Modelling and Design of A 45nm SLC 3D NAND Flash CPLD Arijit Banerjee and Sergiu Mosanu Date:...

28
Modelling and Design of A 45nm SLC 3D NAND Flash CPLD Arijit Banerjee and Sergiu Mosanu Date: 5/15/2015

Transcript of Modelling and Design of A 45nm SLC 3D NAND Flash CPLD Arijit Banerjee and Sergiu Mosanu Date:...

Page 1: Modelling and Design of A 45nm SLC 3D NAND Flash CPLD Arijit Banerjee and Sergiu Mosanu Date: 5/15/2015.

Modelling and Design of A 45nm SLC 3D NAND Flash

CPLD

Arijit Banerjee and Sergiu MosanuDate: 5/15/2015

Page 2: Modelling and Design of A 45nm SLC 3D NAND Flash CPLD Arijit Banerjee and Sergiu Mosanu Date: 5/15/2015.

2

Device scaling has reached molecular dimensions

2D Moore’s law is about to end

3D can be an option to further device scaling

End of Moore’s Law and Future Technologies

Courtesy: ITRS 2012

Page 3: Modelling and Design of A 45nm SLC 3D NAND Flash CPLD Arijit Banerjee and Sergiu Mosanu Date: 5/15/2015.

3

Higher density Faster clock rates Lower in power 3D using stacked

silicon die connected using through silicon via (TSV)s

2.5D using silicon interposers

2.5D using heterogeneous die packaging

Monolithic 3D ICs: 3D NAND flash

3D IC: Adding a New Dimension

Courtesy: Yole Report 2007, and IEEE

Page 4: Modelling and Design of A 45nm SLC 3D NAND Flash CPLD Arijit Banerjee and Sergiu Mosanu Date: 5/15/2015.

4

Benefits Higher density Faster clock rates Lower in power Flexibility Re-configurability Lower cost for

prototyping Combining monolithic 3D

NAND flash in complex programmable logic device (CPLD) or FPGAs could drastically improve literal or logic density

3D FPGA

Courtesy: Xilinx.com

Page 5: Modelling and Design of A 45nm SLC 3D NAND Flash CPLD Arijit Banerjee and Sergiu Mosanu Date: 5/15/2015.

5

Revisiting Complex programmable logic devices (CPLD)

Modelling SLC NAND bitcell SLC NAND planes in 3D CPLDs 3D NAND array write, read and erase operations Circuit design for write, read and erase operations 3D configurable logic block (CLB) architecture 3D CPLD and FPGA architecture PPA of the CLB 3D NAND array physical design and visualization

Outline

Page 6: Modelling and Design of A 45nm SLC 3D NAND Flash CPLD Arijit Banerjee and Sergiu Mosanu Date: 5/15/2015.

6

CPLDs used for gluing multiple chips to interact Two programmable PLA planes for complex

programming The programmable planes can be replaced with

two 3D NAND flash planes to achieve higher logic density

Revisiting Complex Programmable Logic Devices (CPLD)

Page 7: Modelling and Design of A 45nm SLC 3D NAND Flash CPLD Arijit Banerjee and Sergiu Mosanu Date: 5/15/2015.

7

SLC bitcell has two states: 1 and 0 logically

Behaviorally modelled the FNT behavior for SLC bitcell write and erase operation using a Veriloga model, a VCVS and a HVT NMOS

Veriloga model senses the gate, source and body potential of the NMOS to generate a VCVS as V(N) that exactly mimics the storage bits, write and erase operation for SLC bitcell

Modelling an SLC NAND Bitcell in SPICE and Veriloga

D

G

S

B =

VerilogA model for

FNT behavior

+-G

V(G)

V(N)

V(N)D

S

B

Page 8: Modelling and Design of A 45nm SLC 3D NAND Flash CPLD Arijit Banerjee and Sergiu Mosanu Date: 5/15/2015.

8

As string is associated with a single bitline for write and read operation

The bitcells in the same page has the same wordline

Multiple pages forms a block or array which can be erased at the same time

Typical NAND Flash Array

……..

……..

……..

BL0

.

.

.

WLN

WLN-1

WL0

WL1

Wr, Rd, ErzI/O

GSL

SSL

BL1

.

.

.

Wr, Rd, ErzI/O

String

.

.

.

Wr, Rd, ErzI/O

BLM-1

Page

Block

.

.

.

Wr, Rd, ErzI/O

BLM

Page 9: Modelling and Design of A 45nm SLC 3D NAND Flash CPLD Arijit Banerjee and Sergiu Mosanu Date: 5/15/2015.

9

Each string is of 16 SLC bitcell

Each page in two NAND planes has 16 SLC bitcell per CLB in a distributed architecture

Right figure shows a centralized 3D NAND architecture

GSL lines are controlled inside the Bot I/O, but shown individually for simplicity

SLC NAND Planes in 3D CPLDs

……..

……..

……..

BL1

Page

String

Block

.

.

.

WLN

WLN-1

WL0

WL1

Wr, Rd, Erz

I/O topBL0

GSL0

.

.

.

Wr, Rd, Erz

I/O top

GSL1

.

.

.

Wr, Rd, Erz

I/O topBLM-1

GSLM-1

.

.

.

Wr, Rd, Erz

I/O topBLM

GSLM

Wr, Rd, Erz

I/O bot

Wr, Rd, Erz

I/O bot

Wr, Rd, Erz

I/O bot

Wr, Rd, Erz

I/O bot

Page 10: Modelling and Design of A 45nm SLC 3D NAND Flash CPLD Arijit Banerjee and Sergiu Mosanu Date: 5/15/2015.

10

Ideal Write and Read Operation in SLC 3D NAND Planes

WLN-1

VDDWR

VSS

WLM

VDDRD

VSS

GSL0

VDDRD

VSS

GSLM

VDDRD

VSS

BL0 VDDRD

VSS

BLM VDDRD

VSS

PREBVDDRD

VSS

Body=VSS

VDDRD

VSS

Write Read

……..

……..

……..

BL1

Page

String

Block

.

.

.

WLN =VDDRD

WLN-1=VDDWR

WL0=VDDRD

WL1=VDDRD

Wr, Rd, Erz

I/O top

BL0

GSL0=VDDRD

.

.

.

Wr, Rd, Erz

I/O top

GSL1=VSS

.

.

.

Wr, Rd, Erz

I/O top

BLM-1

GSLM-1=VSS

.

.

.

Wr, Rd, Erz

I/O top

BLM

GSLM=VSS

Wr, Rd, Erz

I/O bot

Wr, Rd, Erz

I/O bot

Wr, Rd, Erz

I/O bot

Wr, Rd, Erz

I/O bot

NAND Flash Write and Read Operation

Page 11: Modelling and Design of A 45nm SLC 3D NAND Flash CPLD Arijit Banerjee and Sergiu Mosanu Date: 5/15/2015.

11

Ideal Erase Operation in SLC 3D NAND Planes

GSLM

VDDRD

VSS

BLM

VDDWR

VSS

Erase

WLN VDDWR

VSS

Body=VSS

VDDWR

VSS

PREBVDDRD

VSS

STRENDM

VDDWR

VSS

……..

……..

……..

BL1=VDDWR

Block

.

.

.

WLN =VSS

WLN-1=VSS

WL0=VSS

WL1=VSS

Wr, Rd, Erz

I/O top

BL0=VDDWR

GSL0=VDDRD

.

.

.

Wr, Rd, Erz

I/O top

GSL1=VDDRD

.

.

.

Wr, Rd, Erz

I/O top

BLM-1=VDDWR

GSLM-1=VDDRD

.

.

.

Wr, Rd, Erz

I/O top

BLM=VDDWR

GSLM=VDDRD

Wr, Rd, Erz

I/O bot

Wr, Rd, Erz

I/O bot

Wr, Rd, Erz

I/O bot

Wr, Rd, Erz

I/O bot

NAND Flash Erase Operation

STREND0=VDDWR STREND1=VDDWR STRENDM-1=VDDWR STRENDM=VDDWR

BodyM=VDDWR

Page 12: Modelling and Design of A 45nm SLC 3D NAND Flash CPLD Arijit Banerjee and Sergiu Mosanu Date: 5/15/2015.

12

Actual Energy Efficient Write Read and Erase Waveforms @ 125MHz

Read

Write Read

Erase

Read

Page 13: Modelling and Design of A 45nm SLC 3D NAND Flash CPLD Arijit Banerjee and Sergiu Mosanu Date: 5/15/2015.

13

Top and Bot I/O generate the write, read and erase voltages

They also generate write waveforms as per the data in Bot I/O

Top and Bottom I/O for Write, Read and Erase Operations for SLC 3D NANAD

Array

WRRDDIN

CLK CLKBUFF

CLKBUFFERASEB

ERASEERASEB

Level Shifter INV

VDDRD VDDWR

VDDWR

ERASEB

ERASEB

GSL

VDDWR

ERASEB

ERASEB

Bod

ySTR

END

VDDRDVDDRDVDDRDVDDRDVDDRD

VDDRD VDDRD `̀

BOT IO

PREBERASE

VDDRD VDDWR

BL

ERASEERASEB

Level Shifter INV

VDDRD VDDWR

VDDRD VDDRD

TOP IO

Page 14: Modelling and Design of A 45nm SLC 3D NAND Flash CPLD Arijit Banerjee and Sergiu Mosanu Date: 5/15/2015.

14

Wordline driver generates all the necessary voltages for write, read and erase operation

Uses level converters and PMOS switches to change supply voltages

Wordline Driver for Write, Read and Erase Operations for SLC 3D

NANAD ArrayA2

VDDRDVDDRD

CLKBUFF

VDDRDVDDRD

A1A0

A3

.

.

.Decoder slices

DecSel

DecSel

VDDRD

CLKCLKB

DecSel

WRRD

VDDRD

ERASEB

WL

VDDWL

Level Shifter INV

VDDWLVDDRD

ERASEERASEB

Level Shifter INV

VDDRD VDDWRVDDWR

ERASEBUFF

VDDRD

VDDRDDecSelB

VDDRD

WRRDB WRLevel Shifter INV

VDDRD VDDWR

WRRDDecSel

RD

VDDRD

WRRDBWRRD

VDDWR VDDWR

WR RD

ERASEBUFF

VDDWL

.

.

.Wordline driver slices

Page 15: Modelling and Design of A 45nm SLC 3D NAND Flash CPLD Arijit Banerjee and Sergiu Mosanu Date: 5/15/2015.

15

3D Configurable Logic Block Architecture for CPLD and FPGAs

Lbus Driver

SLC NAND Plane

IO TOP Array

IO BOT Array

VDDRD

Bus Latch 8 bitsAddress Program

Decoder

8 bit Literal Bus (LBus) from

Input Connection Box

4 Bit Address Bus

16 bit LBus

16 bit WL Driver Output Pr

gm

16 bit WL Driver Final Output

VDDRDVDDRD

VDDRD

VDDRD

VDDRD VDDWR

VDDRD VDDWR

8 Bit Bitline Bus 8 Bit

Bitline Bus Out

SLC NAND Plane

IO TOP Array

IO BOT Array

VDDRD

Bus Latch 8 bits

VDDRD

VDDRD VDDWR

VDDRD VDDWR

8 Bit Bitline Bus8 Bit

Bitline Bus Out

Lbus Driver 16 bit LBus

16 bit WL Driver Output

Cfgss

VDDRDVDDRD

8 Bit Bitline Bus Out

DFF 8 bits

VDDRD 8 bit Out Bus to Output

Connection Box

8 Bit STREND Bus

8 Bit STREND Bus

Data[15:8]

Data[8:0]Prgm

Page 16: Modelling and Design of A 45nm SLC 3D NAND Flash CPLD Arijit Banerjee and Sergiu Mosanu Date: 5/15/2015.

16

CLB contains the 16X8 two 3D NAND planes

Routing cost is minimal for WL and BL routability

There can be mask cost overhead for the 3D NAND planes

There can be structural brittleness in the 3D NANDs with only two planes per CLB

Distributed 3D NAND architecture for 3D CPLD and FPGAs

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

Configurable logic block with the distributed SLC NAND PLANEs

Input connection box matrix

Output connection box matrix

Cross-point switch box matrix

\\

Page 17: Modelling and Design of A 45nm SLC 3D NAND Flash CPLD Arijit Banerjee and Sergiu Mosanu Date: 5/15/2015.

17

CLB contains no 3D NAND planes: all the NAND planes are centralized in the middle of the CPLD as a cluster

Routing cost is higher for WL and BL routability and may need extra area or metal options

The mask cost overhead for the 3D NAND planes is less as it is centralized

Structurally, it is less brittle in the 3D NAND centralize array planes

Centralized 3D NAND architecture for 3D CPLD and FPGAs

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

Configurable logic block with the centralized SLC NAND PLANEs

Input connection box matrix

Output connection box matrix

Cross-point switch box matrix

SLC NAND Array

Centralized SLC NAND Array

PLANEs

Page 18: Modelling and Design of A 45nm SLC 3D NAND Flash CPLD Arijit Banerjee and Sergiu Mosanu Date: 5/15/2015.

18

Used flexibility of 4 overlapping connection topology for Input and output connection boxes

Muxes are PMOS-NMOS transmission gate mux for passing the true logic levels

Total of 8X4=32 programmable connection per connection box to the CLBs

Input and Output Connection Boxes for 3D CPLD and FPGAs

(b) Output connection box and switch

track0

track1

track2

track3

S0

S0

S1

Out

Pass gate Mux 2:1

Pass gate Mux 2:1

Pass gate Mux 2:1

track0

track1

track2

track3

S0

S0

S1

In

Pass gate Mux 2:1

Pass gate Mux 2:1

Pass gate Mux 2:1

(a) Input connection box and switch

Page 19: Modelling and Design of A 45nm SLC 3D NAND Flash CPLD Arijit Banerjee and Sergiu Mosanu Date: 5/15/2015.

19

Switch box topology is simpler than the Planer and Wilton topology

Uses diagonal connections in the connection matrix

This topology makes the track lengths as 1 unit

Connections are made using transmission gate logic that uses distributed SRAMs to be programmed

Switch Box Architecture for 3D CPLD and FPGAs

Sb4

Sb

S2

Sb2

S0

Sb0Sb1S1

S3

Sb3

S5

Sb516 Top tracks

16 Bot tracks

16 L

eft tr

acks

16 R

ight

trac

ks

16X16 Switch Box Topology

Page 20: Modelling and Design of A 45nm SLC 3D NAND Flash CPLD Arijit Banerjee and Sergiu Mosanu Date: 5/15/2015.

20

Area per literal is 10X smaller using 3D NAND structures in monolithic 3D FLASH CPLDs than planer NAND CPLDs

Read, write and erase can be done up to 499MHz clock rate

Power numbers are also reasonable

PPA of 3D CPLD or FPGAs using monolithic 3D NAND Flash

TechnologySpeed Max

Read Power/Literal (mW)

Write Power/Literal (mW)

Erase Power(mW)

495MHz 51.53 44.65 66.49

SLC Planer NAND in CPLDs

SLC 3D NAND in CPLDs

Area Improvement

Area/Literal (μ2 / literal)

0.48 0.045 ~10X

Page 21: Modelling and Design of A 45nm SLC 3D NAND Flash CPLD Arijit Banerjee and Sergiu Mosanu Date: 5/15/2015.

21

Using of Autodesk Maya Maya Embedded Language (MEL) script

Visualization and design in 3D

Page 22: Modelling and Design of A 45nm SLC 3D NAND Flash CPLD Arijit Banerjee and Sergiu Mosanu Date: 5/15/2015.

22

Cylinder/pipe layer structure SiNW channel Insulator layer Charge trapping all-around

metal floating gates Dielectric layer Tunneling and control All-around metal gates

NAND string layer structure

Controldielectric

SiNW channel

Tunnelinginsulator

Chargetrapping

Metal gate

Controlinsulator

NAND string cross-section view

Page 23: Modelling and Design of A 45nm SLC 3D NAND Flash CPLD Arijit Banerjee and Sergiu Mosanu Date: 5/15/2015.

23

d=150 nms=150 nm

Controldielectric

SiNWchannel

Tunnelinginsulator

Chargetrapping

Metal gate

Controlinsulator

q

Bitlineoutput wire

Each bitline/wordline wired to mainboard Equal NAND string & plane spacing Bitlines on top, at an angle

Bitline and wordline wiring

Top view

Page 24: Modelling and Design of A 45nm SLC 3D NAND Flash CPLD Arijit Banerjee and Sergiu Mosanu Date: 5/15/2015.

24

8 NAND strings in a row form a NAND plane 2 NAND planes form a CLB containing 256 3D NAND

FGMOS CLB area: NAND String area:

Area/literal: Footprint with wires:

literal

Distributed 3D NAND planes in a CLB to full CPLD

Configurable Logic Block (CLB)

Page 25: Modelling and Design of A 45nm SLC 3D NAND Flash CPLD Arijit Banerjee and Sergiu Mosanu Date: 5/15/2015.

25

CPLD consists of CLBs Further wiring

optimizations are required

Centralized 3D NAND Buildings in a Full CPLD

Page 26: Modelling and Design of A 45nm SLC 3D NAND Flash CPLD Arijit Banerjee and Sergiu Mosanu Date: 5/15/2015.

26

3D Flash technology in CPLD and FPGAs can provide high literal density with the support of complex Boolean functions

Programming and block erase speed is higher Programming power consumption per literal

is less than 100mW at 495MHz Suffers from required read latching of data in

the CLB even when the implementation is combinatorial

Conclusions

Page 27: Modelling and Design of A 45nm SLC 3D NAND Flash CPLD Arijit Banerjee and Sergiu Mosanu Date: 5/15/2015.

27

[1] Moon, J.S.; Curtis, D.; Hu, M.; Bui, S.; Wheeler, D.; Marshall, T.; Sharifi, H.; Wong, D.; Gaskill, D.K.; Campbell, P.M.; Asbeck, P.; Jernigan, G.; Tedesco, J.; VanMil, B.; Myers-Ward, R.; Eddy, C.; Weng, X.; Robinson, J.; Fanton, M., "Self-aligned graphene-on-SiC and graphene-on-Si MOSFETs on 75 mm wafers," Device Research Conference (DRC), 2010 , vol., no., pp.209,210, 21-23 June 2010.

[2] Junho Cheon; Seongwook Choi; Young Jun Heo; Seok Ha Lee; Jaeheung Lim; Young June Park, "Fabrication of n-Type CNT Field-Effect Transistor Using Energy Band Engineering Layer Between CNT and Electrode," Electron Device Letters, IEEE , vol.34, no.11, pp.1436,1438, Nov. 2013.

[3] del Alamo, J.A., "InGaAs nanoelectronics: from THz to CMOS," Electron Devices and Solid-State Circuits (EDSSC), 2013 IEEE International Conference of , vol., no., pp.1,1, 3-5 June 2013.

[4] Mishra, A.; Pattanaik, M.; Sharma, V., "Double gate vertical tunnel FET for hybrid CMOS-TFET based low standby power logic circuits," Emerging Research Areas and 2013 International Conference on Microelectronics, Communications and Renewable Energy (AICERA/ICMiCR), 2013 Annual International Conference on , vol., no., pp.1,4, 4-6 June 2013.

[5] Zhenyu Sun; Xiuyuan Bi; Hai Li; Weng-Fai Wong; Xiaochun Zhu, "STT-RAM Cache Hierarchy With Multiretention MTJ Designs," Very Large Scale Integration (VLSI) Systems, IEEE Transactions on , vol.22, no.6, pp.1281,1293, June 2014.

[6] Kim, H.H.; Song, Y.J.; Lee, S.Y.; Joo, H.J.; Jang, N.W.; Jung, D.J.; Park, Y.S.; Park, S.O.; Lee, K.M.; Joo, S.H.; Lee, S.W.; Nam, S.D.; Kim, K., "Novel integration technologies for highly manufacturable 32 Mb FRAM," VLSI Technology, 2002. Digest of Technical Papers. 2002 Symposium on , vol., no., pp.210,211, 11-13 June 2002.

[7] Jing Xie; Yu Wang; Yuan Xie, "Yield-aware time-efficient testing and self-fixing design for TSV-based 3D ICs," Design Automation Conference (ASP-DAC), 2012 17th Asia and South Pacific , vol., no., pp.738,743, Jan. 30 2012-Feb. 2 2012.

[8] Palesko, C.; Palesko, A.; Vardaman, E.J., "Cost and yield analysis of multi-die packaging using 2.5D technology compared to fan-out wafer level packaging," Electronics System-Integration Technology Conference (ESTC), 2014 , vol., no., pp.1,5, 16-18 Sept. 2014.

[9] Qiao Chen; Suzuki, Y.; Kumar, G.; Sundaram, V.; Tummala, R.R., "Modeling, Fabrication, and Characterization of Low-Cost and High-Performance Polycrystalline Panel-Based Silicon Interposer With Through Vias and Redistribution Layers," Components, Packaging and Manufacturing Technology, IEEE Transactions on , vol.4, no.12, pp.2035,2041, Dec. 2014.

[10] Thomas, O.; Vinet, M.; Rozeau, O.; Batude, P.; Valentian, A., "Compact 6T SRAM cell with robust read/write stabilizing design in 45nm Monolithic 3D IC technology," IC Design and Technology, 2009. ICICDT '09. IEEE International Conference on , vol., no., pp.195,198, 18-20 May 2009.

[11] Panth, S.; Samadi, K.; Yang Du; Sung Kyu Lim, "High-density integration of functional modules using monolithic 3D-IC technology," Design Automation Conference (ASP-DAC), 2013 18th Asia and South Pacific , vol., no., pp.681,686, 22-25 Jan. 2013.

[12] Chang-Hong Shen; Jia-Min Shieh; Tsung-Ta Wu; Wen-Hsien Huang; Chih-Chao Yang; Chih-Jen Wan; Chein-Din Lin; Hsing-Hsiang Wang; Bo-Yuan Chen; Guo-Wei Huang; Yu-Chung Lien; Wong, S.; Chieh Wang; Yin-Chieh Lai; Chien-Fu Chen; Meng-Fan Chang; Chenming Hu; Fu-Liang Yang, "Monolithic 3D chip integrated with 500ns NVM, 3ps logic circuits and SRAM," Electron Devices Meeting (IEDM), 2013 IEEE International , vol., no., pp.9.3.1,9.3.4, 9-11 Dec. 2013.

[13] J.H. Lee et al., “Three-dimensional NAND Flash architecture design based on single-crystalline STacked ARray” in IEEE Transactions on electron devices, Vol. 59, No. 1, January 2012.

[14] B. Prince, “Vertical 3D memory technologies”, John Wiley and Sons Ltd 2014. [15] K.T. Park, et al. “Three-dimensional 128 Gb MLC vertical NAND Flash memory with 24-WL stacked layers and 50 MB/s high-speed programming”, in IEEE

journal of solid-state circuits, Vol. 50, No. 1 January 2015. [16] Furuta, F.; Matsumura, T.; Osada, K.; Aoki, M.; Hozawa, K.; Takeda, K.; Miyamoto, N., "Scalable 3D-FPGA using wafer-to-wafer TSV interconnect of 15

Tbps/W, 3.3 Tbps/mm2," VLSI Circuits (VLSIC), 2013 Symposium on , vol., no., pp.C24,C25, 12-14 June 2013. [17] Wolf, M.J.; Ramm, P.; Klumpp, A.; Reichl, H., "Technologies for 3D wafer level heterogeneous integration," Design, Test, Integration and Packaging of

MEMS/MOEMS, 2008. MEMS/MOEMS 2008. Symposium on , vol., no., pp.123,126, 9-11 April 2008. [18] Vaughn Betz , Jonathan Rose , Alexander Marquardt, "Architecture and CAD for Deep-Submicron FPGAs," Kluwer Academic Publishers, Norwell, MA, 1999. [19] Soofiani, J.S.; Masoumi, N., "Area efficient switch box topologies for 3D FPGAs," New Circuits and Systems Conference (NEWCAS), 2011 IEEE 9th

International , vol., no., pp.390,393, 26-29 June 2011.

References

Page 28: Modelling and Design of A 45nm SLC 3D NAND Flash CPLD Arijit Banerjee and Sergiu Mosanu Date: 5/15/2015.

28

Questions

THANK YOU!

GO HOOS!