 in

Dept. of CE, GCE Kannur Dr.RajeshKN

48

Page 49: Module3 direct stiffness- rajesh sir

2 5

13

46

8

79

8

Global DOF7

Dept. of CE, GCE Kannur Dr.RajeshKN

49

Page 50: Module3 direct stiffness- rajesh sir

21

3

56Local DOF

4

6Local DOF

Dept. of CE, GCE Kannur Dr.RajeshKN

50

4

Page 51: Module3 direct stiffness- rajesh sir

Free DOF

Dept. of CE, GCE Kannur Dr.RajeshKN

51

Page 52: Module3 direct stiffness- rajesh sir

1. Member stiffness matrices in local co-ordinates ( ith t id i t i t DOF)(without considering restraint DOF)

0 0

12 6

XEAL

EI EI

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥

1000 0 0⎡ ⎤⎢ ⎥[ ]1 3 2

12 60

6 40

Z ZM

Z Z

EI EISL LEI EI

⎢ ⎥= −⎢ ⎥⎢ ⎥⎢ ⎥−

5

0 120 60000 6000 4 10

⎢ ⎥= −⎢ ⎥− ×⎢ ⎥⎣ ⎦

20L L

⎢ ⎥−⎣ ⎦

0 0

12 6

XEAL

EI EI

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥

800 0 0⎡ ⎤⎢ ⎥[ ]2 3 2

12 60

6 40

Z ZM

Z Z

EI EISL LEI EI

⎢ ⎥=⎢ ⎥⎢ ⎥⎢ ⎥

5

0 61.44 38400 3840 3.2 10

⎢ ⎥= ⎢ ⎥×⎢ ⎥⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

52

20L L

⎢ ⎥⎣ ⎦

Page 53: Module3 direct stiffness- rajesh sir

2. Rotation (transformation) matrices

[ ]cos sin 0

i 0R⎡ ⎤⎢ ⎥

θ θθ θ[ ] sin cos 0

0 0 1TR ⎢ ⎥= −⎢ ⎥

⎢ ⎥⎣ ⎦

θ θ

Member 1 Member 2

[ ]2

0.8 0.6 00.6 0.8 0R

−⎡ ⎤⎢ ⎥= ⎢ ⎥[ ]1

1 0 00 1 0R⎡ ⎤⎢ ⎥= ⎢ ⎥ [ ]

0 0 1⎢ ⎥⎢ ⎥⎣ ⎦

[ ]1

0 0 1⎢ ⎥⎢ ⎥⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

53

Page 54: Module3 direct stiffness- rajesh sir

3. Member stiffness matrices in global co-ordinates(Transformed member stiffness matrices)

[ ] [ ] [ ][ ]1 1 1 1T

MS T M TS R S R=

1 0 0 1000 0 0 1 0 00 1 0 0 120 6000 0 1 0

T⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

5

0 1 0 0 120 6000 0 1 00 0 1 0 6000 4 10 0 0 1

= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

5

1000 0 00 120 6000

⎡ ⎤⎢ ⎥= −⎢ ⎥⎢ ⎥50 6000 4 10− ×⎢ ⎥⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

54

Page 55: Module3 direct stiffness- rajesh sir

[ ]0.8 0.6 0 800 0 0 0.8 0.6 00 6 0 8 0 0 61 44 3840 0 6 0 8 0

T

S− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥[ ]25

0.6 0.8 0 0 61.44 3840 0.6 0.8 00 0 1 0 3840 3.2 10 0 0 1

MSS ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥×⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

0.8 0.6 0 640 480 00 6 0 8 0 36 86 49 15 3840

−⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥

5

0.6 0.8 0 36.86 49.15 38400 0 1 2304 3072 3.2 10

= −⎢ ⎥ ⎢ ⎥×⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

534.12 354.51 2304354 51 327 32 3072

−⎡ ⎤⎢ ⎥= −⎢ ⎥

5

354.51 327.32 30722304 3072 3.2 10

⎢ ⎥×⎢ ⎥⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 56: Module3 direct stiffness- rajesh sir

4. Assembled (reduced) global stiffness matrix

1000 534.12 0 354.51 0 2304+ − +⎡ ⎤

. sse b ed ( educed) g oba st ess at x

[ ]5 5

0 354.51 120 327.32 6000 30720 2304 6000 3072 4 10 3.2 10

FFS⎡ ⎤⎢ ⎥= − + − +⎢ ⎥

+ − + × + ×⎢ ⎥⎣ ⎦0 2304 6000 3072 4 10 3.2 10+ + × + ×⎢ ⎥⎣ ⎦

1534 12 354 51 2304⎡ ⎤

5

1534.12 354.51 2304354.51 447.32 2928

−⎡ ⎤⎢ ⎥− −⎢⎢

= ⎥⎥52304 2928 7.2 10− ×⎢⎣ ⎦⎥

Dept. of CE, GCE Kannur Dr.RajeshKN

56

Page 57: Module3 direct stiffness- rajesh sir

5. Loads⎧ ⎫

{ }010JA

⎧ ⎫⎪ ⎪= −⎨ ⎬⎪ ⎪

Actual joint loads1000⎪ ⎪−⎩ ⎭

{ }022A

⎧ ⎫⎪ ⎪⎨ ⎬Equivalent joint loads { } 22

50EA = −⎨ ⎬

⎪ ⎪−⎩ ⎭

Equivalent joint loads

0⎧ ⎫⎪ ⎪{ } { } { } 32

1050FC J EA A A ⎪ ⎪= + = −⎨ ⎬

⎪ ⎪−⎩ ⎭

Hence, combined joint loads

Dept. of CE, GCE Kannur Dr.RajeshKN

⎩ ⎭

Page 58: Module3 direct stiffness- rajesh sir

6. Joint displacements

{ } [ ] { }1F FF FCD S A−={ } [ ] { }F FF FCD S A

1

{ }

11534.12 354.51 2304 0354.51 447.32 2928 32FD

−− ⎧ ⎫⎡ ⎤⎪ ⎪⎢ ⎥∴ = − − −⎨ ⎬⎢ ⎥ ⎪ ⎪52304 2928 7.2 10 1050

⎢ ⎥ ⎪ ⎪− × −⎢ ⎥ ⎩ ⎭⎣ ⎦

0.02060.09936−⎧ ⎫

⎪ ⎪= −⎨ ⎬0.099360.001797

⎨ ⎬⎪ ⎪−⎩ ⎭

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 59: Module3 direct stiffness- rajesh sir

7. Member end actions

{ } { } [ ][ ]{ }Mi MLi Mi iT GLOB iALR DA A S∴ = +

1000 0 0 1 0 0 0.0206⎡ ⎤ ⎡ ⎤ −⎧ ⎫⎪ ⎪{ }

5

0 120 6000 0 1 0 0.09930 6000 4 10 0

60 1 0.001797

MLiA⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= + −⎢ ⎥ ⎢ ⎥

− ×⎢ ⎥ ⎢ ⎥

⎧ ⎫⎪ ⎪−⎨

⎣ ⎦ ⎣⎪⎩⎦

⎬⎪− ⎭0 6000 4 10 0 0 1 0.001797⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎩⎦ ⎭

8. Reactions

{ } { } [ ][ ]R RC RF FA A S D= − +

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 60: Module3 direct stiffness- rajesh sir

• Problem 4:

20kN/

6m2m2m

40kN 20kN/m

16kNm

2m

80kN2m

I1=I3=I2=I2

A1=A3=

Dept. of CE, GCE Kannur Dr.RajeshKN

60

A2=

Page 61: Module3 direct stiffness- rajesh sir

1 2 31 2 3

4

C ti itConnectivity:

Member Node 1 Node 21 1 22 2 33 2 4

Dept. of CE, GCE Kannur Dr.RajeshKN

61

3 2 4

Page 62: Module3 direct stiffness- rajesh sir

46

5

46

Free DOF

Dept. of CE, GCE Kannur Dr.RajeshKN

62

Page 63: Module3 direct stiffness- rajesh sir

1. Member stiffness matrices in local co-ordinates ( ith t id i t i t DOF)(without considering restraint DOF)

50 0

3.5 10 0 012 6

XEAL

EI EI

⎡ ⎤⎢ ⎥

⎡ ⎤×⎢ ⎥⎢ ⎥⎢ ⎥[ ]1 3 2

12 60 0 6562.5 131250 13125 350006 40

Z ZM

Z Z

EI EISL LEI EI

⎢ ⎥⎢ ⎥= − = −⎢ ⎥⎢ ⎥⎢ ⎥−⎢ ⎥ ⎣ ⎦

⎢ ⎥− 20L L

⎢ ⎥⎣ ⎦

⎡ ⎤

[ ]5

0 03.5 10 0 0

12 6

X

Z Z

EAL

EI EI

⎡ ⎤⎢ ⎥

⎡ ⎤×⎢ ⎥⎢ ⎥⎢ ⎥[ ]2 3 2

2

12 60 0 3888.89 11666.670 11666.67 46666.676 40

Z ZM

Z Z

EI EISL LEI EI

⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦

⎢ ⎥⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

63

2L L⎢ ⎥⎣ ⎦

Page 64: Module3 direct stiffness- rajesh sir

⎡ ⎤

[ ]5

0 03.5 10 0 0

12 60 0 6 62 1312

X

Z Z

EAL

EI EIS

⎡ ⎤⎢ ⎥

⎡ ⎤×⎢ ⎥⎢ ⎥⎢ ⎥[ ]3 3 2

2

12 60 0 6562.5 131250 13125 350006 40

Z ZM

Z Z

EI EISL LEI EI

⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦

⎢ ⎥⎣ ⎦2L L⎢ ⎥⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

64

Page 65: Module3 direct stiffness- rajesh sir

2. Rotation (transformation) matrices

0 1 0−⎡ ⎤1 0 0⎡ ⎤ 1 0 0⎡ ⎤

[ ]390

0 1 01 0 00 0 1

Rθ =−

⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥⎣ ⎦

[ ]10

1 0 00 1 00 0 1

Rθ =

⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥⎣ ⎦

[ ]20

0 1 00 0 1

Rθ =

⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥⎣ ⎦

Member 1

0 0 1⎢ ⎥⎣ ⎦Member 2

0 0 1⎢ ⎥⎣ ⎦Member 3

⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

65

Page 66: Module3 direct stiffness- rajesh sir

3. Member stiffness matrices in global co-ordinates(Transformed member stiffness matrices)

[ ] [ ] [ ][ ]1 1 1 1T

MS T M TS R S R=

53.5 10 0 00 6562.5 13125

⎡ ⎤×⎢ ⎥= −⎢ ⎥

0 13125 35000⎢ ⎥⎢ ⎥−⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

66

Page 67: Module3 direct stiffness- rajesh sir

5T ⎡ ⎤⎡ ⎤ ⎡ ⎤[ ]

5

2

1 0 0 3.5 10 0 0 1 0 00 1 0 0 3888.89 11666.67 0 1 0

T

MSS⎡ ⎤×⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥0 0 1 0 11666.67 46666.67 0 0 1⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

53.5 10 0 00 3888.89 11666.67

⎡ ⎤×⎢ ⎥= ⎢ ⎥

0 11666.67 46666.67⎢ ⎥⎢ ⎥⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

67

Page 68: Module3 direct stiffness- rajesh sir

[ ]5

3

0 1 0 3.5 10 0 0 0 1 01 0 0 0 6562.5 13125 1 0 0

T

MSS⎡ ⎤− × −⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥

0 0 1 0 13125 35000 0 0 1⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

50 1 0 0 3.5 10 01 0 0 6562 5 0 13125

⎡ ⎤− ×⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥1 0 0 6562.5 0 13125

0 0 1 13125 0 35000

⎢ ⎥⎢ ⎥= − ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

6562.5 0 13125⎡ ⎤⎢ ⎥50 3.5 10 0

13125 0 35000

⎢ ⎥= ×⎢ ⎥⎢ ⎥⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

68

⎣ ⎦

Page 69: Module3 direct stiffness- rajesh sir

4. Assembled (and reduced) global stiffness matrix. sse b ed (a d educed) g oba st ess at x

5 53.5 10 3.5 10 6562.5 0 0 0 0 0 13125⎡ ⎤× + × + + + + +⎢ ⎥[ ] 50 0 0 6562.5 3888.89 3.5 10 13125 11666.67 0

0 0 13125 13125 11666.67 0 35000 46666.67 35000FFS ⎢ ⎥= + + + + × − + +⎢ ⎥

⎢ ⎥+ + − + + + +⎣ ⎦

706562 5 0 13125⎡ ⎤706562.5 0 131250 360451.39 1458.33

⎡ ⎤⎢ ⎥= −⎢ ⎥

13125 1458.33 116666.67⎢ ⎥

−⎢ ⎥⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 70: Module3 direct stiffness- rajesh sir

605. Loads

2020 kNm 60 60

202060 60

40

4040

40

Fixed end actions

Dept. of CE, GCE Kannur Dr.RajeshKN

7040

Fixed end actions

Page 71: Module3 direct stiffness- rajesh sir

80kN

0+16=16 kNm0 16 16 kNm

40kN

Combined (equivalent + actual) joint loads

Dept. of CE, GCE Kannur Dr.RajeshKN

71

( q ) j

Page 72: Module3 direct stiffness- rajesh sir

0⎧ ⎫ 0⎧ ⎫ 0⎧ ⎫0⎧ ⎫

⎪ ⎪000

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪

02020

⎧ ⎫⎪ ⎪−⎪ ⎪−⎪ ⎪

02020

⎧ ⎫⎪ ⎪−⎪ ⎪−⎪ ⎪

20200

⎪ ⎪−⎪ ⎪−⎪ ⎪

⎪ ⎪00

⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪

4080

⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪−⎪ ⎪

4080

⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪−⎪ ⎪

{ }060

60RCA

⎪ ⎪⎪ ⎪⎪ ⎪= −⎨ ⎬⎪ ⎪⎪ ⎪

{ }16

;00

JA⎪ ⎪−⎪ ⎪= ⎨ ⎬⎪ ⎪⎪ ⎪

{ }0

;060

EA⎪ ⎪⎪ ⎪= ⎨ ⎬⎪ ⎪⎪ ⎪−

{ } { } { }16

;060

C J EA A A⎪ ⎪−⎪ ⎪= + = ⎨ ⎬⎪ ⎪⎪ ⎪−

4080

⎪ ⎪⎪ ⎪⎪ ⎪−⎪ ⎪⎪ ⎪

000

⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪

606040

⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪

40⎧ ⎫⎪ ⎪

606040

⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪

40⎪ ⎪−⎩ ⎭

800

⎪ ⎪−⎪ ⎪

⎪ ⎪⎩ ⎭

040

⎪ ⎪⎪ ⎪⎪ ⎪−⎩ ⎭

{ } 8016

FCA ⎪ ⎪= −⎨ ⎬⎪ ⎪−⎩ ⎭

8040

⎪ ⎪−⎪ ⎪

⎪ ⎪−⎩ ⎭

Dept. of CE, GCE Kannur Dr.RajeshKN

72

Page 73: Module3 direct stiffness- rajesh sir

[ ] [ ] { }1D S A−=6. Joint displacements

1706562.5 0 13125 40−⎡ ⎤ ⎧ ⎫

⎪ ⎪

[ ] [ ] { }F FF FCD S A=6. Jo t d sp ace e ts

0 360451.39 1458.33 8013125 1458.33 116666.67 16

⎡ ⎤ ⎧ ⎫⎪ ⎪⎢ ⎥= − −⎨ ⎬⎢ ⎥ ⎪ ⎪− −⎢ ⎥⎣ ⎦ ⎩ ⎭⎢ ⎥⎣ ⎦ ⎩ ⎭

5 9 60.142 10 0.646 10 0.160 10 40 − − −⎡ ⎤× − × − × ⎧ ⎫⎢ ⎥9 5 7

6 7 5

400.646 10 0.277 10 0.348 10 80

160 160 10 0 348 10 0 859 10 − − −

− − −

⎡ ⎤ ⎧ ⎫⎢ ⎥ ⎪ ⎪= − × × × −⎨ ⎬⎢ ⎥

⎪ ⎪⎢ ⎥ −× × × ⎩ ⎭⎣ ⎦ 160.160 10 0.348 10 0.859 10 ⎢ ⎥− × × × ⎩ ⎭⎣ ⎦

40.594 10 −⎧ ⎫×⎪ ⎪3

3

0.222 100.147 10

⎪ ⎪= − ×⎨ ⎬⎪ ⎪− ×⎩ ⎭

Dept. of CE, GCE Kannur Dr.RajeshKN

73

⎩ ⎭

Page 74: Module3 direct stiffness- rajesh sir

7. Member end actions

{ } { } [ ][ ]{ }Mi MLi Mi iT GLOB iALR DA A S∴ = +

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 75: Module3 direct stiffness- rajesh sir

Summary

Direct stiffness method

Summary

• Introduction – element stiffness matrix – rotation transformation matrix – transformation of displacement and load vectors and stiffness matrix – equivalent nodal forces and load vectors –assembly of stiffness matrix and load vector – determination of assembly of stiffness matrix and load vector determination of nodal displacement and element forces – analysis of plane truss beam and plane frame (with numerical examples) – analysis of grid space frame (without numerical examples) grid – space frame (without numerical examples)

Dept. of CE, GCE Kannur Dr.RajeshKN

75

Page 76: Module3 direct stiffness- rajesh sir

• Problem X:

2

6

1 35

6

4

5

Dept. of CE, GCE Kannur Dr.RajeshKN

76

Page 77: Module3 direct stiffness- rajesh sir

0 0EA EA⎡ ⎤

[ ]1

0 0 1 0 1 00 0 0 0 0 0 0 01

M

L L

S

⎡ ⎤−⎢ ⎥ −⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥

[ ]1 1 0 1 020 00 0 0 0

0 0 0 0

M EA EAL L

⎢ ⎥ −⎢ ⎥−⎢ ⎥ ⎢ ⎥

⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦0 0 0 0⎢ ⎥⎣ ⎦

[ ] [ ] [ ]2 3 4S S S= = =[ ] [ ] [ ]2 3 4M M MS S S

1 0 1 00 0 0 01

−⎡ ⎤⎢ ⎥⎢ ⎥

1 0 1 00 0 0 01

−⎡ ⎤⎢ ⎥⎢ ⎥[ ]5

0 0 0 011 0 1 02.83

0 0 0 0

MS ⎢ ⎥=−⎢ ⎥⎢ ⎥⎣ ⎦

[ ]6

0 0 0 011 0 1 02.83

0 0 0 0

MS ⎢ ⎥=−⎢ ⎥⎢ ⎥⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

77

⎣ ⎦ ⎣ ⎦

Page 78: Module3 direct stiffness- rajesh sir

Rotation matrices

cos sin 0 0 0 1 0 0sin cos 0 0 1 0 0 0θ θθ θ

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

[ ]190

sin cos 0 0 1 0 0 00 0 cos sin 0 0 0 1TR

θ

θ θθ θ=

⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥0 0 sin cos 0 0 1 0θ θ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

0 1 0 0−⎡ ⎤⎢ ⎥

1 0 0 00 1 0 0⎡ ⎤⎢ ⎥

[ ]390

1 0 0 00 0 0 1TR

θ =−

⎢ ⎥⎢ ⎥=

−⎢ ⎥⎢ ⎥

[ ]20

0 1 0 00 0 1 00 0 0 1

TRθ =

⎢ ⎥⎢ ⎥=⎢ ⎥⎢ ⎥⎣ ⎦ 0 0 1 0⎢ ⎥

⎣ ⎦0 0 0 1⎢ ⎥⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 79: Module3 direct stiffness- rajesh sir

[ ]

1 1 0 01 1 0 0

0 707R

⎡ ⎤⎢ ⎥−⎢ ⎥=[ ]

1 0 0 00 1 0 0

R

−⎡ ⎤⎢ ⎥−⎢ ⎥ [ ]5

450.707

0 0 1 10 0 1 1

TRθ =

⎢ ⎥=⎢ ⎥⎢ ⎥−⎣ ⎦

[ ]4180 0 0 1 0

0 0 0 1

TRθ =

⎢ ⎥=−⎢ ⎥

⎢ ⎥−⎣ ⎦⎣ ⎦

[ ]

1 1 0 01 1 0 0

−⎡ ⎤⎢ ⎥⎢ ⎥[ ]6

45

1 1 0 00.707

0 0 1 10 0 1 1

TRθ =−

⎢ ⎥=−⎢ ⎥

⎢ ⎥⎣ ⎦0 0 1 1⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

79

Page 80: Module3 direct stiffness- rajesh sir

[ ] [ ] [ ][ ]TS R S R[ ] [ ] [ ][ ]1 1 1 1MS T M TS R S R=

0 1 0 0 1 0 1 0 0 1 0 01 0 0 0 0 0 0 0 1 0 0 01

T −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥=

0 0 0 1 1 0 1 0 0 0 0 120 0 1 0 0 0 0 0 0 0 1 0

⎢ ⎥ ⎢ ⎥ ⎢ ⎥=−⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

0 0 0 0⎡ ⎤0 1 0 0 0 1 0 1− −⎡ ⎤ ⎡ ⎤0 1 0 110 0 0 02

⎡ ⎤⎢ ⎥−⎢ ⎥=⎢ ⎥⎢ ⎥

1 0 0 0 0 0 0 010 0 0 1 0 1 0 12

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥=

− −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ 0 1 0 1⎢ ⎥−⎣ ⎦0 0 1 0 0 0 0 0⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 81: Module3 direct stiffness- rajesh sir

1 0 1 0−⎡ ⎤

[ ]2

1 0 1 00 0 0 011 0 1 02MSS

−⎡ ⎤⎢ ⎥⎢ ⎥=−⎢ ⎥1 0 1 020 0 0 0

⎢ ⎥⎢ ⎥⎣ ⎦

[ ]

0 1 0 0 1 0 1 0 0 1 0 01 0 0 0 0 0 0 0 1 0 0 01

T

S

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥[ ]3 0 0 0 1 1 0 1 0 0 0 0 120 0 1 0 0 0 0 0 0 0 1 0

MSS ⎢ ⎥ ⎢ ⎥ ⎢ ⎥=− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

0 1 0 0 0 1 0 11 0 0 0 0 0 0 01

−⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

0 0 0 00 1 0 11⎡ ⎤⎢ ⎥1 0 0 0 0 0 0 01

0 0 0 1 0 1 0 120 0 1 0 0 0 0 0

⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥=−⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

0 1 0 110 0 0 020 1 0 1

⎢ ⎥−⎢ ⎥=⎢ ⎥⎢ ⎥⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

81

0 0 1 0 0 0 0 0−⎣ ⎦ ⎣ ⎦ 0 1 0 1−⎣ ⎦

Page 82: Module3 direct stiffness- rajesh sir

1 0 1 0−⎡ ⎤⎢ ⎥

[ ]4

0 0 0 011 0 1 02

0 0 0 0

MSS⎢ ⎥⎢ ⎥=−⎢ ⎥⎢ ⎥⎣ ⎦0 0 0 0⎣ ⎦

1 1 0 0 1 0 1 0 1 1 0 0T −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥

[ ]5

1 1 0 0 0 0 0 0 1 1 0 010.707 0.7070 0 1 1 1 0 1 0 0 0 1 12.83MSS

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥=

−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥0 0 1 1 0 0 0 0 0 0 1 1⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 1 0 0 1 1 1 11 1 0 0 0 0 0 0

0.17660 0 1 1 1 1 1 1

− − −⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥

1 1 1 11 1 1 1

0.17661 1 1 1

− −⎡ ⎤⎢ ⎥− −⎢ ⎥=⎢ ⎥0 0 1 1 1 1 1 1

0 0 1 1 0 0 0 0− − −⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

1 1 1 11 1 1 1

− −⎢ ⎥⎢ ⎥− −⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 83: Module3 direct stiffness- rajesh sir

1 1 0 0 1 0 1 0 1 1 0 0T⎡ ⎤ ⎡ ⎤ ⎡ ⎤

[ ]6

1 1 0 0 1 0 1 0 1 1 0 01 1 0 0 0 0 0 0 1 1 0 010.707 0.7070 0 1 1 1 0 1 0 0 0 1 12.83MSS

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥=

− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥0 0 1 1 1 0 1 0 0 0 1 12.830 0 1 1 0 0 0 0 0 0 1 1⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 1 1 11 1 1 1

− −⎡ ⎤⎢ ⎥

1 1 0 0 1 1 1 11 1 0 0 0 0 0 0

− −⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ 1 1 1 1

0.1771 1 1 1

1 1 1 1

⎢ ⎥− −⎢ ⎥=− −⎢ ⎥⎢ ⎥− −⎣ ⎦

1 1 0 0 0 0 0 00.177

0 0 1 1 1 1 1 10 0 1 1 0 0 0 0

⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥=− −⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ 1 1 1 1⎣ ⎦0 0 1 1 0 0 0 0⎣ ⎦ ⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

Page 84: Module3 direct stiffness- rajesh sir

Assembled global stiffness matrix

1 10 0.1766 0 0 0.1766 0 0 0.1766 0.1766 02 2

1 1

+ + + + − − −⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥

g

1 10 0 0.1766 0 0.1766 0 0.1766 0.1766 0 02 2

1 10 0 0 0.1766 0 0 0.1766 0 0.1766 0.17662 2

1 1

+ + + + − − −

+ + + − − −

⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥

[ ]1 10 0 0 0.1766 0 0.1766 0 0 0.1766 0.17662 2

1 10.1766 0.1766 0 0 0.1766 0 0 0.2 2

JS− + − + + −

=− − − + + + + 1766 0 0

1 10 1766 0 1766 0 0 0 0 0 1766 0 0 1766 0

⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥1 10.1766 0.1766 0 0 0 0 0.1766 0 0.1766 0

2 21 10 0.1766 0.1766 0 0 0 0.1766 0 0 0.17662 2

1 10 0 0 1766 0 1766 0 0 0 0 1766 0 0 1766

⎢ ⎥− − + + + + −⎢ ⎥⎢ ⎥⎢ − − + + + − ⎥⎢ ⎥⎢ ⎥

+ + +⎢ ⎥0 0 0.1766 0.1766 0 0 0 0.1766 0 0.17662 2

− − + − + +⎢ ⎥⎣ ⎦

1 2 8 0D D D= = =Boundary conditions are:

Dept. of CE, GCE Kannur Dr.RajeshKN

1 2 8 0D D DBoundary conditions are:

Page 85: Module3 direct stiffness- rajesh sir

0 .677 -0 .177 -0 .500 0 .000 -0 .177 ⎡ ⎤⎢ ⎥

Reduced stiffness matrix

[ ] -0.177 0 .677 0 .000 0 .000 0 .177 -0.500 0 .000 0 .677 0 .177 0 .000FFS =

⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥

[ ] 0 .000 0 .000 0 .177 0 .677 0 .000 -0.177 0 .177 0 .000 0 .000 0 .677

⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

Dept. of CE, GCE Kannur Dr.RajeshKN

85

Page 86: Module3 direct stiffness- rajesh sir

5⎧ ⎫⎪ ⎪

{ }00FCA

⎪ ⎪⎪ ⎪⎪ ⎪= ⎨ ⎬⎪ ⎪

In this problem, the reduced load vector (in global coords) can be directly written as

00

⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

{ } [ ] { }1F FF FCD S A−=

24.144⎧ ⎫⎪ ⎪

4.829 1.000 3.829 -1.000 1.000 5⎡ ⎤ ⎧ ⎫⎢ ⎥ ⎪ ⎪ 5.000

19.144

⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬⎪

=⎪

1.000 1.793 0.793 -0.207 -0.207 3.829 0.793 4.622 -1.207 0.793=

00

⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪⎢ ⎥ ⎨ ⎬⎢ ⎥ ⎪ ⎪ -5.000

5.000

⎪⎪⎪

⎪⎪⎪⎩ ⎭

-1.000 -0.207 -1.207 1.793 -0.207 0 1.000 -0.207 0.793 -0.207 1.793 0

⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎩ ⎭

Dept. of CE, GCE Kannur Dr.RajeshKN

⎣ ⎦ ⎩ ⎭

Page 87: Module3 direct stiffness- rajesh sir

Assignment

Dept. of CE, GCE Kannur Dr.RajeshKN