Module 1 - Sinusoids

download Module 1 - Sinusoids

of 22

Transcript of Module 1 - Sinusoids

  • 8/18/2019 Module 1 - Sinusoids

    1/22

    Sinusoids

    EE 102 Circuits 2

    Module 1

  • 8/18/2019 Module 1 - Sinusoids

    2/22

    Introduction

    Hover Dam

    Hover Dam Alternators

    Commercial power supplies arealternating voltage sources that

    follows the sine function known as

    sinusoidal function or simply

    sinusoids. Circuit currents resulting from

    sinusoidal voltages are also

    alternating in nature called

    alternating current (AC).

  • 8/18/2019 Module 1 - Sinusoids

    3/22

    Alternating Current and Voltages

    An alternating voltage or electromotive force (EMF) can berepresented by the following sine function

    t T  E e ft  E e

    t  E e

    m

    m

    m

    )!"(#sin#sin

    sin

    π π 

    ω 

    =

    =

    =

    where

    e $ instantaneous value of the alternating voltage% volts (&)

    Em $ ma'imum or peak value of the alternating voltage% volts (&)

    $ angular velocity of the alternating voltage% rad!sec

    f $ freuency of the alternating voltage% hert* (+*)

    , $ period of the alternating voltage% sec

    t $ time in sec.

    e

     E m

  • 8/18/2019 Module 1 - Sinusoids

    4/22

    Instantaneous Value of a Sinusoid

    -efers to the voltage (or current) values at any point in time ina sine wave or sinusoid.

    nstantaneous values of voltage and current are usually

    symboli*ed by lower case v and i respectively.

    v

    v1

    v2

    -v3

    t 1 t 2

    t 3

  • 8/18/2019 Module 1 - Sinusoids

    5/22

    / An alternating voltage is given by the sinusoidal function%

    v = 325 sin277t. Find

    a) ,he angular velocity% freuency% and period of thefunction.

     b) ,he time when the voltage is half its peak value.

  • 8/18/2019 Module 1 - Sinusoids

    6/22

    The Phase Angle

    -efers to the amount of shift (in degrees or radians) of the sinewave from the vertical a'is.

    v

    shift φt 

    v

    shift φ

  • 8/18/2019 Module 1 - Sinusoids

    7/22

    The Phase Angle

    A sinusoid shifted to the right of the vertical a'is can bee'pressed by the sine function

    )sin(   φ ω   −= t V v m

    v

    φ

    v =V m sinωt 

    v =V m sin(ωt-φ)

    A sinusoid shifted to the right is said to lag from its original

     position by the amount of shifting 0 degrees

  • 8/18/2019 Module 1 - Sinusoids

    8/22

    The Phase Angle

    A sinusoid shifted to the left of the vertical a'is can bee'pressed by the sine function

    )sin(   φ ω   += t V v m

    v

    φ

    v =V m sin(ωt-φ)

    v =V m sin(ωt+φ)

    A sinusoid shifted to the left is said to lead from its original

     position by the amount of shifting 0 degrees

  • 8/18/2019 Module 1 - Sinusoids

    9/22

    The Phase Angle

    ,wo or more sinusoids of the same freuency and phase angleare said to be in-phase with each other.

    1inusoids that are in2phase reaches its minimum and

    ma'imum values at the same time.

    v

    v1 =V 1m sin(ωt-φ)

    v =V 2m sin(ωt-φ)

  • 8/18/2019 Module 1 - Sinusoids

    10/22

    The Phase Angle

    1ince sin(t345o) $ cos t% the sinusoid v = V m cosωt is asinusoid with a phase angle of 90o leadin (shifted 45o to left).

    v

    90o

    V m

    v =V m sin(ωt+90o )= V m !osωt 

    1imilarly% the sinusoid v = -V m cosωt % is a sinusoid with a

     phase angle of 90o lain  (shifted 45o to right).

    v

    90o

    V m

    v =V m sin(ωt-90o )= -V m !osωt 

  • 8/18/2019 Module 1 - Sinusoids

    11/22

    The Phase Angle

    )

    #

    cos()45cos(sin

    )#

    sin()45sin(cos

    π ω ω ω 

    π ω ω ω 

    −=−=

    +=+=

    t t t 

    t t t 

    o

    o

    )45sin(sin

    )"65cos(cos

    o

    o

    t t 

    t t 

    ±=−

    ±=−

    ω ω 

    ω ω 

  • 8/18/2019 Module 1 - Sinusoids

    12/22

    The Phase Angle

    1ines and cosines of the sum and difference of two angles

    "a"a"a

    "a"a"a

    "a"a"a

    "a"a"a

    sinsincoscos)cos(

    sincossinsin)sin(

    sinsincoscos)cos(

    sincoscossin)sin(

    +=−

    −=−

    −=+

    +=+

  • 8/18/2019 Module 1 - Sinusoids

    13/22

    / E'press the sinusoid v = V m !os(ωt+#5o ) in terms of the sine

    function.

    7 1olution8

    9etting : $ t3;

  • 8/18/2019 Module 1 - Sinusoids

    14/22

    / Find the phase difference of the sinusoidal functions

    i1=15 !os(10t+50o ) and i2=20 !os(10t-100

    o ).

    7 1olution8

    i 1 is a function shifted 45o+50o= 1#0o to the left of the vertical

    a'is while i 2 is a function shifted 45o-100o= -10o to the left of

    the vertical a'is (or actually 310o to the right ) . ,herefore% the

     phase difference between the two functions is%

    Ans.140o ! 10o = 150o

    T$is means i 1 is leadin i 2 "% 150o.

    v

    i2 =20 !os(10t-100o )i1 =15 !os(10t+50

    o )

    140o

    10o

  • 8/18/2019 Module 1 - Sinusoids

    15/22

    / Seat&or' 

    =etermine the freuency and the phase angle difference

     between the two voltages v1 = 4 cos(5t + 30

    o

     ) volts andv2 = -2 sin(5t + 20

    o ) volts.

  • 8/18/2019 Module 1 - Sinusoids

    16/22

    Effectie Value of Sinusoids

    Also called the root2mean2suare or -M1. t is the value of the sinusoid that has the same heating effect

    as if it were a =C.

    >iven the sinusoid v = V m sinωt % the effective value V  of this

    sinusoid is given by the formula%

    mm V 

    V V  ?5?".5

    #==

  • 8/18/2019 Module 1 - Sinusoids

    17/22

  • 8/18/2019 Module 1 - Sinusoids

    18/22

    )eriation of Effectie Values

    i

     Rv = V m sinωt 

    t  &  '

    t V 

     '

    vi m

    m ω ω 

    sinsin

    ===

    where I m = V m /R.

    ,hus% current i  is in2phase withsource voltage v.

    v

    i =I m sin ωt 

    v =V m sin ωt  ,he instantaneous power p 

    dissipated by the resistor at any

    given time is%

    t  & V  

    t  & t V vi 

    mm

    mm

    ω 

    ω ω 

    #sin

    sinsin

    =

    ×==

  • 8/18/2019 Module 1 - Sinusoids

    19/22

    )eriation of Effectie Values

    lotting the power yields%

     p p = V m I m sin2 ωt 

    ω 

    π 

    ω 

    π #

    ,he incremental energy d  

    dissipated by the resistance

    during incremental time dt %

    is d = dt. Calculating fortotal energy   consumed

    from time t$5 to t$B!

    yields%

    mm

    mmmm

     & V  

    dt t  & V dt t  & V dt   

    ω 

    π 

    ω ω    ω π 

    ω 

    π 

    ω 

    π 

    #

    sinsin5

    #

    5

    #

    5

    =

    === ∫ ∫ ∫ 

  • 8/18/2019 Module 1 - Sinusoids

    20/22

    )eriation of Effectie Values

    mm & V ) ω 

    π 

    #=

    V&  * 

     & V  * 

     & V  & V 

    )  * 

    mm

    mmmm

    =

    ×=

    ===

    ##

    #

    #

    ω 

    π ω 

    π 

    ω 

    π 

    ,he power dissipated over one pulse of the power graph is

    the total energy   dissipated divided by the total time this

    energy was consumed%

    where is the effective

    value of the sinusoidal voltage and

    is the effective value of the

    sinusoidal current.

    #

    mV V   =

    #

    m & 

     &  =

  • 8/18/2019 Module 1 - Sinusoids

    21/22

    / Meralco supplies a sinusoidal voltage with an effective value

    (-M1) of #5 &ac to home users.

    a) Dhat is the peak2to2peak value of this sinusoidal voltage

     b) f a flat iron with a resistance of < ohms is connected to

    this line what is the resulting -M1 current to the iron

    c) Dhat is the power consumption of the flat iron in b)

    d) Dhat is the energy dissipated in kilowatt2hr for two hours

    of use of the flat iron in b)

  • 8/18/2019 Module 1 - Sinusoids

    22/22

    Than' *ou