Module 3 Descriptive Time Series Statistics and...

37
Module 3 Descriptive Time Series Statistics and Introduction to Time Series Models Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W. Q. Meeker. November 11, 2015 17h 20min 3-1

Transcript of Module 3 Descriptive Time Series Statistics and...

Page 1: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Module 3

Descriptive Time Series Statistics

and Introduction to Time Series Models

Class notes for Statistics 451: Applied Time Series

Iowa State University

Copyright 2015 W. Q. Meeker.

November 11, 2015

17h 20min

3 - 1

Page 2: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Module 3

Segment 1

Populations, Processes, and

Descriptive Time Series Statistics

3 - 2

Page 3: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Populations

• A population is a collection of identifiable units (or a spec-

ified characteristic of these units).

• A frame is a listing of the units in the population.

• We take a sample from the frame and use the resulting data

to make inferences about the population.

• Simple random sampling with replacement from a popu-

lation implies independent and identically distributed (iid)

observations.

• Standard statistical methods use the iid assumption for ob-

servations or residuals (in regression).

3 - 3

Page 4: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Processes

• A process is a system that transforms inputs into outputs,

operating over time.

outputsinputs

• A process generates a sequence of observations (data) over

time.

• We can use a realization from the process to make infer-

ences about the process.

• The iid model is rarely appropriate for processes (observa-

tions close together in time are typically correlated and the

process often changes with time).

3 - 4

Page 5: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Process, Realization, Model,

Inference, and Applications

Description

Process

Generates DataRealization

Z , Z , ..., Z

Estimates for Model

Parameters

Inferences

Forecasts

Control

n1 2

(Stochastic Process Model)

for the ProcessStatistical Model

3 - 5

Page 6: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Stationary Stochastic Processes

Zt is a stochastic process. Some properties of Zt include

mean µt, variance σ2t , and autocorrelation ρZt,Zt+k. In general,

these can change over time.

• Strongly stationary (also strictly or completely stationary):

F(zt1, . . . , ztn) = F(zt1+k, . . . , ztn+k)

Difficult to check.

• Weakly stationary (or 2nd order or covariance stationary)

requires only that µ = µt and σ2 = σ2t be constant and that

ρk = ρZt,Zt+kdepend only on k.

Easy to check with sample statistics.

Generally, “stationary” is understood to be weakly station-

ary.

3 - 6

Page 7: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Change in Business Inventories 1955-1969

Stationary?

1955 1957 1959 1961 1963 1965 1967 1969

-50

510

15

Year

Bill

ions

of D

olla

rs

3 - 7

Page 8: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Estimation of Stationary Process Parameters

Some Notation

ProcessParameter Notation Estimate

Mean of Z µZ = E(Z) µZ = z =

∑nt=1 ztn

Variance of Z γ0 = σ2Z = Var(Z) γ0 =

∑nt=1(zt−z)2

n

Standard σZ σZ =√γ0

Deviation

Autocovariance γk γk =

∑n−kt=1(zt−z)(zt+k−z)

n

Autocorrelation ρk =γkγ0

ρk =γkγ0

Variance of Z σ2Z= Var(Z) S2

Z= γ0

n [· · · ]

3 - 8

Page 9: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Change in Business Inventories 1955-1969

with z and z ± 3σZ

1955 1957 1959 1961 1963 1965 1967 1969

-50

510

15

Year

Bill

ions

of D

olla

rs

3 - 9

Page 10: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Variance of Z with Correlated Data

The Variance of Z

σ2Z = Var(Z) =γ0n

n−1∑

k=−(n−1)

(1− |k|

n

)ρk

with correlated data is more complicated than with iid data

where

σ2Z = Var(Z) =γ0n

=σ2

n

Thus if one incorrectly uses the iid formula, the variance is

under estimated, potentially leading for false conclusions.

3 - 10

Page 11: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Module 3

Segment 2

Correlation and Autocorrelation

3 - 11

Page 12: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Correlation [From “Statistics 101”]

Consider random data y and x (e.g., sales and advertising):

x y

x1 y1x2 y2... ...

xn yn

ρx,y denotes the “population” correlation between all values

of x and y in the population.

To estimate ρx,y, we use the sample correlation

ρx,y =

∑ni=1(xi − x)(yi − y)

√∑ni=1(xi − x)2

∑ni=1(yi − y)2

, (Stat 101)

−1 ≤ ρx,y ≤ 1

3 - 12

Page 13: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Sample Autocorrelation

Consider the random time series realization z1, z2, . . . , zn

Lagged Variablest zt zt+1 zt+2 zt+3 zt+41 z1 z2 z3 z4 z52 z2 z3 z4 z5 z63 z3 z4 z5 z6 z7... ... ... ... ... ...

n− 2 zn−2 zn−1 zn – –n− 1 zn−1 zn – – –n zn – – – –

Assuming weak (covariance) stationarity, let ρk denote the

process correlation between observations separated by k time

periods. To compute the “order k” sample autocorrelation

(i.e., correlation between zt and zt+k)

ρk =γkγ0

=

∑n−kt=1(zt − z)(zt+k − z)

∑nt=1(zt − z)2

, k = 0,1,2, . . .

Note: −1 ≤ ρk ≤ 13 - 13

Page 14: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Sample Autocorrelation (alternative formula)

Consider the random time series realization z1, z2, . . . , zn

Lagged Variablest zt zt−1 zt−2 zt−3 zt−4

1 z1 – – – –2 z2 z1 – – –3 z3 z2 z1 – –4 z4 z3 z2 z1 –... ... ... ... ... ...n zn zn−1 zn−2 zn−3 zn−4

Assuming weak (covariance) stationarity, let ρk denote the

process correlation between observations separated by k time

periods.

To compute the “order k” sample autocorrelation (i.e., cor-

relation between zt and zt−k)

ρk =γkγ0

=

∑nt=k+1(zt − z)(zt−k − z)

∑nt=1(zt − z)2

, k = 0,1,2, . . .

Note: −1 ≤ ρk ≤ 13 - 14

Page 15: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Wolfer Sunspot Numbers 1770-1869

0 20 40 60 80 100

050

100

150

3 - 15

Page 16: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Lagged Sunspot Data

Lagged Variablest Spot Spot1 Spot2 Spot3 Spot4

1 101 – – – –2 82 101 – – –3 66 82 101 – –4 35 66 82 101 –5 31 35 66 82 101... ... ... ... ... ...99 37 7 16 30 47100 74 37 7 16 30101 – 74 37 7 16102 – – 74 37 7103 – – – 74 37104 – – – – 74

3 - 16

Page 17: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Wolfer Sunspot Numbers

Correlation Between Observations Separated by One

Time Period

••

••

••

••

••

• • ••

• ••

•••• •

•• •

••

••

•• ••

••

••

••

••

• •

••

••

spot.ts[-1]

spot

.ts[-

100]

0 50 100 150

050

100

150

Correlation = 0.81708Autocorrelation = 0.806244

3 - 17

Page 18: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Wolfer Sunspot Numbers

Correlation Between Observations Separated by k

Time Periods [show.acf(spot.ts)]

••

••

••

••

••

••

•••

••••

•••••

•••••

•••••••••

•••

•••

••• ••

••

•••

••

••

••

••

••

•••

••

••

••

••

•••

••

timeseries

times

erie

s

0 50 100 150

050

100

150

••

••

••

••

••

••

•••

••••

•••• • •

•••••

•••••• •• •

•••

••••• • •

••••

• •

••

••

••• •

•••

••• •

••

••••

••

Lag 1

series

Ser

ies

lag

1

0 50 100 150

050

100

150

••

• •

••

••

••

••

•••

••••

••• • • •

•••••

••••• ••

• •

•••

•••• • • •

•••••

• •

••

••

••

• •

•••

••

• •

••

••

•••

••

Lag 2

seriesS

erie

s la

g 2

0 50 100 150

050

100

150

••

• •

••

••

••

••

•••

••••

••• • ••

•••••

•••• •• •

••

•••

•••• • • •

••

•••

• •

••

••

••

• •

••••

•• •

••

••

•••

Lag 3

series

Ser

ies

lag

3

0 50 100 150

050

100

150

••

• •

••

••

•••

•••

••••

• •• ••

•••••

••• •• • •

••

•••

•••

• • • ••

••

•••

••

••

••

••

• •

•••

••

••

••

••

• ••

Lag 4

series

Ser

ies

lag

4

0 50 100 150

050

100

150

••

••

••

••

••

••

•••

••••

• •••••

•••••

•• •• • ••

••

•••

• ••

• • •••

••

•••

••

••

••

••

••

•••

••••

••

••

• •

Lag 5

series

Ser

ies

lag

5

0 50 100 150

050

100

150

••

••

••

••

••

••

•••

••• •

• •••••

••••••

•• • •••••

•••• •

•• ••••

••• • •

••

••

••

••

••

• ••

••

••

••

••

Lag 6

series

Ser

ies

lag

6

0 50 100 150

050

100

150

••

••

••

••

••

••

•••

••

• •

••••••

•••••

•• • ••••••

•• •

• ••

•••••

••

• • •

••

••

••

••

••

• •••

•••

••

••

Lag 7

series

Ser

ies

lag

7

0 50 100 150

050

100

150

••

••

••

••

••

••

•••

••

• •

••••••

•••• •

•• •••••••

•• •

• ••••••

••

• ••

••

••

••

••••

• ••

••

••

• •

Lag 8

series

Ser

ies

lag

80 50 100 150

050

100

150

••

••

••

••

••

••

•••

••

••

•••••

••• ••

••••••••

•• •

• ••••••

••

•••

••

••

••

••

••

•••

••••

• •

Lag 9

series

Ser

ies

lag

9

0 20 60 100 140

050

100

150

••

••

••

••

••

••

•••

• •• •

•••••

•• •• •

•••••••

• •

•• •

• ••

••• ••

••

•••

••

••

••

••

••

•••

••

••

Lag 10

series

Ser

ies

lag

10

0 20 60 100 140

050

100

150

••

• •

••

••

••

••

•••

••••

•••••

••• • •

•••••••

• •

•• •

•••

•• • ••

••

•••

• •

••

••

••

••

••••

•••

Lag 11

series

Ser

ies

lag

11

0 20 60 100 140

050

100

150

••

• •

••

••

••

••

• ••

• •••

••••••

•• • ••

•••••• • • •

•• •

•••

• • • ••

••

•••

• •

••

••

••

••

•••

••

• •

Lag 12

series

Ser

ies

lag

12

0 20 60 100 140

050

100

150

••

• •

••

••

••

••

• ••

••••

•••••

•• •••

••••• • • • •

•••

•••• • • •

••

•••

• •

••

••

••• •

•••

••

• •

Lag 13

series

Ser

ies

lag

13

0 20 60 100 140

050

100

150

Lag

AC

F0 5 10 15 20

-0.2

0.2

0.6

1.0

Series : timeseries

3 - 18

Page 19: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Wolfer Sunspot Numbers Sample ACF Function

Lag

AC

F

0 5 10 15 20

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Series : spot.ts

3 - 19

Page 20: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Module 3

Segment 3

Autoregression, Autoregressive Modeling,

and and Introduction to Partial Autocorrelation

3 - 20

Page 21: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Wolfer Sunspot Numbers 1770-1869

0 20 40 60 80 100

050

100

150

3 - 21

Page 22: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Autoregressive (AR) Models

• AR(0): zt = µ+ at (White noise or “Trivial” model)

• AR(1): zt = θ0 + φ1zt−1 + at

• AR(2): zt = θ0 + φ1zt−1 + φ2zt−2 + at

• AR(3): zt = θ0 + φ1zt−1 + φ2zt−2 + φ3zt−3 + at

• AR(p): zt = θ0 + φ1zt−1 + φ2zt−2 + · · ·+ φpzt−p + at

at ∼ nid(0, σ2a)

3 - 22

Page 23: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Data Analysis Strategy

Time Series PlotRange-Mean PlotACF and PACF

ForecastingExplanationControl

CheckingDiagnostic

Estimation

No

Yes

Modelok?

Use the Model

IdentificationTentative

Maximum Likelihood

Residual Analysisand Forecasts

Least Squares or

3 - 23

Page 24: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

AR(1) Model for the Wolfer Sunspot Data

0 20 40 60 80 100

050

100

150

Data and 1-Step Ahead Predictions

Year Number

Sunspot Residuals, AR(1) Model

Year Number

0 20 40 60 80 100

-20

2060

Lag

AC

F

0 5 10 15

-0.4

0.2

0.8

Series : residuals(spot.ar1.fit)

••

• •

••

•••

••

••

•••

• ••

•• • • •••

••

••

••• • • • ••

•••

• ••• ••• •

•••••

•••

••

••

•••

••

••

••

••

••••

••

••••

•• •

••

Quantiles of Standard Normal

resi

dual

s(sp

ot.a

r1.fi

t)

-2 -1 0 1 2

-20

2060

3 - 24

Page 25: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

AR(2) Model for the Wolfer Sunspot Data

0 20 40 60 80 100

050

100

150

Data and 1-Step Ahead Predictions

Year Number

Sunspot Residuals, AR(2) Model

Year Number

0 20 40 60 80 100

-40

020

Lag

AC

F

0 5 10 15

-0.2

0.4

0.8

Series : residuals(spot.ar2.fit)

••

••

• •

••

••• •

•••

••••

• •• • ••

•• • ••• ••

•••• •• •

••

••

••

•••

••

••

••

•••• •• •

• •••

•••

••

Quantiles of Standard Normal

resi

dual

s(sp

ot.a

r2.fi

t)

-2 -1 0 1 2

-40

020

3 - 25

Page 26: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

AR(3) Model for the Wolfer Sunspot Data

0 20 40 60 80 100

050

100

150

Data and 1-Step Ahead Predictions

Year Number

Sunspot Residuals, AR(3) Model

Year Number

0 20 40 60 80 100

-40

020

40

Lag

AC

F

0 5 10 15

-0.2

0.4

0.8

Series : residuals(spot.ar3.fit)

••

••

• •

••

••• •

•••

••••

• •• • ••

•• • ••• ••

•••• •• •

••

••

••

•••

••

••

••

•••• •• •

• •••

•••

••

Quantiles of Standard Normal

resi

dual

s(sp

ot.a

r2.fi

t)

-2 -1 0 1 2

-40

020

3 - 26

Page 27: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

AR(4) Model for the Wolfer Sunspot Data

0 20 40 60 80 100

050

100

150

Data and 1-Step Ahead Predictions

Year Number

Sunspot Residuals, AR(4) Model

Year Number

0 20 40 60 80

-20

020

40

Lag

AC

F

0 5 10 15

-0.2

0.4

0.8

Series : residuals(spot.ar4.fit)

••

••

• •

••

••• •

•••

••••

• •• • ••

•• • ••• ••

•••• •• •

••

••

••

•••

••

••

••

•••• •• •

• •••

•••

••

Quantiles of Standard Normal

resi

dual

s(sp

ot.a

r2.fi

t)

-2 -1 0 1 2

-40

020

3 - 27

Page 28: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Sample Partial Autocorrelation Function

The sample PACF φkk can be computed from the sample ACF

ρ1, ρ2, . . . using the recursive formula from Durbin (1960):

φ1,1 = ρ1

φkk =

ρk −k−1∑

j=1

φk−1,j ρk−j

1−k−1∑

j=1

φk−1,j ρj

, k = 2,3, ...

where

φkj = φk−1,j − φkkφk−1,k−j (k = 3,4, ...; j = 1,2, ..., k − 1)

Thus the PACF contains no new information—just a differ-

ent way of looking at the information in the ACF.

This sample PACF formula is based on the solution of the

Yule-Walker equations (covered module 5).

3 - 28

Page 29: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Summary of Sunspot Autoregressions

Order Regression Output PACF

Model p R2 S φp tφp

φpp

AR(1) 1 .6676 21.53 .810 13.96 .8062AR(2) 2 .8336 15.32 −.711 −9.81 −.6341AR(3) 3 .8407 15.12 .208 2.04 .0805AR(4) 4 .8463 15.01 −.147 −1.41 −.0611

φp is from ordinary least squares (OLS).

φpp is from the Durbin formula.

3 - 29

Page 30: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Sample Partial Autocorrelation

The “true partial autocorrelation function,” denoted by φkk,

for k = 1,2, . . . is the process correlation between obser-

vations separated by k time periods (i.e., between zt and

zt+k) with the effect of the intermediate zt+1, . . . , zt+k−1

removed.

We can estimate φkk, k = 1,2, . . . with φkk, k = 1,2, . . .

• φ1,1 = φ1 from the AR(1) model

• φ2,2 = φ2 from the AR(2) model

• φkk = φk from the AR(k) model

The Durbin formula gives somewhat different answers due

to the basis of the estimator (ordinary least squares versus

solution of the Yule-Walker equations).

3 - 30

Page 31: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Module 3

Segment 4

Introduction to ARMA Models

and Time Series Modeling

3 - 31

Page 32: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Autoregressive-Moving Average (ARMA) Models

(a.k.a. Box-Jenkins Models)

• AR(0): zt = µ+ at (White noise or “Trivial” model)

• AR(1): zt = θ0 + φ1zt−1 + at

• AR(2): zt = θ0 + φ1zt−1 + φ2zt−2 + at

• AR(p): zt = θ0 + φ1zt−1 + · · ·+ φpzt−p + at

• MA(1): zt = θ0 − θ1at−1 + at

• MA(2): zt = θ0 − θ1at−1 − θ2at−2 + at

• MA(q): zt = θ0 − θ1at−1 − · · · − θqat−q + at

• ARMA(1,1): zt = θ0 + φ1zt−1 − θ1at−1 + at

• ARMA(p, q): zt = θ0 + φ1zt−1 + · · ·+ φpzt−p

− θ1at−1 − · · · − θqat−q + at

at ∼ nid(0, σ2a)

3 - 32

Page 33: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Graphical Output from RTSERIES Function

iden(spot.tsd)

Range-Mean Plot

Mean

Ran

ge

20 30 40 50 60 70

4060

8010

012

014

0

time

w

1780 1800 1820 1840 1860

050

100

150

Wolfer Sunspotsw= Number of Spots

ACF

Lag

AC

F

0 10 20 30

-1.0

0.0

0.5

1.0

PACF

Lag

Par

tial A

CF

0 10 20 30

-1.0

0.0

0.5

1.0

3 - 33

Page 34: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Tabular Output from RTSERIES Function

iden(spot.tsd)

Identification Output for Wolfer Sunspots

w= Number of Spots

[1] "Standard deviation of the working series= 37.36504"

ACF

Lag ACF se t-ratio

1 1 0.806243956 0.1000000 8.06243956

2 2 0.428105325 0.1516594 2.82280693

3 3 0.069611110 0.1632975 0.42628402

.

.

.

Partial ACF

Lag Partial ACF se t-ratio

1 1 0.806243896 0.1 8.06243896

2 2 -0.634121358 0.1 -6.34121358

3 - 34

Page 35: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Standard Errors for Sample Autocorrelations and

Sample Partial Autocorrelations

• Sample ACF standard error: Sρk=

√√√√(1+2ρ21+···+2ρ2k−1

n

)

Also can compute the “t-like” statistics t = ρk/Sρk.

• Sample PACF standard error: Sφkk

= 1/√n

Use to compute “t-like” statistics t = φkk/Sφkkand set de-

cision bounds.

• In long realizations from a stationary process, if the true

parameter is really 0, then the distribution of a “t-like”

statistic can be approximated by N(0,1)

• Values of ρk and φkk may be judged to be different from

zero if the “t-like” statistics are outside specified limits (±2

is often suggested; might use ±1.5 as a “warning”).

3 - 35

Page 36: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Drawing Conclusions from Sample ACF’s and PACF’s

PACF PACFDies Down Cutoff after p > 1

ACF Dies Down ARMA AR(p)

ACF Cutoff after q > 1 MA(q) Impossible

Technical details, background, and numerous examples will

be presented in Modules 4 and 5.

3 - 36

Page 37: Module 3 Descriptive Time Series Statistics and ...wqmeeker/stat451stuff/pdf_fullsize/handout...Descriptive Time Series Statistics 3-2. Populations • A population is a collection

Comments on Drawing Conclusions from Sample

ACF’s and PACF’s

The “t-like” statistics should only be used as guidelines in

model building because:

• An ARMA model is only an approximation to some true

process

• Sampling distributions are complicated; the “t-like” statis-

tics do not really follow a standard normal distribution (only

approximately, in large samples, with a stationary process)

• Correlations among the ρk values for different k (e.g., ρ1and ρ2 may be correlated).

• Problems relating to simultaneous inference (looking at many

different statistics simultaneously, confidence/significance

levels have little meaning).

3 - 37