Modelling Water Immersion Thawing Of Raw Tuna Fishes · 2018. 12. 4. · Modelling Water Immersion...

13
Modelling Water Immersion Thawing Of Raw Tuna Fishes S. Curet 1 , O. Rouaud 1 , J.M. Bonny 2 , L. Mazuel 2 1. ONIRIS, CNRS, GEPEA, UMR 6144, site de la Géraudière, Nantes, F44322, France 2. IVIA – IMoST UMR1240 INSERM/UCA, 58 rue Montalembert, Clermontferrand, F63000, France

Transcript of Modelling Water Immersion Thawing Of Raw Tuna Fishes · 2018. 12. 4. · Modelling Water Immersion...

  • Modelling Water Immersion Thawing Of Raw Tuna Fishes 

    S. Curet1, O. Rouaud1, J.M. Bonny2, L. Mazuel21. ONIRIS, CNRS, GEPEA, UMR 6144, site de la Géraudière, Nantes, F‐44322, France

    2. IVIA – IMoST UMR1240 INSERM/UCA, 58 rue Montalembert, Clermont‐ferrand, F‐63000, France

  • Context Geometry Governing equations Model validationConclusion/ Perspectives

    Thawing of large tuna fishes for the canning industry‐ energy‐hungry industrial process (air or water immersion techniques)

    ‐ Long thawing times‐ Thermal heterogeneities (core vs. surface)

    Need to predict accurately the temperaturedistribution inside the product (hot and cold spots)=> Ensuring microbial safety=> Reduction of fluid and energy consumption

  • Context Geometry Governing equations Model validationConclusion/ Perspectives

    MRI scans and image processing for COMSOL® modelling

    Extracted contour

    MRI scan

    x

    1 2 3 4 5 6

    7 8

    MATLAB® reconstruction of a STereoLithography file(. stl) for importation intoCOMSOL®

  • Context Geometry Governing equations Model validationConclusion/ Perspectives

    Mesh generation

    1 312 939 tetrahedral elementsElement sizes2.25 mm min.10 mm max.

    T3

    T2

    T1

    T3

    T2T1

    T3

    T2

    T1

  • Context Geometry Governing equations Model validationConclusion/ Perspectives

    Modelling heat transfer during thawing: Apparent specific heat approach

    = f (T)

    Cp = f (T)

    = f (T)

  • Context Geometry Governing equations Model validationConclusion/ Perspectives

    Boundary condition

    Uniform heat transfercoefficient (h) around the external surface of the product

    Time‐varying externaltemperature of the fluid

  • Context Geometry Governing equations Model validationConclusion/ Perspectives

    Boundary condition• Time‐varying external temperature of the fluid (air and water)

    Air tempering Water immersion thawing

  • Context Geometry Governing equations Model validationConclusion/ Perspectives

    Temperature profile during thawing (h= 20 W/m²/K)

    T3

    T2

    T1

    T (°C)

    Good agreement between predicted and measured temperatures

    Water immersion thawingAir tempering

  • Context Geometry Governing equations Model validationConclusion/ Perspectives

    Temperature profile during thawing (h= 20 W/m²/K)

    T3

    T2

    T1

    T (°C)

    Good agreement between predicted and measured temperatures

    Water immersion thawingAir tempering

    T (°C) at end of thawing (70h)

  • Context Geometry Governing equations Model validationConclusion/ Perspectives

    Generation of different‐sized fishes

  • Context Geometry Governing equations Model validationConclusion/ Perspectives

    Thawing time prediction vs. tuna length

    Air tempering Water immersion

    Linear increase of thawingtime vs. tuna length

  • Context Geometry Governing equations Model validationConclusion/ Perspectives

    Modelling thawing of real tuna fishes:• Successful reconstruction of the real geometry from MRI scanning techniques

    • Good prediction of inner temperatures of the fish during the process (tempering + thawing)

    • Extrapolation of results for different sized‐products

    • Future directions of the work will include the influence of the external temperature evolution on the thawing time prediction.

  • Context Geometry Governing equations Model validationConclusion/ Perspectives

    Thank you for your attention

    More information on poster n°102on Tuesday evening at 16:30