Modellering av reparerbare systemer ved hjelp av ... - ESRAPresentation of data WMEP - The German...

23
Modellering av reparerbare systemer ved hjelp av Poisson-prosesser og deres utvidelser. En p˚ alitelighetsanalyse av vindturbiner. Bo Henry Lindqvist and Vaclav Slimacek Department of Mathematical Sciences Norwegian University of Science and Technology Trondheim [email protected] Fremtidens metoder for risikostyring, Norsk forening for Risiko- og p˚ alitelighetsanalyse, Universitetet i Oslo, 3. februar 2016 B. Lindqvist and V. Slimacek Modellering av reparerbare systemer

Transcript of Modellering av reparerbare systemer ved hjelp av ... - ESRAPresentation of data WMEP - The German...

Page 1: Modellering av reparerbare systemer ved hjelp av ... - ESRAPresentation of data WMEP - The German Wind Turbine Reliability Database Mathematical modeling Homogeneous Poisson process

Modellering av reparerbare systemer ved hjelp av

Poisson-prosesser og deres utvidelser.En palitelighetsanalyse av vindturbiner.

Bo Henry Lindqvist and Vaclav Slimacek

Department of Mathematical SciencesNorwegian University of Science and Technology

Trondheim

[email protected]

Fremtidens metoder for risikostyring,Norsk forening for Risiko- og palitelighetsanalyse,

Universitetet i Oslo, 3. februar 2016

B. Lindqvist and V. Slimacek Modellering av reparerbare systemer

Page 2: Modellering av reparerbare systemer ved hjelp av ... - ESRAPresentation of data WMEP - The German Wind Turbine Reliability Database Mathematical modeling Homogeneous Poisson process

Wind turbines: Smøla vindpark, Møre og Romsdal

B. Lindqvist and V. Slimacek Modellering av reparerbare systemer

Page 3: Modellering av reparerbare systemer ved hjelp av ... - ESRAPresentation of data WMEP - The German Wind Turbine Reliability Database Mathematical modeling Homogeneous Poisson process

Contents of talk

Presentation of data

WMEP - The German Wind Turbine Reliability Database

Mathematical modeling

Homogeneous Poisson process

Observed covariates

Continuous and factor covariates

Unobserved heterogeneity

Frailties

Concluding remarks

B. Lindqvist and V. Slimacek Modellering av reparerbare systemer

Page 4: Modellering av reparerbare systemer ved hjelp av ... - ESRAPresentation of data WMEP - The German Wind Turbine Reliability Database Mathematical modeling Homogeneous Poisson process

Paper

B. Lindqvist and V. Slimacek Modellering av reparerbare systemer

Page 5: Modellering av reparerbare systemer ved hjelp av ... - ESRAPresentation of data WMEP - The German Wind Turbine Reliability Database Mathematical modeling Homogeneous Poisson process

WMEP - The German Wind Turbine Reliability Database(Fraunhofer)

German onshore turbines

failure stops between 1989-2009

14853 events were considered

773 different wind turbines

402 different wind farms

6 different manufacturers

24 different rated powers

B. Lindqvist and V. Slimacek Modellering av reparerbare systemer

Page 6: Modellering av reparerbare systemer ved hjelp av ... - ESRAPresentation of data WMEP - The German Wind Turbine Reliability Database Mathematical modeling Homogeneous Poisson process

Summary statistics

min 1st Q median mean 3rd Q max

betw fail (days) 15.00 47.00 110.00 234.62 274.00 4011.00obs length (yrs) 4.26 10.01 10.19 10.75 10.98 17.39turb fail per yr 0.00 0.60 0.98 1.31 1.80 7.80

Failures which occurred within 2 weeks from the previousfailure were deleted during the preprocessing of the data.

These deleted failure times are considered to be caused byprevious failures which were not properly fixed

Overall, 3528 such failures (out of 9900), distributed over thewhole observation period, were omitted.

B. Lindqvist and V. Slimacek Modellering av reparerbare systemer

Page 7: Modellering av reparerbare systemer ved hjelp av ... - ESRAPresentation of data WMEP - The German Wind Turbine Reliability Database Mathematical modeling Homogeneous Poisson process

Mathematical modeling: notation

Consider m independent repairable systems (wind turbines). Thejth system is observed for a length of time τj , with nj failuresobserved at times tij (j = 1, . . . ,m, i = 1, . . . , nj) measured fromstart at time 0.

B. Lindqvist and V. Slimacek Modellering av reparerbare systemer

Page 8: Modellering av reparerbare systemer ved hjelp av ... - ESRAPresentation of data WMEP - The German Wind Turbine Reliability Database Mathematical modeling Homogeneous Poisson process

Mathematical modeling: Homogeneous Poisson process

Homogeneous Poisson Process (HPP):

ROCOF (rate of occurrence of failures) is constant, λ = a

Times between failures are exponentially distributed

MTBF = 1/a

Estimate of a: Number of failures divided by total time.

Extension 1: Observable differences through covariates

ROCOF = a exp(β′x), where x is a vector of covariatemeasurements (e.g., environmental variables), andβ′x = β1x1 + β2x2 + . . . βpxp .

Thus, an increase of x1 by 1 unit means to multiply theROCOF by eβ1 , etc.

Idea: a is a basic rate common for all systems; the covariatevector x differs from system to system; the βj describe the effect ofeach single covariate xj .

B. Lindqvist and V. Slimacek Modellering av reparerbare systemer

Page 9: Modellering av reparerbare systemer ved hjelp av ... - ESRAPresentation of data WMEP - The German Wind Turbine Reliability Database Mathematical modeling Homogeneous Poisson process

Observed covariates: Harshness of environment

For each turbine is calculatedx = average number of stops because of external naturalfactors (lightning, high wind, icing) per year.(Note: those stops were not considered as failures)histogram of values on the leftspatial distribution on the right

B. Lindqvist and V. Slimacek Modellering av reparerbare systemer

Page 10: Modellering av reparerbare systemer ved hjelp av ... - ESRAPresentation of data WMEP - The German Wind Turbine Reliability Database Mathematical modeling Homogeneous Poisson process

Observed covariates: Size and power

Rated power, rotor diameter and nacelle height are stronglycorrelated:

B. Lindqvist and V. Slimacek Modellering av reparerbare systemer

Page 11: Modellering av reparerbare systemer ved hjelp av ... - ESRAPresentation of data WMEP - The German Wind Turbine Reliability Database Mathematical modeling Homogeneous Poisson process

... use instead a factor covariate Type of turbine

This is a factor covariate with 36 combinations, obtained bycombining rated power and manufacturer and hence alsocovering differences between technical concepts. Reference type(value 1) is red circle to the left.

0.05 0.10 0.20 0.50 1.00

0.2

0.5

1.0

2.0

5.0

10.0

20.0

Effect of type and rated power

rated power [MW]

effe

ct to

RO

CO

F

A B C D E F

B. Lindqvist and V. Slimacek Modellering av reparerbare systemer

Page 12: Modellering av reparerbare systemer ved hjelp av ... - ESRAPresentation of data WMEP - The German Wind Turbine Reliability Database Mathematical modeling Homogeneous Poisson process

Explanation: Factor covariates

A factor covariate is a categorical variable that can take anumber of values or levels, where we estimate themultiplicative effect (eβ) of each level with respect to areference level.

Covariates are otherwise continuous measurements x ,where the effect on the hazard is of the multiplicative formeβx where x varies.

B. Lindqvist and V. Slimacek Modellering av reparerbare systemer

Page 13: Modellering av reparerbare systemer ved hjelp av ... - ESRAPresentation of data WMEP - The German Wind Turbine Reliability Database Mathematical modeling Homogeneous Poisson process

Factor covariate: installation year

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Effect of installation dateef

fect

to R

OC

OF

1989 1990 1991 1992 1993 1994 1995 1996+

year of installation

Relative effect on ROCOF of year of installation (together with95% confidence intervals) with respect to the reference year 1989.

B. Lindqvist and V. Slimacek Modellering av reparerbare systemer

Page 14: Modellering av reparerbare systemer ved hjelp av ... - ESRAPresentation of data WMEP - The German Wind Turbine Reliability Database Mathematical modeling Homogeneous Poisson process

Seasonal effect

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Seasonal effects

Janu

ary

Feb

ruar

y

Mar

ch

Apr

il

May

June

July

Aug

ust

Sep

tem

ber

Oct

ober

Nov

embe

r

Dec

embe

r

month of the year

effe

ct to

RO

CO

F

Relative effect of season (together with 95% confidence intervals)with respect to the reference month January.

B. Lindqvist and V. Slimacek Modellering av reparerbare systemer

Page 15: Modellering av reparerbare systemer ved hjelp av ... - ESRAPresentation of data WMEP - The German Wind Turbine Reliability Database Mathematical modeling Homogeneous Poisson process

Extension 2: Modeling of seasonal effect

Let, e.g., January be reference month and estimatemultiplicative change in ROCOF for each month relative toJanuary.

Techincally, in the model we multiply the ROCOF by a factor

exp

(

12∑

s=2

δs Is(t)

)

, where Is(t) is an indicator function of the

sth month, i.e., equals 1 if the calendar time corresponding tot is in the sth month and 0 otherwise.

Then eδs , s = 2, . . . , 12 represent the multiplicative change ofthe ROCOF for each month.

Remark that this makes the Poisson process nonhomogeneous(NHPP) with a ROCOF cyclically changing over the year.

B. Lindqvist and V. Slimacek Modellering av reparerbare systemer

Page 16: Modellering av reparerbare systemer ved hjelp av ... - ESRAPresentation of data WMEP - The German Wind Turbine Reliability Database Mathematical modeling Homogeneous Poisson process

Confirmation of results on climatic causes for failures...

Frequency of external conditions as a cause of failure. Source:WMEP 2006

B. Lindqvist and V. Slimacek Modellering av reparerbare systemer

Page 17: Modellering av reparerbare systemer ved hjelp av ... - ESRAPresentation of data WMEP - The German Wind Turbine Reliability Database Mathematical modeling Homogeneous Poisson process

Extension 3: Unobserved heterogeneity

Covariates represent observable differences between systems.There may also be unobservable differences (but why should wecare about those...?)

Multiply ROCOF by a “modifying factor” z , averaging to 1,leading to ROCOF = z a exp(β′x)

z represents the so called frailty of the corresponding system,which is unobservable (while x as before is observable).

the frailty is assumed to vary independently from system tosystem (usually modeled by a gamma-distribution withexpected value 1 and a variance α that can be estimated).

individual frailties z may be estimated from data

Idea: Systems of the same kind may well exhibit different failurepatterns because of external unobserved sources such as differingenvironmental conditions, differing maintenance philosophies, ordiffering quality of operators/equipment.

B. Lindqvist and V. Slimacek Modellering av reparerbare systemer

Page 18: Modellering av reparerbare systemer ved hjelp av ... - ESRAPresentation of data WMEP - The German Wind Turbine Reliability Database Mathematical modeling Homogeneous Poisson process

Individual estimated frailties

Histogram of Zj^

Zj^

Den

sity

0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

gamma distribution of unobserved effects

B. Lindqvist and V. Slimacek Modellering av reparerbare systemer

Page 19: Modellering av reparerbare systemer ved hjelp av ... - ESRAPresentation of data WMEP - The German Wind Turbine Reliability Database Mathematical modeling Homogeneous Poisson process

Can frailties replace covariates?

Comparison of estimates of individual frailties grouped by ratedpower and represented by box plots for model with and withoutcovariates

B. Lindqvist and V. Slimacek Modellering av reparerbare systemer

Page 20: Modellering av reparerbare systemer ved hjelp av ... - ESRAPresentation of data WMEP - The German Wind Turbine Reliability Database Mathematical modeling Homogeneous Poisson process

Some mathematicsFinal model for ROCOF of jth system:

λj (t) = zja exp(

β′xj)

exp

(

12∑

s=1

δs Is(t)

)

Likelihood for jth system conditional on the value of zj :

Lj(zj) =

nj∏

i=1

λj(tij) exp

(

∫ τj

0

λj(u)du

)

Likelihood for jth system after averaging over the distribution of zjusing a gamma-distributon with expected value 1 and variance α:

Lj =Γ(

nj +1

α

)

α1

αΓ(

1

α

)

anj exp(

njβ′xj)

exp

(

12∑

s=1

δsus,j

)

(

a exp(

β′xj)

12∑

s=1

exp (δs) vs,j +1

α

)nj+1

α

where us,j is the number of failures experienced by system j inmonth s and vs,j is the total time spent in month s.

B. Lindqvist and V. Slimacek Modellering av reparerbare systemer

Page 21: Modellering av reparerbare systemer ved hjelp av ... - ESRAPresentation of data WMEP - The German Wind Turbine Reliability Database Mathematical modeling Homogeneous Poisson process

Some mathematics (cont.)

The total likelihood of the data is

L =m∏

j=1

Lj

which after maximization gives the maximum likelihood estimatesof the unknown parameters a, α, and the coefficients βi and δs .

Standard errors and confidence intervals of the estimates can becomputed using standard maximum likelihood theory.

The unobserved individual frailties zj can finally be estimated withthe use of an empirical Bayes approach, giving

zj =nj +

1

α(

a exp(

β′

xj

) 12∑

s=1

exp(

δs

)

vs,j +1

α

)nj+1

α

B. Lindqvist and V. Slimacek Modellering av reparerbare systemer

Page 22: Modellering av reparerbare systemer ved hjelp av ... - ESRAPresentation of data WMEP - The German Wind Turbine Reliability Database Mathematical modeling Homogeneous Poisson process

Concluding remarks

Starting from a homogeneous Poisson process we have introduced

Effect of covariates

Harshness of environment - turns out to have a significanteffect on ROCOFFactor covariate for rated power and manufacturer - significantdifferences found; ROCOF increases with rated powerFactor covariate for installation year - strongly decreasingROCOF is interepreted as improved technology

Effect of season

Modifying model for ROCOF with respect to monthly changesfrom January

Unobserved heterogeneity

Introduction of frailties improves model fit and interpretativepowerIndividual frailties can be viewed as representing effect ofmissing covariates

B. Lindqvist and V. Slimacek Modellering av reparerbare systemer

Page 23: Modellering av reparerbare systemer ved hjelp av ... - ESRAPresentation of data WMEP - The German Wind Turbine Reliability Database Mathematical modeling Homogeneous Poisson process

Solnedgang i Smøla vindpark

Thank you!

B. Lindqvist and V. Slimacek Modellering av reparerbare systemer