MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : -...

33
MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete SES BENCH – OCT. 27 - NOV. 2 2012 O. Bildstein, P. Thouvenot, J.E. Lartigue, I. Pointeau CEA (French Alternative Energies and Atomic Energy Commission) B. Cochepin, I. Munier ANDRA (French Radioactive Waste Management Agency) 27 juin 2022 | PAGE 1 CEA | 10 AVRIL 2012

Transcript of MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : -...

Page 1: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

MODELING REACTIVE

TRANSPORT IN NUCLEAR WASTE

GEOLOGICAL DISPOSAL:

2 benchmark problems :

- Glass/iron/clay interactions

- Atmospheric Carbonation of

concrete

SES BENCH – OCT. 27 - NOV. 2 2012

O. Bildstein, P. Thouvenot, J.E. Lartigue, I. Pointeau

CEA (French Alternative Energies and Atomic Energy Commission)

B. Cochepin, I. Munier ANDRA (French Radioactive Waste Management Agency)

20 avril 2023 | PAGE 1CEA | 10 AVRIL 2012

Page 2: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

DISPOSAL CONCEPT IN A CLAYSTONE FORMATION AT 500 m DEPTH

Current design of deep underground repository for high and intermediate level long-lived waste

S.S.BENCH - November 16-18. 2011

SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 2

Page 3: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

Just a few words aboutthe glass/iron/clay

benchmark…

S.S.BENCH - November 16-18. 2011

DRD/EAP/11-0219

Page 4: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

HLW DISPOSAL CELL

20 avril 2023 5th Andra International Conference - Montpellier | 22 Oct 2012 | PAGE 4

• different types of material in physical contact, technological gaps

long term calculations of geochemical evolution (100 000 years)

Vitrified wastepackages

Cross section

3 cm gap steel liner

disposal package

0.8 cm gap

3 cm gap

scale

Page 5: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

• 1D radial domain

• transport: diffusion only

• water saturated, constant porosity

• glass

Φ = 0.42 m, H = 1 m

porosity = 0.12

• metallic components

total thickness = 0,095 m,

porosity = 0.25

• connected fractured zone

0.4 * excavation diameter = 0.268 m

porosity = 0.20; Deff(25°C) = 5.2 10-11 m2/s

• undisturbed claystone (50 m)

porosity = 0.18; Deff(25°C) = 2,6 10-11 m2/s

GEOMETRY AND TRANSPORT PROPERTIES

argilites (50 m – 183 cells)

glass (21cm – 21 cells)

overpack + lining + gaps

(13,8cm – 14 cells)

5th Andra International Conference - Montpellier | 22 Oct 2012 | PAGE 5

- reactive-transport codes: Crunch/Hytec

Isothermal conditions

- H2(g) produced from anoxic corrosion p(H2)max = 60 bar

Page 6: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

RESULTS IN THE BASE CASE (2)

20 avril 2023 5th Andra International Conference - Montpellier | 22 Oct 2012 | PAGE 6

Corrosion products (volume%, 45 000 yrs, end of corrosion)

magnetite, Ca-siderite, and greenalite dominate

(oxide) (carbonte) (silicate)

also smaller amounts of aluminosilicates

(nontronites and saponites)

no significant changes after corrosion phase

POROSITY CLOGGING

modeling vs. experimental results (Schlegel at al. 2007)

iron/claystone at 90°C for 1 year small amount of magnetite

siderite(-Ca), Fe-silicates

more phenomenological model for corrosion

Canister zone

0,1 µm

Page 7: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

Now to theconcrete carbonation

benchmark…

S.S.BENCH - November 16-18. 2011

DRD/EAP/11-0219

Page 8: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

DESIGN: ILLW CELLS, SHAFTS (AND SEALS), ILLW DISPOSAL OVERPACK

Atmospheric carbonation of overpack during the operating period

S.S.BENCH - November 16-18. 2011

SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 8

• Bitumized waste• Compacted metallic waste• Organic waste

Page 9: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

CARBONATION ISSUE FOR RADWASTE DISPOSAL

S.S.BENCH - November 16-18. 2011

SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 9

Ventilation (100 years)

Page 10: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

DRYING AND CARBONATION PROCESSES OF ILLW OVERPACK

S.S.BENCH - November 16-18. 2011

Dry air

(Rh = 40 %)

T = 25°C to 50°C

SlWater vapor diffusion

CO2 gas diffusion

T

Aqueous diffusion of reactants

Two phase water/air flow

Dissolution/precipitation : porosity reduction, permeability variations

Brine formation

CO2 gas dissolution

Dry air

(Rh = 40 %)

T = 25°C to 50°C

SlWater vapor diffusion

CO2 gas diffusion

T

Aqueous diffusion of reactants

Two phase water/air flow

Dissolution/precipitation : porosity reduction, permeability variations

Brine formation

CO2 gas dissolution

SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 10

Page 11: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

MODELING ISSUES

S.S.BENCH - November 16-18. 2011

SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 11

• CO2 gas diffusion and reactivity

Page 12: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

MODELING ISSUES

S.S.BENCH - November 16-18. 2011

SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 12

benchmark emphasizes the coupling aspects

• CO2 gas diffusion and reactivity

Page 13: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

GEOMETRY

1D Cartesian – 5.5 cm divided in 11 x 5 mm cells

Boundary conditions (EOS 4)

S.S.BENCH - November 16-18. 2011

Concrete

Symmetry axis

Dry air Dry air

Wall package 110 mm

SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 13

Page 14: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

CASE 1DRYING OF CONCRETE OVERPACK

S.S.BENCH - November 16-18. 2011

DRD/EAP/11-0219

Page 15: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

DRYING PHENOMENON (TOUGHREACT EOS4)

Flow law: Generalized Darcy law

Lowering of the dew point due to capillary effects (Kelvin equation in EOS 4)

Water relative permeability (Van Genuchten)

Gas relative permeability (Corey)

Klinkenberg effect (gas flow at low pressure)

S.S.BENCH - November 16-18. 2011

)(

gPkkF r

))(ln()( lrw

wrcap ShM

RThP

21

11)(

m

mrrrrl SSSk

lrls

lrlr SS

SSS

22 ˆ1ˆ1 SSk rg grlr

lrl

SS

SSS

1

ˆ

rgg kp

kk

1int

SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 15

Page 16: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

DRYING PHENOMENON (TOUGHREACT)

Air and water gases diffusion

CO2 and other gases

Aqueous diffusion

Effective diffusion

Tortuosity

S.S.BENCH - November 16-18. 2011

15,273

15,273,, 000,,0,,0

T

P

PTPdTPd ii

M

RT

PNd

RTd i

8

23 2,,0

TR

Edd a

KOHi

1

15,298

1exp15,298,,,0 2

SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 16

0,,0, ii dD

baS 0

Page 17: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

DRYING PHENOMENON (TOUGHREACT)

Air and water gases diffusion

CO2 and other gases

Aqueous diffusion

Effective diffusion

Tortuosity

S.S.BENCH - November 16-18. 2011

15,273

15,273,, 000,,0,,0

T

P

PTPdTPd ii

M

RT

PNd

RTd i

8

23 2,,0

TR

Edd a

KOHi

1

15,298

1exp15,298,,,0 2

0,,0, ii dD

baS 0

SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 17

Page 18: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

DRYING PHENOMENON : PARAMETERS IN REFERENCE CASE

BHP CEM I

S.S.BENCH - November 16-18. 2011

ROCK1

Density (kg/m3) 2700

Porosity 0.12

Intrinsic permeability to liquid (m²) 1e-19

Intrinsic permeability to gas (m²) 1e-17

Relative permeability m – Slr – Sls - Sgr

0.424 – 0.0 – 1.0 – 0.0

Capillarity pressurem – P0 (MPa) – Pmax (MPa) 0.424 – 15 - 1500

Molecular diffusion coefficient in gaseous phase (m²/s)

2.4e-5

Molecular diffusion coefficient in aqueous phase (m²/s)

1.9e-9

Millington-Quirk a parameter 2

Millington-Quirk b parameter 4.2

Klinkenberg parameter (MPa) 0.45

SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 18

Page 19: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

RESULTS

S.S.BENCH - November 16-18. 2011

Drying results

SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 19

Page 20: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

RESULTS with RICHARDS’ EQUATION

S.S.BENCH - November 16-18. 2011

Drying results

SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 20

OK to use Richards’ equation for benchmarking exercise

Page 21: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

CASE 2CARBONATION WITH CONSTANT SATURATION

S.S.BENCH - November 16-18. 2011

DRD/EAP/11-0219

Page 22: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

PHENOMENOLOGY

Constant saturation but unsaturated + diffusion of gas

S.S.BENCH - November 16-18. 2011

Sliq = 0.3

CO2 gas diffusion

Diffusion of aqueous species

Dry AirRH = 60%

25°CpH = 13

CO2 dissolution

Precipitation/dissolution reactions

Sliq = 0.3

CO2 gas diffusion

Diffusion of aqueous species

Dry AirRH = 60%

25°CpH = 13

CO2 dissolution

Precipitation/dissolution reactions

Sliq = 0.3

CO2 gas diffusion

Diffusion of aqueous species

Dry AirRH = 60%

25°CpH = 13

CO2 dissolution

Precipitation/dissolution reactions

SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 22

Page 23: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

CHEMICAL PARAMETERS

Primary phases

Secondary phases

Kinetics of dissolution / precipitation

nnnn Akr 1

15,298

11exp15,298 TR

EkTk a

n

Phase Volume %

Calcite 72.12

Portlandite 5.73

CSH 1.6 13.76

Monocarboaluminate 2.26

Ettringite 3.60

Hydrotalcite 0.39

Hydrogarnet-Fe (C3FH6) 2.05

Phase type Phases

Oxides Magnetite, Amorphous silica 

Hydroxides Brucite, Gibbsite, Fe(OH)3 

Sheet silicates Sepiolite

Other silicates CSH 1.2, CSH 0.8, Straetlingite, Katoite_Si

Sulfates, chlorides, other salts Gypsum, Anhydrite, Burkeite, Syngenite, Glaserite, Arcanite, Glauberite, Polyhalite

Carbonates Calcite, Nahcolite

Other Hydrotalcite-CO3, Ettringite, Dawsonite

Page 24: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

CHEMICAL PARAMETERS

Primary and Secondary phases characteristics

Phase Kinétic

Constant (298.15 K)

Activation Energy

(kJ.mol-1)

Specific Surface (m2.g-1)

C3FH6 1 10-12 30 1

Calcite 1.6 10-6 23.4 1

CSH 0.8 1.6 10-9 50 1

CSH 1.2 1.6 10-9 50 1

CSH 1.6 1.6 10-9 30 1

Ettringite 1.6 10-9 30 1

Gibbsite_am 1.6 10-9 30 1

Gypsum 1.6 10-5 20 1

Hydrotalcite 1.6 10-9 30 1

Iron Hydroxyde 1.6 10-8 30 10

Monocarboaluminate 1.6 10-9 10 1

Portlandite 1.6 10-8 20 1

Sépiolite 1.6 10-12 50 10

Amorphous SiO2 1.6 10-9 30 1

Straetlingite 1.6 10-9 50 1

SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 24

Page 25: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

CASE 3FULLY COUPLED CARBONATION

S.S.BENCH - November 16-18. 2011

DRD/EAP/11-0219

Page 26: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

Input parameters

Page 27: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

CARBONATION RESULTS

pH decrease, portlandite dissolution and calcite formation over a thickness of about 2 cm after 100 years

Page 28: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

CARBONATION RESULTS

Dissolution of CSH 1.6, ettringite, monocarboaluminate and hydrotalcite on 2 cm after 100 years

Precipitation of CSH 1.2, CSH 0.8, straetlingite, amorphous silica and gypsum on the same thickness

Precipitation of small amounts of sepiolite, gibbsite and katoïte-Si is also predicted

Page 29: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

CARBONATION: CPU CONCERNS…

CO2 diffusion (gas phase) and reactivity are very fast!

No SIA small time steps CPU times go up!

Page 30: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

POSSIBLE EXTENSION:SATURATION DEPENDENT REACTIVITY

Considerable reduction in the amplitude of carbonation (less dissolution of portlandite and CSH 1.6 and less precipitation of amorphous silica and other secondary CSH)

Lower reactivity accompanied by a greater penetration of carbonation front due to lower consumption of CO2 at the surface

Effect of water content on reactivity (Bazant type function)

Page 31: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

CONCLUSIONS

Drying process of 11 cm thick waste packages depends strongly on the concrete nature and slightly on the flow model (Richards or full multiphase)

Considering full multiphase model, carbonated depth is about 2 cm after 100 years for the Intermediate Performance Concrete. degraded thickness is totally carbonated (total dissolution of primary mineral phases)

If we consider a chemical reactivity depending on the liquid saturation (Bazant type function), a considerable reduction in the amplitude of carbonation and a greater penetration of carbonation front are observed.

Progress areas include:

• taking into consideration a protective effect of secondary minerals

• improving knowledge on kinetics parameters and thermodynamic data, especially for CSH with low Ca/Si ratio

• coupling this system with corrosion of rebars

Page 32: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

NUMERICAL RESOURCES

S.S.BENCH - November 16-18. 2011

SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 32

And now: - EOS9- Crunchflow- Hytec- … more?

Page 33: MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete.

Direction de l’Energie Nucléaire

Département des Technologies

Nucléaires

Service de Modélisation des Transferts et

de Mesures Nucléaires

Commissariat à l’énergie atomique et aux énergies alternatives

Centre de Cadarache | 13108 Saint Paul-lez-Durance

T. +33 (0)4 42 25 37 24 | F. +33 (0)4 42 25 62 72

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 01920 avril 2023

| PAGE 33

CEA | 10 AVRIL 2012

AcknowlegementToughreact development team (LBNL)

C. Steefel (LBNL, Crunchflow)

Hytec developement team (Mines Paristech, PGT consortium) for technical support on codes

THANK YOU FOR YOUR ATTENTION