Modified Ludzack Ettinger Example

3
MODIFIED LUDZACK ETTINGER NITROGEN REMOVAL PROCESS EXAMPLE GIVEN: Wastewater average flow rate, Q = 40,000 m 3 /d Influent concentration Soluble COD (S SO ) 150 mg/l Particulate COD (X SO ) 115 mg/l Soluble ammonia-N (S NHO ) 25 mg-l N Soluble organic N (S NSO ) 6.5 mg/l Particulate organic N (X NSO ) 8.5 mg/l Parameters ˆ H 6 d -1 ˆ A 0.77 d -1 b H 0.18 d -1 b A 0.1 d d -1 K S 20 mg/l COD K NH 1 mg/l NH 4 -N Y H 0.6 g-COD cells/g-substrateCOD Y A 0.24 mg COD cells/g-NH 4 -N f D 0.2 g debrisCOD/g cells COD decayed i NXB 0.087 g-N/g-cell COD Objectives: Effluent COD = S S < 10 mg/l Effluent ammonia nitrogen = S NH < 0.3 mg/l Effluent total inorganic nitrogen (TIN) = 10 mg/l For adequate settling MLSS = X T < 3,000 mg/l or 4,260 mg/l as COD Aerobic Tank S NO,aer Anoxic Tank Q + Q RAS Q RAS MLR Q+Q RAS +MLR Q + Q RAS Q W

description

ludzack ettinger example

Transcript of Modified Ludzack Ettinger Example

Page 1: Modified Ludzack Ettinger Example

MODIFIED LUDZACK ETTINGER NITROGEN REMOVAL PROCESS EXAMPLE

GIVEN:

Wastewater average flow rate, Q = 40,000 m3/d

Influent concentration

Soluble COD (SSO) 150 mg/l

Particulate COD (XSO) 115 mg/l

Soluble ammonia-N (SNHO) 25 mg-l N

Soluble organic N (SNSO) 6.5 mg/l

Particulate organic N (XNSO) 8.5 mg/l

Parameters ˆ H 6 d

-1

ˆ A 0.77 d

-1

bH 0.18 d-1

bA 0.1 d d-1

KS 20 mg/l COD

KNH 1 mg/l NH4-N

YH 0.6 g-COD cells/g-substrateCOD

YA 0.24 mg COD cells/g-NH4-N

fD 0.2 g debrisCOD/g cells COD decayed

iNXB 0.087 g-N/g-cell COD

Objectives:

Effluent COD = SS < 10 mg/l

Effluent ammonia nitrogen = SNH < 0.3 mg/l

Effluent total inorganic nitrogen (TIN) = 10 mg/l

For adequate settling MLSS = XT < 3,000 mg/l or 4,260 mg/l as COD

Aerobic Tank

SNO,aer

Anoxic Tank

Q + QRAS

QRAS

MLR

Q+QRAS+MLR

Q + QRAS

QW

Page 2: Modified Ludzack Ettinger Example

Step 1. Find aer for aeration basin – nitrification will control

days).()..(.

.

)bK)bˆ(S(

SK

ANHAANH

NHNHaer 13

1011077030

301

Check Ss.

LCOD/mglCOD/mg.)))(.()((

))(.(

))b(ˆ(

)b(KS

HH

HSS 1090

131801136

13180120

1

1

Nitrogen available for nitrification, NO*/Q * Changed notation from “SNO/Q” to make it less confusing

NO/Q = (SNHO+SNSO+XNSO)-(iNXBYobs(SSO+XSO))-SNH

(assuming both soluble and particulate COD in influent is degraded and neglecting SS << SSO+XSO)

YH,obs = (1+0.2(0.18)13)0.6/(1+0.18(13)) = 0.26 g-cell-COD/g-substrate-COD

NO/Q = (25 + 6.5 + 8.5) – (0.087(115+150)0.26) – 0.3 mg/L N

NO/Q = 33.6 mg/l N

NO = 40,000 m

3/d(33.6 g/m

3) = 1.4 x 10

6 g-N/day available for denitrification

For denitrification design:

Assume anox = 3 d (influent is dilute, maximize available substrate and denitrification by using

generation of COD from decay)

MLE process: sys = 13 + 3 = 16 days

MLSSasCODgx)(.(

))(.)).(.)(d/m,(d

)b(

)SS(Y)bf)(Q(VX

H

SSOHsysHDsyssysT

7104161801

11515060161802010004013

11

3

XTVaer = ( aer/ sys XTVsys = (13/16) 4 x 107 = 3 x 10

7 g MLSS as COD

XTVanox = ( anox/ sys XTVsys = (3/16) 4 x 107 = 7.5 x 10

6 g MLSS as COD

Apply constraint: MLSS < 4,260 mg/l COD and assume MLSS equal in anoxic and aerobic tanks:

Vaer = 3 x 107/4260 = 7,000 m

3

Page 3: Modified Ludzack Ettinger Example

Vanox = 7.5 x 106/4260 = 1,800 m

3

Vsys = 7,000 + 1,800 = 8,800 m3

N/ SS,N = (1+0.18(3)-0.6(1+0.2(0.18)3))/(2.86(1+0.18(3)) = 0.2 g NO3-N/g-COD

N = 0.2(40000)(150) = 1.2 x 106 g NO3-N/d

where N = max amount of nitrate-nitrogen that can be denitrified as limited by available

influent soluble COD

fNO,D = N/(NO)

fNO,D = 1.2 x 106/1.4 x 10

6 = 0.86

= 0.86/(1-0.86) = 6

Let = 0.5

MLR = Q = 5.5(40,000) m3/d = 220,000 m

3/d

QRAS = Q = 0.5(40,000) m3/d = 20,000 m

3/d

Effluent nitrate nitrogen = SNO = (1 - fNO,D)NO/Q= 0.14(33.6) = 4.7 mg/L NO3-N

effluent TIN = NH4-N+NO3-N = 0.3+4.7 = 5 mg-TIN/L (meets permit)