Modelling and Initialisation of a Distillation Column for ... · PDF fileIt is designed as an...

1
Modelling and Initialisation of a Distillation Modelling and Initialisation of a Distillation Column for the Separation of Binary Systems Column for the Separation of Binary Systems Simone Christa , Orestis Almpanis-Lekkas, Walter Wukovits Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria Contact: [email protected] Introduction Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria Contact: [email protected] Model Assumptions Introduction Distillation is an important separation process used in different industrial fields. Increasing requirements on Model Assumptions steady state: no material or energy accumulation on the trays no reaction terms D & different industrial fields. Increasing requirements on yields, product purity and economical feasibility require efficient models to analyse and predict system performances without time consuming and consideration of ideal trays: perfect mixing of the vapour and liquid phase thermal equilibrium for every component on each tray F & R & system performances without time consuming and complex investigations on real processes. The target of this work is to develop a mathematical model of a distillation column for binary systems. Due to the thermal equilibrium for every component on each tray no heat loss x L & y G & F & Equation Description p x p y = γ ϕ distillation column for binary systems. Due to the flexibility in the programming structure and the flowsheeting capability the implementation of this F i, x F & 1 - n i, 1 - n x L & n i, n y G & S & Equilibrium Component mass balance n i, n n i, n 1 - n i, 1 - n 1 n i, 1 F i, x L y G x L y G x F n + = + + + + & & & & & i i i i p x p y , 0 i = γ ϕ model took place within the environment of the gPROMS ModelBuilder. 1 n i, 1 + + y G n & n i, n x L & B & Summation condition Heat balance 1 , 1 1 , 1 , = = = = nc i n i nc i n i y x l v l v h L h G h L h G h F + = + + & & & & & Model Description The steady state column model for the separation of Process Initialisation Procedure Heat balance n n 1 1 - n 1 1 F l n v n l n v n n h L h G h L h G h F + = + + - + + & & & & & The steady state column model for the separation of binary mixtures is based on mass and energy balances. It is designed as an n-equilibrium stage model including a total condenser, a splitter and a reboiler . Process Initialisation Procedure The mass/energy balances and equilibrium conditions form a complex system of non-linear coupled equations. For the handling of this numerical challenge, an initialisation procedure is developed in regard to both, model robustness and including a total condenser, a splitter and a reboiler . For the calculation of the equilibrium state in each stage, the thermodynamic properties (e. g. enthalpies, flexibility in user defined specification. The following sequence of initialisation steps proved to be effective: Initial state Condenser Condenser Reboiler Stage equilibrium activities) of Multiflash are used. For the consideration of the deviation from ideal equilibrium state, the murphree efficiency and pressure drop can be Initial state equilibrium enthalpy balance equilibrium Stage equilibrium murphree efficiency and pressure drop can be defined. Murphree efficiency Pressure drop Reflux ratio Reboiler enthalpy balance Stage enthalpy balance Simulation Results To validate the model, simulation results of two different binary systems are cross-referenced with Aspen Plus. The reboiler and condenser data are added as stages in the graphics. To validate the model, simulation results of two different binary systems are cross-referenced with Aspen Plus. The reboiler and condenser data are added as stages in the graphics. a) C H OH / H O mixture a) C 2 H 5 OH / H 2 O mixture Specifications Feedflow [kg/h] 89000 Beer-Column profile (temperature and ethanol fractions) Rectification-Column profile (temperature and ethanol fractions) Feed Feedflow [kg/h] 89000 Concentration ethanol in feed [wt %] 0.08 Temperature feed [K] 308 0,8 0,9 1,0 373 378 fractions) 0,8 0,9 1,0 415 420 ethanol fractions) Pressure feed [mbar] 1000 Feed preheater Temperature [K] 368 Pressure [mbar] 2000 0,5 0,6 0,7 0,8 368 373 mole fraction [-] erature [K] 0,5 0,6 0,7 0,8 405 410 mole fraction [-] erature [K] Mixer Pressure [mbar] 2000 Recycle heater Temperature [K] 308 Pressure [mbar] 1000 0,2 0,3 0,4 358 363 ethanol m tempe 0,2 0,3 0,4 390 395 400 ethanol m tempe 0,0 0,1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 353 number of stages 0,0 0,1 1 2 3 4 5 6 7 8 9 10 11 12 385 390 number of stages Column specifications Number of trays [-] Feed tray location [-] Reflux ratio (mole based) [-] Distillate rate [kg/h] Condenser pressure [mbar] Pressure drop [mbar] Murphree efficiency [-] Activity coefficient model ASPEN temperature gPROMS temperature gPROMS vapour fr. ASPEN vapour fr. ASPEN liquid fr. gPROMS liquid fr. ASPEN temperature gPROMS temperature gPROMS vapour fr. ASPEN vapour fr. ASPEN liquid fr. gPROMS liquid fr. Beer-Column 13 3 1 19822 1000 200 1 NRTL Rectification-Column 10 7 9 9360 3500 500 1 NRTL b) CH 3 OH / H 2 O mixture Conclusion & Outlook Good accordance between the simulation results of gPROMS and Specifications Feed Feedflow [kg/h] 10000 Concentration methanol in feed [wt %] 0.05 Good accordance between the simulation results of gPROMS and ASPENplus The initialisation procedure is robust for different user defined specifications Temperature feed [K] 293 Pressure feed [mbar] 1013 Feed preheater Temperature [K] 313 Pressure [mbar] 1013 specifications Further validation of different binary systems 1,0 375 Column profile (temperature and methanol fractions) Pressure [mbar] 1013 References 0,7 0,8 0,9 1,0 365 370 375 -] Column specifications Number of trays [-] 10 A. Friedl, lecture notes for “Thermische Verfahrenstechnik 1“: course 159.731, version 3, Vienna University of Technology, 2000. R.H. Perry, D . W . Green & J. O. Maloney , Perry‘s Chemical Engineers‘ Handbook: 7th ed., 0,3 0,4 0,5 0,6 350 355 360 ol mole fraction [- mperature [K] Number of trays [-] 10 Feed tray location [-] 6 Reflux ratio (mole based) [-] 4.36 New York: VCH, 1997. K. Sattler, Thermische Trennverfahren: Grundlagen, Auslegung, Apparate, Cambridge: VCH Verlagsgesellschaft mbH, 1988. A. Schönbucher, Thermische Verfahrenstechnik: Grundlagen und 0,0 0,1 0,2 0,3 335 340 345 methano tem Reflux ratio (mole based) [-] 4.36 Distillate rate [kg/h] 473 Pressure drop [mbar] 0 A. Schönbucher, Thermische Verfahrenstechnik: Grundlagen und Berechnungsmethoden für Ausrüstungen und Prozesse. Berlin: Springer, 2002. 1 2 3 4 5 6 7 8 9 10 11 12 number of stages ASPEN temperature gPROMS temperature gPROMS vapour fr. ASPEN vapour fr. ASPEN liquid fr. gPROMS liquid fr. Pressure drop [mbar] 0 Activity coefficient model NRTL Advanced Process Modelling Forum 2014 London, United Kingdom, 2 3 April 2014 Advanced Process Modelling Forum 2014 London, United Kingdom, 2 3 April 2014

Transcript of Modelling and Initialisation of a Distillation Column for ... · PDF fileIt is designed as an...

Page 1: Modelling and Initialisation of a Distillation Column for ... · PDF fileIt is designed as an n-equilibrium stage model ... murphree efficiency and pressure drop can be equilibrium

Modelling and Initialisation of a Distillation Modelling and Initialisation of a Distillation

Column for the Separation of Binary SystemsColumn for the Separation of Binary Systems

Simone Christa, Orestis Almpanis-Lekkas, Walter Wukovits

Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria Contact: [email protected]

Introduction

Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria Contact: [email protected]

Model AssumptionsIntroductionDistillation is an important separation process used in

different industrial fields. Increasing requirements on

Model Assumptions• steady state: no material or energy accumulation on the trays

• no reaction termsD&different industrial fields. Increasing requirements on

yields, product purity and economical feasibility

require efficient models to analyse and predict

system performances without time consuming and

no reaction terms

• consideration of ideal trays:

� perfect mixing of the vapour and liquid phase

� thermal equilibrium for every component on each trayF&

R&

system performances without time consuming and

complex investigations on real processes. The target

of this work is to develop a mathematical model of a

distillation column for binary systems. Due to the

� thermal equilibrium for every component on each tray

• no heat loss

xL ⋅&yG ⋅&

F&

Equation Description

pxpy ⋅⋅=⋅⋅ γϕdistillation column for binary systems. Due to the

flexibility in the programming structure and the

flowsheeting capability the implementation of thisFi,

xF ⋅&

1-ni,1-nxL ⋅&

ni,nyG ⋅&

S&

Equilibrium

Component

mass balance

ni,nni,n1-ni,1-n1ni,1Fi,xLyGxLyGxF n ⋅+⋅=⋅+⋅+⋅

++&&&&&

iiii pxpy,0i

⋅⋅=⋅⋅ γϕ

flowsheeting capability the implementation of this

model took place within the environment of the

gPROMS ModelBuilder.1ni,1 ++

⋅ yGn&

ni,nxL ⋅&

B&

mass balance

Summation

condition

Heat balance

1,11

,

1

,== ∑∑

==

nc

i

ni

nc

i

ni yx

lvlv

hLhGhLhGhF ⋅+⋅=⋅+⋅+⋅ &&&&&

Model DescriptionThe steady state column model for the separation of Process Initialisation Procedure

Heat balance nn11-n11F

l

n

v

n

l

n

v

nn hLhGhLhGhF ⋅+⋅=⋅+⋅+⋅−++

&&&&&

The steady state column model for the separation of

binary mixtures is based on mass and energy balances.

It is designed as an n-equilibrium stage model

including a total condenser, a splitter and a reboiler.

Process Initialisation ProcedureThe mass/energy balances and equilibrium conditions form a complex system of non-linear coupled equations. For the

handling of this numerical challenge, an initialisation procedure is developed in regard to both, model robustness and

including a total condenser, a splitter and a reboiler.

For the calculation of the equilibrium state in each

stage, the thermodynamic properties (e.g. enthalpies,

flexibility in user defined specification. The following sequence of initialisation steps proved to be effective:

Initial stateCondenser Condenser Reboiler

Stage equilibriumstage, the thermodynamic properties (e.g. enthalpies,

activities) of Multiflash are used. For the consideration

of the deviation from ideal equilibrium state, the

murphree efficiency and pressure drop can be

Initial stateCondenserequilibrium

Condenserenthalpy balance

Reboilerequilibrium

Stage equilibrium

murphree efficiency and pressure drop can be

defined.Murphreeefficiency

Pressure drop Reflux ratioReboiler enthalpy

balanceStage enthalpy

balance

Simulation ResultsTo validate the model, simulation results of two different binary systems are cross-referenced with Aspen Plus. The reboiler and condenser data are added as stages in the graphics.To validate the model, simulation results of two different binary systems are cross-referenced with Aspen Plus. The reboiler and condenser data are added as stages in the graphics.

a) C H OH / H O mixturea) C2H5OH / H2O mixture

Specifications

Feedflow [kg/h] 89000

Beer-Column profile (temperature and ethanol

fractions)

Rectification-Column profile (temperature and

ethanol fractions)

Feed

Feedflow [kg/h] 89000

Concentration ethanol in

feed [wt %]0.08

Temperature feed [K] 3080,8

0,9

1,0

373

378

fractions)

0,8

0,9

1,0

415

420

ethanol fractions)

Pressure feed [mbar] 1000

Feed

preheater

Temperature [K] 368

Pressure [mbar] 2000 0,5

0,6

0,7

0,8

368

373

eth

an

ol m

ole

fra

ctio

n [

-]

tem

pe

ratu

re [

K]

0,5

0,6

0,7

0,8

405

410

eth

an

ol m

ole

fra

ctio

n [

-]

tem

pe

ratu

re [

K]

Mixer Pressure [mbar] 2000

Recycle

heater

Temperature [K] 308

Pressure [mbar] 1000 0,2

0,3

0,4

358

363

eth

an

ol m

ole

fra

ctio

n [

tem

pe

ratu

re [

K]

0,2

0,3

0,4

390

395

400

eth

an

ol m

ole

fra

ctio

n [

tem

pe

ratu

re [

K]

0,0

0,1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

353

number of stages

0,0

0,1

1 2 3 4 5 6 7 8 9 10 11 12

385

390

number of stages

Column specificationsNumber of

trays [-]

Feed tray

location [-]

Reflux ratio

(mole based)

[-]

Distillate

rate [kg/h]

Condenser

pressure

[mbar]

Pressure

drop [mbar]

Murphree

efficiency

[-]

Activity

coefficient

model

ASPEN temperature gPROMS temperature gPROMS vapour fr.

ASPEN vapour fr. ASPEN liquid fr. gPROMS liquid fr.

ASPEN temperature gPROMS temperature gPROMS vapour fr.

ASPEN vapour fr. ASPEN liquid fr. gPROMS liquid fr.

Beer-Column 13 3 1 19822 1000 200 1 NRTL

Rectification-Column 10 7 9 9360 3500 500 1 NRTL

b) CH3OH / H2O mixture

Conclusion & Outlook� Good accordance between the simulation results of gPROMS and

Specifications

Feed

Feedflow [kg/h] 10000

Concentration methanol in feed [wt %] 0.05

� Good accordance between the simulation results of gPROMS and

ASPENplus

� The initialisation procedure is robust for different user defined

specifications

FeedTemperature feed [K] 293

Pressure feed [mbar] 1013

Feed preheaterTemperature [K] 313

Pressure [mbar] 1013 specifications

� Further validation of different binary systems

1,0 375

Column profile (temperature and methanol fractions)

Feed preheaterPressure [mbar] 1013

References0,7

0,8

0,9

1,0

365

370

375

-]

Column specifications

Number of trays [-] 10A. Friedl, lecture notes for “Thermische Verfahrenstechnik 1“: course 159.731, version

3, Vienna University of Technology, 2000.

R.H. Perry, D.W. Green & J.O. Maloney, Perry‘s Chemical Engineers‘ Handbook: 7th ed.,0,3

0,4

0,5

0,6

350

355

360

me

tha

no

lmo

lefr

act

ion

[-

tem

pe

ratu

re [

K]

Number of trays [-] 10

Feed tray location [-] 6

Reflux ratio (mole based) [-] 4.36

R.H. Perry, D.W. Green & J.O. Maloney, Perry‘s Chemical Engineers‘ Handbook: 7th ed.,

New York: VCH, 1997.

K. Sattler, Thermische Trennverfahren: Grundlagen, Auslegung, Apparate, Cambridge:

VCH Verlagsgesellschaft mbH, 1988.

A. Schönbucher, Thermische Verfahrenstechnik: Grundlagen und

0,0

0,1

0,2

0,3

335

340

345

me

tha

no

l

tem

pe

ratu

re [

K]

Reflux ratio (mole based) [-] 4.36

Distillate rate [kg/h] 473

Pressure drop [mbar] 0

VCH Verlagsgesellschaft mbH, 1988.

A. Schönbucher, Thermische Verfahrenstechnik: Grundlagen und

Berechnungsmethoden für Ausrüstungen und Prozesse. Berlin: Springer, 2002.

1 2 3 4 5 6 7 8 9 10 11 12

number of stages

ASPEN temperature gPROMS temperature gPROMS vapour fr.

ASPEN vapour fr. ASPEN liquid fr. gPROMS liquid fr.

Pressure drop [mbar] 0

Activity coefficient model NRTL

Advanced Process Modelling Forum 2014 – London, United Kingdom, 2 – 3 April 2014Advanced Process Modelling Forum 2014 – London, United Kingdom, 2 – 3 April 2014