Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

152
Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

description

Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam. Introduction Frequently, researchers are faced with the question of how to optimally utilize longitudinal data E.g., one may have collected data on children’s cognitive abilities, at ages 10, 12, 14, 16, and 18 - PowerPoint PPT Presentation

Transcript of Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Page 1: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Modeling longitudinal data

Sanja FranićVrije Universiteit Amsterdam

Page 2: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Introduction

Frequently, researchers are faced with the question of how to optimally utilize longitudinal data

E.g., one may have collected data on children’s cognitive abilities, at ages 10, 12, 14, 16, and 18

Some of the possible questions:

Page 3: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Introduction

How large is the role of factors that act in concert across different time points to cause the observed stability of the variable of interest over time?

How large is the role of those factors that cause individual differences specific to a certain time point?

Is there a stabile driving force behind the growth or decline of a trait over time, or do novel factors relevant to the trait emerge at different time points? If so, how to detect and quantify them?

Page 4: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Introduction

How well can a trait at a certain time point be predicted from a measurement at the preceding time point?

How much do individuals differ in the starting level of the variable of interest (e.g., in mathematical skills prior to formal education)?

How much do individuals differ in their speed of growth or decline over time?

Does the development of a skill follow a linear curve, or is there non-linear change?

Page 5: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Introduction

In today’s workshop, we will cover several types of models aimed at addressing the above questions

Page 6: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Overview

Cholesky decomposition Simplex model Latent growth curve model

Page 7: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Example

You’ve collected longitudinal data on IQ. You applied the Wechsler Intelligence Scale for Children (WISC) at ages 10, 12, 14, and 16.

Page 8: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Example

Structure of the data at each time point:

Item 1

Item 2

Item 3

Item 4

… … … … Item m

Person 1Person 2Person 3Person 4

.

.Person n

Page 9: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Example

Subscale scores:

Verbal Comprehension Index (VCI)

Perceptual Reasoning Index (PRI)

Working Memory Index

(WMI)

Processing Speed Index

(PSI)Person 1Person 2Person 3Person 4

.

.Person n

Page 10: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Example

Subscale scores:

VCI

PRI

WMI

PSI

Age 10

Page 11: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Example

Subscale scores:

VCI

PRI

WMI

PSI

VCI

PRI

WMI

PSI

Age 10

Age 12

Page 12: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Example

Subscale scores:

VCI

PRI

WMI

PSI

VCI

PRI

WMI

PSI

VCI

PRI

WMI

PSI

Age 10

Age 12

Age 14

Page 13: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Example

Subscale scores:

VCI

PRI

WMI

PSI

VCI

PRI

WMI

PSI

VCI

PRI

WMI

PSI

VCI

PRI

WMI

PSI

Age 10

Age 12

Age 14

Age 16

Page 14: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Example

Let us assume all subscale scores at all time points are continuous normally distributed variables (for IQ scores this is a reasonable assumption; with real data, one can test it)

We will demonstrate each of the three methods as applied to this example dataset; we will use path-diagrammatic representations of the data (as presented in the SEM workshops by Dylan Molenaar)

A brief explanation of path diagrams:

Page 15: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Path diagrams

Squares = observed (measured) variables

VCI

PRI

WMI

PSI

Page 16: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Path diagrams

Circles = latent variables

VCI

PRI

WMI

PSI

g

Page 17: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Path diagrams

Single-headed arrows = causal relations in the model

VCI

PRI

WMI

PSI

g

Page 18: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Path diagrams

Path coefficients = strength of the relationship between variables

VCI

PRI

WMI

PSI

g

.5

.6

.7

.8

Page 19: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Path diagrams

Double-headed arrows: variances and covariances

VCI

PRI

WMI

PSI

g

.5

.6

.7

.8

1

Page 20: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Path diagrams

Double-headed arrows: variances and covariances

VCI

PRI

WMI

PSI

g

.5

.6

.7

.8

1.1

Page 21: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Path diagrams

Residuals

VCI

PRI

WMI

PSI

g

.5

.6

.7

.8

1.1

Page 22: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Overview

Cholesky decomposition Simplex model Latent growth curve model

Page 23: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

VCI10

PRI10

WMI10

VCI12

PRI12

WMI12

VCI14

PRI14

WMI14

VCI16

PRI16

WMI16

Age 10

Age 12

Age 14

Age 16

PSI10 PSI12 PSI14 PSI16

Page 24: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

Age 10

Age 12

Age 14

Age 16

PSI10 PSI12 PSI14 PSI16

Page 25: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

Age 10

Age 12

Age 14

Age 16

PS10

1

PSI10 PSI12 PSI14 PSI16

Page 26: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

Age 10

Age 12

Age 14

Age 16

PS10

1PS12

1

PSI10 PSI12 PSI14 PSI16

Page 27: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

PSI10 PSI12 PSI14 PSI16

Age 10

Age 12

Age 14

Age 16

PS10

1PS12

1

PS14

1

Page 28: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

PSI10 PSI12 PSI14 PSI16

Age 10

Age 12

Age 14

Age 16

PS10

1PS12

1

PS14

1

PS16

1

Page 29: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

- the first factor (PS10) captures all of the variation in perceptual speed at age 10 (PSI10) and the variation in the other three observed variables (PSI12, PSI14, and PSI16) which they share with PSI10

PSI10 PSI12 PSI14 PSI16

Age 10 Age 12 Age 14 Age 16

PS10

1PS12

1PS14

1PS16

1

Page 30: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

- this factor (PS10) represents what is common to all four observed variables

PSI10 PSI12 PSI14 PSI16

Age 10 Age 12 Age 14 Age 16

PS10

1PS12

1PS14

1PS16

1

Page 31: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

→ factor that causes stability of the observed measure (perceptual speed) across all four ages

PSI10 PSI12 PSI14 PSI16

Age 10 Age 12 Age 14 Age 16

PS10

1PS12

1PS14

1PS16

1

Page 32: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

- this factor (PS12) represents what is common only to the last three observed variables

PSI10 PSI12 PSI14 PSI16

Age 10 Age 12 Age 14 Age 16

PS10

1PS12

1PS14

1PS16

1

Page 33: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

→ factor that causes stability of the observed measure (over and above the stability caused by the first factor, PS10) across the last three ages

PSI10 PSI12 PSI14 PSI16

Age 10 Age 12 Age 14 Age 16

PS10

1PS12

1PS14

1PS16

1

Page 34: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

- the third factor (PS14) represents what is common only to the last two observed variables

PSI10 PSI12 PSI14 PSI16

Age 10 Age 12 Age 14 Age 16

PS10

1PS12

1PS14

1PS16

1

Page 35: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

- the last factor (PS16) represents the variation that is unique to the last variable (PSI16)

PSI10 PSI12 PSI14 PSI16

Age 10 Age 12 Age 14 Age 16

PS10

1PS12

1PS14

1PS16

1

Page 36: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

If we specify a model like this (e.g., in Mplus) and fit it to observed data, we will get estimates of parameters in the model – in this case, the loadings of the observed variables on the latent factors.

PSI10 PSI12 PSI14 PSI16

Age 10 Age 12 Age 14 Age 16

PS10

1PS12

1PS14

1PS16

1

Page 37: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

If we specify a model like this (e.g., in Mplus) and fit it to observed data, we will get estimates of parameters in the model – in this case, the loadings of the observed variables on the latent factors.

PSI10 PSI12 PSI14 PSI16

Age 10 Age 12 Age 14 Age 16

PS10

1PS12

1PS14

1PS16

1

λ11 λ21 λ31 λ41

Page 38: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

If we specify a model like this (e.g., in Mplus) and fit it to observed data, we will get estimates of parameters in the model – in this case, the loadings of the observed variables on the latent factors.

PSI10 PSI12 PSI14 PSI16

Age 10 Age 12 Age 14 Age 16

PS10

1PS12

1PS14

1PS16

1

λ11 λ21 λ31 λ41λ22 λ32 λ42

Page 39: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

If we specify a model like this (e.g., in Mplus) and fit it to observed data, we will get estimates of parameters in the model – in this case, the loadings of the observed variables on the latent factors.

PSI10 PSI12 PSI14 PSI16

Age 10 Age 12 Age 14 Age 16

PS10

1PS12

1PS14

1PS16

1

λ11 λ21 λ31 λ41λ22 λ32 λ42λ33 λ43

Page 40: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

If we specify a model like this (e.g., in Mplus) and fit it to observed data, we will get estimates of parameters in the model – in this case, the loadings of the observed variables on the latent factors.

PSI10 PSI12 PSI14 PSI16

Age 10 Age 12 Age 14 Age 16

PS10

1PS12

1PS14

1PS16

1

λ11 λ21 λ31 λ41λ22 λ32 λ42λ33 λ43 λ44

Page 41: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

These loadings (i.e., path coefficients in a path diagram) represent the strength of the relationship between the observed variables and the latent factors.

PSI10 PSI12 PSI14 PSI16

Age 10 Age 12 Age 14 Age 16

PS10

1PS12

1PS14

1PS16

1

λ11 λ21 λ31 λ41λ22 λ32 λ42λ33 λ43 λ44

Page 42: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

Knowing that the variability that is common to processing speed at ages 10, 12, 14, and 16 is represented by the first latent factor, and the paths between that factor and each of the observed variables...

PSI10 PSI12 PSI14 PSI16

Age 10 Age 12 Age 14 Age 16

PS10

1PS12

1PS14

1PS16

1

λ11 λ21 λ31 λ41

Page 43: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

... and knowing the estimates of the path loading parameters (λs)...

PSI10 PSI12 PSI14 PSI16

Age 10 Age 12 Age 14 Age 16

PS10

1PS12

1PS14

1PS16

1

λ11 λ21 λ31 λ41

Page 44: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

... we can quantify the proportion of variance in processing speed at a given time point that is due to factors that cause temporal stability across all four ages.

PSI10 PSI12 PSI14 PSI16

Age 10 Age 12 Age 14 Age 16

PS10

1PS12

1PS14

1PS16

1

λ11 λ21 λ31 λ41

Page 45: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

E.g., at age 12 this proportion is: λ21*var(PS10)*λ21 = λ21*1*λ21 = λ21

2.

PSI10 PSI12 PSI14 PSI16

Age 10 Age 12 Age 14 Age 16

PS10

1PS12

1PS14

1PS16

1

λ11 λ21 λ31 λ41

Page 46: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

E.g., at age 12 this proportion is: λ21*var(PS10)*λ21 = λ21*1*λ21 = λ21

2.

We assume here that the variance of the observedvariable is 1. Otherwise, toobtain the proportion, we have to divide the λ21

2 by the

variance of the observedvariable.

PSI10 PSI12 PSI14 PSI16

Age 10 Age 12 Age 14 Age 16

PS10

1PS12

1PS14

1PS16

1

λ11 λ21 λ31 λ41

Page 47: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

At age 14 it is: λ31*var(PS10)*λ31 = λ31*1*λ31

= λ312.

PSI10 PSI12 PSI14 PSI16

Age 10 Age 12 Age 14 Age 16

PS10

1PS12

1PS14

1PS16

1

λ11 λ21 λ31 λ41

Page 48: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

E.g., if these are the factor loading estimates (below), then the factors that cause stability of processing speed (PS) across all ages explain .52=.25 of the variance in PS at age 12, .32=.09 of the variance in PS at age 14, and .22=.04 of the variance in PS at age 16.

PSI10 PSI12 PSI14 PSI16

Age 10 Age 12 Age 14 Age 16

PS10

1PS12

1PS14

1PS16

1

1 .5 .3 .2

Page 49: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

If there are additional sources of stability arising after the initial age of measurement (age 10), those are quantified by the other path coefficients in the model.

PSI10 PSI12 PSI14 PSI16

Age 10 Age 12 Age 14 Age 16

PS10

1PS12

1PS14

1PS16

1

Page 50: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

For instance, if a factor emerges at age 12, which causes additional temporal stability in processing speed across the ages 12-16, over and above the stability caused by factors present at age 10, the strength of influence of that factor is quantified by the coefficients λ22, λ32, and λ42.

PSI10 PSI12 PSI14 PSI16

Age 10 Age 12 Age 14 Age 16

PS10

1PS12

1PS14

1PS16

1

λ22 λ32 λ42

Page 51: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

Question: what is the variance in processing speed at age 14 which can be explained by factors that cause temporal stability of processing speed across ages 12-16, but are not yet present at age 10?

PSI10 PSI12 PSI14 PSI16

Age 10 Age 12 Age 14 Age 16

PS10

1PS12

1PS14

1PS16

1

λ22 λ32 λ42

Page 52: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

Answer: λ322.

PSI10 PSI12 PSI14 PSI16

Age 10 Age 12 Age 14 Age 16

PS10

1PS12

1PS14

1PS16

1

λ22 λ32 λ42

Page 53: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

What is the variance in processing speed at age 14 explained by factors causing temporal stability of processing speed across ages 14-16, that are not present at ages 10 and 12?

PSI10 PSI12 PSI14 PSI16

Age 10 Age 12 Age 14 Age 16

PS10

1PS12

1PS14

1PS16

1

λ11 λ21 λ31 λ41λ22 λ32 λ42λ33 λ43 λ44

Page 54: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

Answer: λ332.

PSI10 PSI12 PSI14 PSI16

Age 10 Age 12 Age 14 Age 16

PS10

1PS12

1PS14

1PS16

1

λ11 λ21 λ31 λ41λ22 λ32 λ42λ33 λ43 λ44

Page 55: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

What is the variance in processing speed unique to age 16, i.e., not explained by the factors present at previous time points?

PSI10 PSI12 PSI14 PSI16

Age 10 Age 12 Age 14 Age 16

PS10

1PS12

1PS14

1PS16

1

λ11 λ21 λ31 λ41λ22 λ32 λ42λ33 λ43 λ44

Page 56: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

Answer: λ442.

PSI10 PSI12 PSI14 PSI16

Age 10 Age 12 Age 14 Age 16

PS10

1PS12

1PS14

1PS16

1

λ11 λ21 λ31 λ41λ22 λ32 λ42λ33 λ43 λ44

Page 57: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

What happens if we expand the model to the multivariate case?

PSI10 PSI12 PSI14 PSI16

Age 10 Age 12 Age 14 Age 16

PS10

1PS12

1PS14

1PS16

1

λ11 λ21 λ31 λ41λ22 λ32 λ42λ33 λ43 λ44

Page 58: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

VCI10

PRI10

WMI10

VCI12

PRI12

WMI12

VCI14

PRI14

WMI14

VCI16

PRI16

WMI16

Age 10

Age 12

Age 14

Age 16

PSI10 PSI12 PSI14 PSI16

Page 59: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

PSI10 PSI12 PSI14 PSI16

Page 60: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

PSI10 PSI12 PSI14 PSI16

Page 61: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

PSI10 PSI12 PSI14 PSI16

PS10

1

Page 62: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

PSI10 PSI12 PSI14 PSI16

PS10

1WM1

0

1

Page 63: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

PSI10 PSI12 PSI14 PSI16

PS10

1WM1

0

1

PS12

1WM1

2

1

Page 64: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

PSI10 PSI12 PSI14 PSI16

PS10

1WM1

0

1

PS12

1WM1

2

1

PS14

1WM1

4

1

Page 65: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

PSI10 PSI12 PSI14 PSI16

PS10

1WM1

0

1

PS12

1WM1

2

1

PS14

1WM1

4

1

PS16

1WM1

6

1

Page 66: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

Question: how much of the variance in processing speed at age 12 is explained by factors that cause the observed stability of both types of cognitive abilities (PS and WM) across all ages?

WMI10 WMI12 WMI14 WMI16

Age 10 Age 12 Age 14 Age 16

PSI10 PSI12 PSI14 PSI16

PS10

1WM10

1PS12

1WM12

1PS14

1WM14

1PS16

1WM16

1

Page 67: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

Answer (I will simply highlight the path instead of writing out the coefficient):

WMI10 WMI12 WMI14 WMI16

Age 10 Age 12 Age 14 Age 16

PSI10 PSI12 PSI14 PSI16

PS10

1WM10

1PS12

1WM12

1PS14

1WM14

1PS16

1WM16

1

Page 68: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

Question: how much of the variance in processing speed at age 12 is explained by factors that cause temporal stability of processing speed and working memory across ages 12-16, and of working memory, but not of processing speed, at age 10?

WMI10 WMI12 WMI14 WMI16

Age 10 Age 12 Age 14 Age 16

PSI10 PSI12 PSI14 PSI16

PS10

1WM10

1PS12

1WM12

1PS14

1WM14

1PS16

1WM16

1

Page 69: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

Answer (I will simply highlight the path instead of writing out the coefficient):

WMI10 WMI12 WMI14 WMI16

Age 10 Age 12 Age 14 Age 16

PSI10 PSI12 PSI14 PSI16

PS10

1WM10

1PS12

1WM12

1PS14

1WM14

1PS16

1WM16

1

Page 70: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

Question: how much of the variance in working memory at age 16 is explained by factors that are common to working memory and processing speed at age 16, but do not explain any of the temporal stability at the previous ages?

WMI10 WMI12 WMI14 WMI16

Age 10 Age 12 Age 14 Age 16

PSI10 PSI12 PSI14 PSI16

PS10

1WM10

1PS12

1WM12

1PS14

1WM14

1PS16

1WM16

1

Page 71: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

Answer (I will simply highlight the path instead of writing out the coefficient):

WMI10 WMI12 WMI14 WMI16

Age 10 Age 12 Age 14 Age 16

PSI10 PSI12 PSI14 PSI16

PS10

1WM10

1PS12

1WM12

1PS14

1WM14

1PS16

1WM16

1

Page 72: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

Note that different measures (e.g., PS and WM) covary not only within a single time point: they also can (and quite often do) covary across different time points (cross-covariance).

WMI10 WMI12 WMI14 WMI16

Age 10 Age 12 Age 14 Age 16

PSI10 PSI12 PSI14 PSI16

PS10

1WM10

1PS12

1WM12

1PS14

1WM14

1PS16

1WM16

1

Page 73: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

We can expand the model to include all 4 observed variables (subscales) across all of the 4 time points, in an equivalent manner as we just did for the two variables.

WMI10 WMI12 WMI14 WMI16

Age 10 Age 12 Age 14 Age 16

PSI10 PSI12 PSI14 PSI16

PS10

1WM10

1PS12

1WM12

1PS14

1WM14

1PS16

1WM16

1

Page 74: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Cholesky decomposition

Cholesky decomposition is not a model; it is simply a variance decomposition, i.e., a different way to express the variance.

As such, we cannot test its fit (the fit will always be perfect).

However, it does allow us to make conclusions of the kind demonstrated above.

Next, we present an actual model.

Page 75: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Overview

Cholesky decomposition Simplex model Latent growth curve model

Page 76: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

VCI10

PRI10

WMI10

VCI12

PRI12

WMI12

VCI14

PRI14

WMI14

VCI16

PRI16

WMI16

Age 10

Age 12

Age 14

Age 16

PSI10 PSI12 PSI14 PSI16

Page 77: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

Page 78: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

Page 79: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

varWM10

Page 80: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

varWM10

Page 81: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

varWM10 β2

1

Page 82: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

varWM10 β2

1

β3

2

Page 83: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

varWM10 β2

1

β3

2

β4

3

Page 84: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

varWM10 β2

1

β3

2

β4

3

Page 85: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

varWM10 β2

1

β3

2

β4

3

ζ2

Page 86: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

varWM10 β2

1

β3

2

β4

3

ζ2 ζ3

Page 87: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

varWM10 β2

1

β3

2

β4

3

ζ2 ζ3 ζ4

Page 88: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

One may specify this model and fit it to observed data (e.g., in MPlus, Mx, OpenMx..). This will produce: 1) fit statistics (because simplex is a model), 2) estimates of the parameters below (the βs and the ζs).

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

varWM10 β2

1

β3

2

β4

3

ζ2 ζ3 ζ4

Page 89: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

Interpretation?

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

varWM10 β2

1

β3

2

β4

3

ζ2 ζ3 ζ4

Page 90: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

The variance of the variable observed at the first time point (WMI10) is not extensively modeled.

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

varWM10 β2

1

β3

2

β4

3

ζ2 ζ3 ζ4

Page 91: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

The variances of the variables at the following time points, however, are decomposed into:

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

varWM10 β2

1

β3

2

β4

3

ζ2 ζ3 ζ4

Page 92: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

The variances of the variables at the following time points, however, are decomposed into:a) a part explained by the variable at the preceding time

point→ stability, expressed by the autoregressive coefficient β

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

varWM10 β2

1

β3

2

β4

3

ζ2 ζ3 ζ4

Page 93: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

The variances of the variables at the following time points, however, are decomposed into:a) a part explained by the variable at the preceding time

point→ stability, expressed by the autoregressive coefficient β

b) a part unique to the time point in question→ innovation, expressed by ζ

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

varWM10 β2

1

β3

2

β4

3

ζ2 ζ3 ζ4

Page 94: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

One may now ask, e.g., how much of the variance in working memory at age 12 is explained by working memory at the preceding age (age 10). The answer is β21*varWMI10*β21 = β21

2*varWMI10.

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

varWM10 β2

1

β3

2

β4

3

ζ2 ζ3 ζ4

Page 95: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

Therefore, the variance in working memory at age 12 which is due to temporal stability (transmission from the previous age), can be quantified as β21

2*varWMI10.

Age 10

Age 12

Age 14

Age 16

WMI10 WMI12 WMI14 WMI16

varWM10 β2

1

β3

2

β4

3

ζ2 ζ3 ζ4

Page 96: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

The covariance between working memory at age 10 (WMI10) and working memory at age 12 (WMI12) can also readily be expressed in terms of model parameters, as β21.

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

varWM10 β2

1

β3

2

β4

3

ζ2 ζ3 ζ4

Page 97: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

The part of the variance in working memory at age 12 that is explained by factors unique to age 12 is ζ2.

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

varWM10 β2

1

β3

2

β4

3

ζ2 ζ3 ζ4

Page 98: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

Therefore, the entire variance of WMI12 can be expressed asvar(WMI12) = β21

2*varWMI10 + ζ2.

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

varWM10 β2

1

β3

2

β4

3

ζ2 ζ3 ζ4

Page 99: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

Therefore, the entire variance of WMI12 can be expressed asvar(WMI12) = β21

2*varWMI10 + ζ2.

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

varWM10 β2

1

β3

2

β4

3

ζ2 ζ3 ζ4

stability

change

Page 100: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

Therefore, the entire variance of WMI12 can be expressed asvar(WMI12) = β21

2*varWMI10 + ζ2. Depending on how well the model fits the observed data, this will be an accurate representation of the variance (or not). Unlike Cholesky, this is a model and may be tested!

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

varWM10 β2

1

β3

2

β4

3

ζ2 ζ3 ζ4

Page 101: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

Therefore, a simplex model may be used to estimate:1) variance due to temporal stability (or transmission)2) variance due to change (or innovation)

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

varWM10 β2

1

β3

2

β4

3

ζ2 ζ3 ζ4

Page 102: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

E.g., IQ typically becomes increasingly stabile across childhood and stays very stabile throughout adulthood. In early childhood, therefore, the role of factors that disrupt stability in IQ (ζ) is relatively large, and gradually declines throughout childhood. By ~age 18, it is typically very small, while the role of transmission (as quantified by βs) is very large.

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

varWM10 β2

1

β3

2

β4

3

ζ2 ζ3 ζ4

Page 103: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

What happens in the multivariate case?

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

varWM10 β2

1

β3

2

β4

3

ζ2 ζ3 ζ4

Page 104: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

What happens in the multivariate case?

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

varWM10 β2

1

β3

2

β4

3

ζ2 ζ3 ζ4

PSI10 PSI12 PSI14 PSI16

Page 105: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

What happens in the multivariate case?

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

varWM10 βW21

ζ2 ζ3 ζ4

PSI10 PSI12 PSI14 PSI16βP21

βW32

βP32

βW43

βP43

Page 106: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

What happens in the multivariate case?

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

varWM10 βW21

ζW2 ζW3 ζW4

PSI10 PSI12 PSI14 PSI16βP21

βW32

βP32

βW43

βP43

ζW2 ζW3 ζW4

Page 107: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

What happens in the multivariate case?

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

varWM10 βW21

ζW2 ζW3 ζW4

PSI10 PSI12 PSI14 PSI16βP21

βW32

βP32

βW43

βP43

ζW2 ζW3 ζW4varPS10

Page 108: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

What happens in the multivariate case?

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

varWM10 βW21

ζW2 ζW3 ζW4

PSI10 PSI12 PSI14 PSI16βP21

βW32

βP32

βW43

βP43

ζW2 ζW3 ζW4varPS10

Page 109: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

What happens in the multivariate case?

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

βW21

ζW2 ζW3 ζW4

PSI10 PSI12 PSI14 PSI16βP21

βW32

βP32

βW43

βP43

ζW2 ζW3 ζW4

varWM10

varPS10

Page 110: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

What happens in the multivariate case?

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

βW21

ζW2 ζW3 ζW4

PSI10 PSI12 PSI14 PSI16βP21

βW32

βP32

βW43

βP43

ζW2 ζW3 ζW4

varWM10

varPS10

Page 111: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

What happens in the multivariate case?

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

βW21

ζW2 ζW3 ζW4

PSI10 PSI12 PSI14 PSI16βP21

βW32

βP32

βW43

βP43

ζW2 ζW3 ζW4

varWM10

varPS10

Page 112: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

What happens in the multivariate case?

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

βW21

ζW2 ζW3 ζW4

PSI10 PSI12 PSI14 PSI16βP21

βW32

βP32

βW43

βP43

ζW2 ζW3 ζW4

varWM10

varPS10

Page 113: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

What happens in the multivariate case?

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

βW21

ζW2 ζW3 ζW4

PSI10 PSI12 PSI14 PSI16βP21

βW32

βP32

βW43

βP43

ζW2 ζW3 ζW4

varWM10

varPS10

Page 114: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

What happens in the multivariate case?

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

βW21

ζW2 ζW3 ζW4

PSI10 PSI12 PSI14 PSI16βP21

βW32

βP32

βW43

βP43

ζW2 ζW3 ζW4

varWM10

varPS10

Page 115: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

What happens in the multivariate case?

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

βW21

ζW2 ζW3 ζW4

PSI10 PSI12 PSI14 PSI16βP21

βW32

βP32

βW43

βP43

ζW2 ζW3 ζW4

varWM10

varPS10

Page 116: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

What happens in the multivariate case?

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

βW21

ζW2 ζW3 ζW4

PSI10 PSI12 PSI14 PSI16βP21

βW32

βP32

βW43

βP43

ζW2 ζW3 ζW4

varWM10

varPS10

Page 117: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

We can estimate the:1) Covariance between the variables at the first time point2) Covariance between the residuals (innovation variances)

of the variables at all other time points3) Cross-covariances (covariances between one variable at a

given time point and another variable at the adjacent time point)

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

βW21

ζW2 ζW3 ζW4

PSI10 PSI12 PSI14 PSI16βP21

βW32

βP32

βW43

βP43

ζW2 ζW3 ζW4

varWM10

varPS10

Page 118: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

We can, for instance, ask to what extent processing speed at age 10 predicts working memory at age 12.

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

βW21

ζW2 ζW3 ζW4

PSI10 PSI12 PSI14 PSI16βP21

βW32

βP32

βW43

βP43

ζW2 ζW3 ζW4

varWM10

varPS10

Page 119: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

We can, for instance, ask to what extent processing speed at age 10 predicts working memory at age 12. Answer: the variance in WM at age 12 predicted by PS at age 10 is βW2P1

2*varPS10.

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

βW21

ζW2 ζW3 ζW4

PSI10 PSI12 PSI14 PSI16βP21

βW32

βP32

βW43

βP43

ζW2 ζW3 ζW4βW2P1

varWM10

varPS10

Page 120: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

Question: what is the variance in processing speed at age 16 explained by working memory at age 14?

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

βW21

ζW2 ζW3 ζW4

PSI10 PSI12 PSI14 PSI16βP21

βW32

βP32

βW43

βP43

ζW2 ζW3 ζW4βW2P1βP2W1

βW3P2βP3W2

βW4P3βP4W3

varWM10

varPS10

Page 121: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

Answer: βP4W32*varWM14.

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

βW21

ζW2 ζW3 ζW4

PSI10 PSI12 PSI14 PSI16βP21

βW32

βP32

βW43

βP43

ζW2 ζW3 ζW4βW2P1βP2W1

βW3P2βP3W2

βW4P3βP4W3

varWM10

varPS10

Page 122: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

Question: How much of the variance in working memory at age 14 is due to factors that are specific to that particular age?

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

βW21

ζW2 ζW3 ζW4

PSI10 PSI12 PSI14 PSI16βP21

βW32

βP32

βW43

βP43

ζW2 ζW3 ζW4βW2P1βP2W1

βW3P2βP3W2

βW4P3βP4W3

varWM10

varPS10

Page 123: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

Answer: ζW3.

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

βW21

ζW2 ζW3 ζW4

PSI10 PSI12 PSI14 PSI16βP21

βW32

βP32

βW43

βP43

ζW2 ζW3 ζW4βW2P1βP2W1

βW3P2βP3W2

βW4P3βP4W3

varWM10

varPS10

Page 124: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

Question: What is the covariance between the factors that influence working memory and emerge only at age 12, with factors that affect processing speed, and also only emerge at age 12? (Just point out the arrow.)

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

βW21

ζW2 ζW3 ζW4

PSI10 PSI12 PSI14 PSI16βP21

βW32

βP32

βW43

βP43

ζW2 ζW3 ζW4βW2P1βP2W1

βW3P2βP3W2

βW4P3βP4W3

varWM10

varPS10

Page 125: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

Answer:

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

βW21

ζW2 ζW3 ζW4

PSI10 PSI12 PSI14 PSI16βP21

βW32

βP32

βW43

βP43

ζW2 ζW3 ζW4βW2P1βP2W1

βW3P2βP3W2

βW4P3βP4W3

varWM10

varPS10

Page 126: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Simplex model

One can, of course, extend the model to include more observed variables and more time points.

WMI10 WMI12 WMI14 WMI16

Age 10

Age 12

Age 14

Age 16

βW21

ζW2 ζW3 ζW4

PSI10 PSI12 PSI14 PSI16βP21

βW32

βP32

βW43

βP43

ζW2 ζW3 ζW4

varWM10

varPS10

Page 127: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Progress

Up to this point, we have answered 4 out of the 7 example research questions from the beginning of the lecture.

The remaining 3 may be answered using growth curve modeling.

Page 128: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Overview

Cholesky decomposition Simplex model Latent growth curve model

Page 129: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Growth curve model

VCI10

PRI10

WMI10

VCI12

PRI12

WMI12

VCI14

PRI14

WMI14

VCI16

PRI16

WMI16

Age 10

Age 12

Age 14

Age 16

PSI10 PSI12 PSI14 PSI16

Page 130: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Growth curve model

Age 10

Age 12

Age 14

Age 16

PSI10 PSI12 PSI14 PSI16

Page 131: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Growth curve model

Age 10

Age 12

Age 14

Age 16

PSI10 PSI12 PSI14 PSI16

I

Page 132: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Growth curve model

Age 10

Age 12

Age 14

Age 16

PSI10 PSI12 PSI14 PSI16

I

1 1 1 1

Page 133: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Growth curve model

Age 10

Age 12

Age 14

Age 16

PSI10 PSI12 PSI14 PSI16

I

1 1 1 1

S

Page 134: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Growth curve model

Age 10

Age 12

Age 14

Age 16

PSI10 PSI12 PSI14 PSI16

I

1 1 1 1

S

0 1 2 3

Page 135: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Growth curve model

Score of person i at the various time points can be expressed as:yi1 = 1*Ii + 0*Si + εi1 yi2 = 1*Ii + 1*Si + εi2 yi3 = 1*Ii + 2*Si + εi3 yi4 = 1*Ii + 3*Si + εi4

Age 10 Age 12 Age 14 Age 16

PSI10 PSI12 PSI14 PSI16

I

1 1 1 1

S

0 1 2 3

ε1 ε2 ε3 ε4

Page 136: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Growth curve model

Score of person i at the various time points can be expressed as:yi1 = 1*Ii + 0*Si + εi1 = Ii + εi1yi2 = 1*Ii + 1*Si + εi2 = Ii + Si + εi2yi3 = 1*Ii + 2*Si + εi3 = Ii + 2Si + εi3yi4 = 1*Ii + 3*Si + εi4 = Ii + 3Si + εi4

Age 10 Age 12 Age 14 Age 16

PSI10 PSI12 PSI14 PSI16

I

1 1 1 1

S

0 1 2 3

ε1 ε2 ε3 ε4

Page 137: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Growth curve model

Score of person i at the various time points can be expressed as:yi1 = 1*Ii + 0*Si + εi1 = Ii + εi1yi2 = 1*Ii + 1*Si + εi2 = Ii + Si + εi2yi3 = 1*Ii + 2*Si + εi3 = Ii + 2Si + εi3yi4 = 1*Ii + 3*Si + εi4 = Ii + 3Si + εi4

Suppose person i’s score on the I factor is 90, and on the S factor 5:Ii=90, Si=5. Suppose error scores are negligible (for sake of example).

Page 138: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Growth curve model

Score of person i at the various time points can be expressed as:yi1 = 1*Ii + 0*Si + εi1 = Ii + εi1yi2 = 1*Ii + 1*Si + εi2 = Ii + Si + εi2yi3 = 1*Ii + 2*Si + εi3 = Ii + 2Si + εi3yi4 = 1*Ii + 3*Si + εi4 = Ii + 3Si + εi4

Suppose person i’s score on the I factor is 90, and on the S factor 5:Ii=90, Si=5. Suppose error scores are negligible (for sake of example).

yi1 = Ii + εi1 = 90yi2 = Ii + Si + εi2 = 90 + 5 = 95yi3 = Ii + 2Si + εi3 = 90 + 2*5 = 100yi4 = Ii + 3Si + εi4 = 90 + 3*5 = 105

Page 139: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Growth curve model

yi1 = Ii + εi1 = 90yi2 = Ii + Si + εi2 = 90 + 5 = 95yi3 = Ii + 2Si + εi3 = 90 + 2*5 = 100yi4 = Ii + 3Si + εi4 = 90 + 3*5 = 105

Page 140: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Growth curve model

yi1 = Ii + εi1 = 90yi2 = Ii + Si + εi2 = 90 + 5 = 95yi3 = Ii + 2Si + εi3 = 90 + 2*5 = 100yi4 = Ii + 3Si + εi4 = 90 + 3*5 = 105

10 12 14 16 Age

Score

90

95

100

105

Page 141: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Growth curve model

yi1 = Ii + εi1 = 90yi2 = Ii + Si + εi2 = 90 + 5 = 95yi3 = Ii + 2Si + εi3 = 90 + 2*5 = 100yi4 = Ii + 3Si + εi4 = 90 + 3*5 = 105

10 12 14 16 Age

Score

90

95

100

105

Page 142: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Growth curve model

For person j, Ij=100, Sj=2. Error again negligible.

yj1 = Ij + εj1 = 100yj2 = Ij + Sj + εj2 = 100 + 2 = 102yj3 = Ij + 2Sj + εj3 = 100 + 2*2 = 104yj4 = Ij + 3Sj + εj4 = 100 + 3*2 = 106

Page 143: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Growth curve model

yj1 = Ij + εj1 = 100yj2 = Ij + Sj + εj2 = 100 + 2 = 102yj3 = Ij + 2Sj + εj3 = 100 + 2*2 = 104yj4 = Ij + 3Sj + εj4 = 100 + 3*2 = 106

10 12 14 16 Age

Score

90

95

100

105

Person i

Page 144: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Growth curve model

yj1 = Ij + εj1 = 100yj2 = Ij + Sj + εj2 = 100 + 2 = 102yj3 = Ij + 2Sj + εj3 = 100 + 2*2 = 104yj4 = Ij + 3Sj + εj4 = 100 + 3*2 = 106

10 12 14 16 Age

Score

90

95

100

105

Person iPerson j

Page 145: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Growth curve model

Here, we explicitly model individual differences in growth trajectories (specifically, in intercepts and slopes of individual growth curves).

10 12 14 16 Age

Score

90

95

100

105

Person iPerson j

Page 146: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Growth curve model

The intercepts and slopes are said to be random over subjects (i.e., they can vary over subjects; unlike in standard regression).

10 12 14 16 Age

Score

90

95

100

105

Person iPerson j

Page 147: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Growth curve model

One can ask how much a) the intercepts vary over the subjects,b) the slopes vary over the subjects.

10 12 14 16 Age

Score

90

95

100

105

Person iPerson j

Page 148: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Growth curve model

By specifying this model and fitting it to the data, we can estimate the variances of the I and the S factors, which quantify, respectively:a) the variation in intercepts over the subjects,b) the variation in slopes over the subjects.

Age 10 Age 12 Age 14 Age 16

PSI10 PSI12 PSI14 PSI16

I

1 1 1 1

S

0 1 2 3

ε1 ε2 ε3 ε4

VarI VarS

Page 149: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Growth curve model

One can add additional factors into the model, e.g., a ‘quadratic’ factor (Q, see below). This will make the curve quadratic, i.e., it allows for modeling nonlinearity in growth trajectories.

Age 10 Age 12 Age 14 Age 16

PSI10 PSI12 PSI14 PSI16

I

1 1 1 1

S

0 1 2 3

ε1 ε2 ε3 ε4

Q

0 1 4 9

Page 150: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Growth curve model

E.g., for Ii=90, Si=3, Qi=1, εi=0:yi1 = Ii + εi1 = 90yi2 = Ii + Si + Qi + εi2 = 90 + 3 + 1 = 94 yi3 = Ii + 2Si + 4Qi + εi3 = 90 + 2*3 + 4*1 = 100yi4 = Ii + 3Si + 9Qi + εi4 = 90 + 3*3 + 9*1 = 108

10 12 14 16 Age

Score

90

95

100

105

Page 151: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Overview

Cholesky decomposition Simplex model Latent growth curve model

Page 152: Modeling longitudinal data Sanja Franić Vrije Universiteit Amsterdam

Final notes

Additional reading:

E.g., chapters on longitudinal models in Hoyle, R.H. (2012). Handbook of Structural Equation Modeling. New York: Guilford Press.

Implementation:

MPlus, Mx, OpenMx, other packages in R...

My contact:

[email protected]