Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with...

20
Birck Nanotechnology Center http://web.ics.purdue.edu/~xni/home 1 October 8, 2010 http://web.ics.purdue.edu/~xni/home October 8, 2010 1 Modeling an Optical “Black Hole” with True Gaussian Beam Illumination Xingjie Ni 1 , Ludmila Prokopeva 2 , Alexander Kildishev 1 , and Evgenii Narimanov 1 1 Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907 2 Institute of Computational Technologies, Russian Academy of Sciences, Novosibirsk, Russia COMSOL Conference 2010 Boston Presented at the

Transcript of Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with...

Page 1: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev.

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 1October 8, 2010 http://web.ics.purdue.edu/~xni/homeOctober 8, 2010 1

Modeling an Optical “Black Hole” with True Gaussian Beam Illumination

Xingjie Ni1, Ludmila Prokopeva2,

Alexander Kildishev1, and Evgenii Narimanov1

1 Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907

2 Institute of Computational Technologies, Russian Academy of Sciences, Novosibirsk, Russia

COMSOL Conference 2010 Boston Presented at the

Page 2: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev.

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 2October 8, 2010

Nanophotonics and Metamaterial Group

Birck Nanotechnology Center

Page 3: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev.

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 3October 8, 2010

Nanophotonics and Metamaterial Group

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, Nature466, 735-738 (2010)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, Nature Photonics 1, 224-27 (2007)

• Q. Song, et al, Opt. Lett. 35(15), 2624-2626 (2010)

• Y. Sivan, et al, Opt. Express 17(26), 24060-24074 (2009)

• S. Xiao, et al, Opt. Lett. 34(22), 3478-80 (2009)

• J. Borneman, et al, Opt. Express, 17(14), 11607-17 (2009)

• Z. Liu, et al, Metamaterials 2, 45-51 (2008)

• ...

Page 4: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev.

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 4October 8, 2010

A Black Hole

Page 5: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev.

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 5October 8, 2010

Optical “Black Hole”

• broadband omnidirectional light absorber

• absorbs surrounding light like a real black hole

• already made experimentally in microwave region

E. E. Narimanov and A. V. Kildishev, Appl. Phys. Lett. 95, 041106 (2009)

Page 6: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev.

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 6October 8, 2010

Modeling the Materials

A. V. Kildishev, L. J. Prokopeva, et al, Opt. Express 18, 16646-16662, (2010)

Page 7: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev.

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 7October 8, 2010

Modeling the Materials

A. V. Kildishev, L. J. Prokopeva, et al, Opt. Express 18, 16646-16662, (2010)

1

2

3

Page 8: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev.

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 8October 8, 2010

Modeling the Gaussian Beam

Page 9: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev.

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 9October 8, 2010

However …

total field scattered field

Page 10: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev.

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 10October 8, 2010

However …

total field scattered field

Page 11: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev.

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 11October 8, 2010

Plane Wave Expansion

• Helmholtz wave equation

A. V. Kildishev, L. J. Prokopeva, et al, Opt. Express 18, 16646-16662, (2010)

Page 12: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev.

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 12October 8, 2010

Plane Wave Expansion

• Helmholtz wave equation

A. V. Kildishev, L. J. Prokopeva, et al, Opt. Express 18, 16646-16662, (2010)

Page 13: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev.

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 13October 8, 2010

Plane Wave Expansion

• Helmholtz wave equation

A. V. Kildishev, L. J. Prokopeva, et al, Opt. Express 18, 16646-16662, (2010)

Page 14: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev.

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 14October 8, 2010

Improved Modeling

total field scattered field

Page 15: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev.

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 15October 8, 2010

Improved Modeling

total field scattered field

Page 16: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev.

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 16October 8, 2010

Model the Optical “Black Hole” in COMSOL

Scattering BC

Incident field

• Scattered field formulation

• Material mapping

• Background field mapping

Page 17: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev.

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 17October 8, 2010

Optical “Black Hole” with Gaussian Beam

(a) (b) (c) (d)

Simulation results of an ideal optical black hole with outer radius R = 20 μm, and inner radius Rc = 8.367 μm. The Gaussian beam with free-space wavelength λ = 1.5 μm and minimum waist width w = 2λ is focused at x0

= 0, and (a) y0 = 1.5R; (b) y0 = R; (c) y0 = 0.75R, and (d) y0 = 0.

Page 18: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev.

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 18October 8, 2010

Optical “Black Hole” with Gaussian Beam

(a) (b) (c) (d)

Simulation results of an ideal optical black hole with outer radius R = 20 μm, and inner radius Rc = 8.367 μm. The Gaussian beam with free-space wavelength λ = 1.5 μm and minimum waist width w = 2λ is focused at x0

= 0, and (a) y0 = 1.5R; (b) y0 = R; (c) y0 = 0.75R, and (d) y0 = 0.

Page 19: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev.

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 19October 8, 2010

Another Application –Negative Index Metamaterials

Page 20: Modeling an Optical Black Hole with True Gaussian Beam ... Modeling an Optical “Black Hole” with True Gaussian Beam Illumination. Xingjie Ni1, Ludmila Prokopeva2, Alexander Kildishev.

Birck Nanotechnology Center

http://web.ics.purdue.edu/~xni/home 20October 8, 2010

Summary

• modeled an ideal optical “black hole” device

• used a new method to precisely model the Gaussian beam illumination

• the simulation results of the optical “black hole” device shows expected performance