MME 2010 METALLURGICAL THERMODYNAMICS II

26
MME 2010 METALLURGICAL THERMODYNAMICS II Chemical Reaction Equilibria

Transcript of MME 2010 METALLURGICAL THERMODYNAMICS II

MME 2010

METALLURGICAL THERMODYNAMICS II

Chemical Reaction Equilibria

Chemical reactions take place in production of steel from liquid iron

Impurities in liquid iron are subjected to a reaction with gaseous oxygen

Steel production takes place in a blast furnace that is aimed to collect liquid iron, slag and

flue gases formed as a result of reaction with C and CO

The liquid phases iron and slag in the blast furnace consist of solutions of Fe, C, Si, Mn, P

and SiO2, Al2O3, CaO, FeO respectively

Flue gases typically contain CO, CO2 and N2 as main components

Mathematical relationships of extensive thermodynamic properties, particularly G, H and

S need to be considered for each solution in order to estimate the equilibrium condition

parameters for maximum efficiency

Consider a general equilibrium:

๐‘Ž๐ด + ๐‘๐ต ๐‘๐ถ + ๐‘‘๐ท

The general criterion for equilibrium under constant T and P is โˆ†๐บ = 0

โˆ†๐บ = ๐บ๐‘๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก๐‘  โˆ’ ๐บ๐‘Ÿ๐‘’๐‘Ž๐‘๐‘ก๐‘Ž๐‘›๐‘ก๐‘ 

= ๐‘๐บ๐ถ + ๐‘‘๐บ๐ท โˆ’ ๐‘Ž๐บ๐ด โˆ’ ๐‘๐บ๐ต

Recall that the complete differential of G is

Consider the reaction in a mixture of ideal gases at constant composition and

temperature (๐‘‘๐‘›๐‘– = ๐‘‘๐‘‡ =0)

The change in Gibbs free energy of each component as a function of its pressure is given

as

๐œ•๐บ๐‘–

๐œ•๐‘ƒ๐‘–= ๐‘‰

๐œ•๐บ๐‘– =๐‘…๐‘‡๐‘‘๐‘ƒ๐‘–

๐‘ƒ๐‘–

๐‘‘ ๐‘›๐บ = ๐‘›๐‘‰ ๐‘‘๐‘ƒ โˆ’ ๐‘›๐‘† ๐‘‘๐‘‡ + ๐œ‡๐‘– ๐‘‘๐‘›๐‘–

๐œ•๐บ๐‘– = ๐‘…๐‘‡๐‘‘๐‘ƒ๐‘–

๐‘ƒ๐‘–

๐บ๐‘– = ๐บ๐‘–๐‘œ + ๐‘…๐‘‡ ln

๐‘ƒ๐‘–

๐‘ƒ๐‘–๐‘œ = ๐บ๐‘–

๐‘œ + ๐‘…๐‘‡ ln๐‘ƒ๐‘– โˆ’ 0

Since pressure of gases at standard conditions is assigned a value of 1 atm

The change in free energy of the system at constant temperature is

๐‘›๐บ = ๐‘›๐‘–๐บ๐‘–

Since mole number and pressure of ideal gases are proportional, ni /Pi is constant

and since the total pressure of the system is constant, ๐‘‘๐‘ƒ๐‘– = 0

๐‘‘ ๐‘›๐บ = ๐‘›๐‘– ๐‘‘๐บ๐‘– + ๐บ๐‘– ๐‘‘๐‘›๐‘–

โˆ† ๐‘›๐บ = ๐‘…๐‘‡๐‘›๐‘–

๐‘ƒ๐‘–๐‘‘๐‘ƒ๐‘– + ๐บ๐‘– ๐‘‘๐‘›๐‘–

โˆ†๐บ = ๐บ๐‘– ๐‘‘๐‘›๐‘–

In the case of system equilibrium

If the number of molecules of each component in the ideal gas mixture is relatively high,

their coefficients a, b, c, d can be used to represent ๐‘‘๐‘›๐‘–:

๐‘๐บ๐ถ๐‘œ + ๐‘‘๐บ๐ท

๐‘œ โˆ’ ๐‘Ž๐บ๐ด๐‘œ โˆ’ ๐‘๐บ๐ต

๐‘œ + ๐‘…๐‘‡ ln๐‘ƒ๐ถ๐‘ +๐‘…๐‘‡ ln๐‘ƒ๐ท

๐‘‘ +๐‘…๐‘‡ ln๐‘ƒ๐ดโˆ’๐‘Ž +๐‘…๐‘‡ ln๐‘ƒ๐ต

โˆ’๐‘ = 0

where โˆ†๐บ๐‘œ = ๐‘๐บ๐ถ๐‘œ + ๐‘‘๐บ๐ท

๐‘œ โˆ’ ๐‘Ž๐บ๐ด๐‘œ โˆ’ ๐‘๐บ๐ต

๐‘œ

Absolute Gibbs free energy is computed for condensed phases as:

๐บ๐‘– = ๐บ๐‘–๐‘œ + ๐‘…๐‘‡ ln ๐‘Ž๐‘–

where a can be taken as unity for pure condensed phases

โˆ†๐บ = ๐บ๐‘–๐‘œ ๐‘‘๐‘›๐‘– + ๐‘…๐‘‡ ln(๐‘ƒ๐‘–) ๐‘‘๐‘›๐‘– = 0

โˆ†๐บ = ๐บ๐‘– ๐‘‘๐‘›๐‘– = 0

โˆ†๐บ๐‘œ + ๐‘…๐‘‡ ln๐‘ƒ๐ถ

๐‘๐‘ƒ๐ท๐‘‘

๐‘ƒ๐ด๐‘Ž๐‘ƒ๐ต

๐‘ = 0

The equation can be written for condensed phases as

โˆ†๐บ = โˆ†๐บ๐‘œ + ๐‘…๐‘‡ ln๐‘Ž๐ถ

๐‘๐‘Ž๐ท๐‘‘

๐‘Ž๐ด๐‘Ž๐‘Ž๐ต

๐‘= โˆ†๐บ๐‘œ + ๐‘…๐‘‡ ln๐‘„

Q is called the reaction quotient

Q = K when โˆ†๐บ = 0

โˆ†๐บ = 0 = โˆ†๐บ๐‘œ + ๐‘…๐‘‡ ln๐พ

โˆ†๐บ๐‘œ is readily given in literature for most compounds at STP

Since ๐œ•๐บ๐‘œ

๐œ•๐‘‡ ๐‘ƒ= โˆ’๐‘†,

โˆ†๐บ๐‘œ = โˆ†๐ป๐‘œ + ๐‘‡๐œ•โˆ†๐บ๐‘œ

๐œ•๐‘‡๐‘ƒ

โˆ’๐‘…๐‘‡ ln๐พ = โˆ†๐ป๐‘œ โˆ’ ๐‘‡๐œ• ๐‘…๐‘‡ ln๐พ

๐œ•๐‘‡๐‘ƒ

๐œ• ln๐พ

๐œ•๐‘‡=

โˆ†๐ป๐‘œ

๐‘…๐‘‡2

๐œ• ln๐พ

๐œ• 1 ๐‘‡

= โˆ’โˆ†๐ป๐‘œ

๐‘…Vanโ€™t Hoff equation

Equilibrium constant K of condensed phases

๐‘Ž๐ด ๐‘  + ๐‘๐ต ๐‘  ๐‘๐ถ ๐‘  + ๐‘‘๐ท ๐‘  โˆ†๐บ1๐‘œ

The standard state equilibrium free energy of the above reaction can be expressed in terms of

the partial pressures of the gas phase of the components

At equilibrium

For all components the equilibrium equations are

๐‘Ž๐ด ๐‘  + ๐‘๐ต ๐‘  = ๐‘๐ถ ๐‘  + ๐‘‘๐ท ๐‘  โˆ†๐บ1๐‘œ

๐‘Ž๐ด ๐‘”, ๐‘ƒ๐ด๐‘œ = ๐‘Ž๐ด ๐‘  โˆ†๐บ2 = 0

๐‘๐ต ๐‘”, ๐‘ƒ๐ต๐‘œ = ๐‘๐ต ๐‘  โˆ†๐บ3 = 0

๐‘๐ถ ๐‘”, ๐‘ƒ๐ถ๐‘œ = ๐‘๐ถ ๐‘  โˆ†๐บ4 = 0

๐‘‘๐ท ๐‘”, ๐‘ƒ๐ท๐‘œ = ๐‘‘๐ท ๐‘  โˆ†๐บ5 = 0

๐‘Ž๐ด ๐‘”, ๐‘ƒ๐ด๐‘œ + ๐‘๐ต ๐‘”, ๐‘ƒ๐ต

๐‘œ = ๐‘๐ถ ๐‘”, ๐‘ƒ๐ถ๐‘œ + ๐‘‘๐ท ๐‘”, ๐‘ƒ๐ท

๐‘œ โˆ†๐บ6 = โˆ†๐บ1๐‘œ

Reaction free energy is the same if the reaction between gas phases that are in equilibrium

with the condensed phases is taken into consideration

However the reaction between gas phases is not in equilibrium state since โˆ†๐บ6 โ‰  0

The equilibirum reaction between gas phases should include actual partial pressures rather

than pure pressures of the components:

๐‘Ž๐ด ๐‘”, ๐‘ƒ๐ด + ๐‘๐ต ๐‘”, ๐‘ƒ๐ต = ๐‘๐ถ ๐‘”, ๐‘ƒ๐ถ + ๐‘‘๐ท ๐‘”, ๐‘ƒ๐ท โˆ†๐บ7 = 0

๐‘Ž๐ด ๐‘”, ๐‘ƒ๐ด๐‘œ = ๐‘Ž๐ด ๐‘  โˆ†๐บ = 0

The change in reaction free energy due to the altered partial pressures can be calculated as

๐‘‘๐บ๐‘– = ๐‘…๐‘‡๐‘‘ ln๐‘ƒ๐‘– ๐‘œ๐‘Ÿ โˆ†๐บ = ๐‘…๐‘‡ ln๐‘ƒ๐‘–

๐‘ƒ๐‘œ

๐‘Ž๐ด ๐‘”, ๐‘ƒ๐ด๐‘œ + ๐‘๐ต ๐‘”, ๐‘ƒ๐ต

๐‘œ = ๐‘๐ถ ๐‘”, ๐‘ƒ๐ถ๐‘œ + ๐‘‘๐ท ๐‘”, ๐‘ƒ๐ท

๐‘œ โˆ†๐บ6๐‘œ = โˆ†๐บ1

๐‘œ

๐‘Ž๐ด ๐‘”, ๐‘ƒ๐ด = ๐‘Ž๐ด ๐‘”, ๐‘ƒ๐ด๐‘œ โˆ†๐บ8

๐‘œ = ๐‘…๐‘‡ ln๐‘ƒ๐‘œ

๐‘ƒ๐ด

๐‘Ž

๐‘๐ต ๐‘”, ๐‘ƒ๐ต = ๐‘๐ต ๐‘”, ๐‘ƒ๐ต๐‘œ โˆ†๐บ9

๐‘œ = ๐‘…๐‘‡ ln๐‘ƒ๐‘œ

๐‘ƒ๐ต

๐‘

๐‘๐ถ ๐‘”, ๐‘ƒ๐ถ = ๐‘๐ถ ๐‘”, ๐‘ƒ๐ถ๐‘œ โˆ†๐บ10

๐‘œ = ๐‘…๐‘‡ ln๐‘ƒ๐‘œ

๐‘ƒ๐ถ

๐‘

๐‘‘๐ท ๐‘”, ๐‘ƒ๐ท๐‘œ = ๐‘‘๐ท ๐‘”, ๐‘ƒ๐ท

๐‘œ โˆ†๐บ11๐‘œ = ๐‘…๐‘‡ ln

๐‘ƒ๐‘œ

๐‘ƒ๐ท

๐‘‘

๐‘Ž๐ด ๐‘”, ๐‘ƒ๐ด + ๐‘๐ต ๐‘”, ๐‘ƒ๐ต๐‘œ = ๐‘๐ถ ๐‘”, ๐‘ƒ๐ถ

๐‘œ + ๐‘‘๐ท ๐‘”, ๐‘ƒ๐ท๐‘œ โˆ†๐บ7 = 0

โˆ†๐บ7 = โˆ†๐บ1๐‘œ + โˆ†๐บ๐‘– = 0

0 = โˆ†๐บ1๐‘œ + ๐‘…๐‘‡ ln

๐‘ƒ๐ถ๐‘ƒ๐‘œ

๐‘ ๐‘ƒ๐ท๐‘ƒ๐‘œ

๐‘‘

๐‘ƒ๐ด๐‘ƒ๐‘œ

๐‘Ž ๐‘ƒ๐ต๐‘ƒ๐‘œ

๐‘ = โˆ†๐บ1๐‘œ + ๐‘…๐‘‡ ln๐พ

โˆ†๐บ ๐‘œ = ๐‘…๐‘‡ ln K

Fugacity

The equations used to calculate the free energy change of mixtures comprised of ideal gases

like ๐‘‘๐บ๐‘– = ๐‘…๐‘‡๐‘‘ ln๐‘ƒ๐‘– can be modified by the fugacity concept for use with non-ideal gases:

๐‘‘๐บ๐‘– = ๐‘…๐‘‡๐‘‘ ln ๐‘“๐‘–

For an ideal gas ๐‘“๐‘– = ๐‘ƒ๐‘–

If the free energy of a substance corresponding to the standard state fugacity is denoted as

โˆ†๐บ๐‘–๐‘œ,

โˆ†๐บ1 โˆ’ โˆ†๐บ1๐‘œ = ๐‘…๐‘‡ ln

๐‘“๐‘–

๐‘“๐‘–๐‘œ

As pressure approaches 0, ๐‘“๐‘– approaches ๐‘ƒ๐‘–

Activity rather than fugacity is used to relate ideal mixtures to condensed phase mixtures

๐‘Ž๐‘– =๐‘“๐‘–

๐‘“๐‘–๐‘œ

โˆ†๐บ๐‘œ can be calculated for any temperature since โˆ†๐บ๐‘œ = โˆ†๐ป๐‘œ โˆ’ ๐‘‡โˆ†๐‘†๐‘œ,

โˆ†๐บ๐‘œ = โˆ†๐ป๐‘œ298 +

298

๐‘‡

โˆ†๐ถ๐‘ƒ๐‘‘๐‘‡ โˆ’ ๐‘‡ โˆ†๐‘†๐‘œ298 +

298

๐‘‡ โˆ†๐ถ๐‘ƒ๐‘‘๐‘‡

๐‘‡

where ๐ถ๐‘ƒ = ๐‘Ž + ๐‘๐‘‡ +๐‘

๐‘‡2

and โˆ†๐ถ๐‘ƒ= โˆ†๐‘Ž + โˆ†๐‘๐‘‡ +๐‘

๐‘‡2 where โˆ†๐‘Ž, ๐‘, ๐‘ = โˆ†๐‘Ž, ๐‘, ๐‘๐‘๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก๐‘  โˆ’ โˆ†๐‘Ž, ๐‘, ๐‘๐‘Ÿ๐‘’๐‘Ž๐‘๐‘ก๐‘Ž๐‘›๐‘ก๐‘ 

โˆ†๐บ๐‘œ = โˆ†๐ป๐‘œ298 +

298

๐‘‡

โˆ†๐‘Ž + โˆ†๐‘๐‘‡ + โˆ†๐‘๐‘‡2 ๐‘‘๐‘‡ โˆ’ ๐‘‡ โˆ†๐‘†๐‘œ

298 + 298

๐‘‡ โˆ†๐‘Ž + โˆ†๐‘๐‘‡ + โˆ†๐‘๐‘‡2 ๐‘‘๐‘‡

๐‘‡

โˆ†๐บ๐‘œ = โˆ†๐ป๐‘œ298 + โˆ†๐‘Ž๐‘‡ +

โˆ†๐‘๐‘‡2

2โˆ’ โˆ†๐‘

๐‘‡ โˆ’ ๐‘‡ โˆ†๐‘†๐‘œ298 + โˆ†๐‘Ž ln๐‘‡ + โˆ†๐‘๐‘‡ โˆ’ โˆ†๐‘

2๐‘‡2

Replacement of the upper and the lower limits yields

โˆ†๐บ๐‘œ = ๐ผ๐‘œ + ๐ผ1๐‘‡ โˆ’ โˆ†๐‘Ž๐‘‡ ln๐‘‡ โˆ’โˆ†๐‘

2๐‘‡2 โˆ’

โˆ†๐‘

2๐‘‡

where ๐ผ๐‘œ = โˆ†๐ป๐‘œ298 โˆ’ โˆ†๐‘Ž298 +

โˆ†๐‘2982

2โˆ’ โˆ†๐‘

298

๐ผ1 = โˆ†๐‘Ž โˆ’ โˆ†๐‘†๐‘œ298 + โˆ†๐‘Ž ln 298 + โˆ†๐‘298 โˆ’ โˆ†๐‘

2โˆ—2982

T

298

T

298

Example - One important equilibrium between condensed phases such as metals and

oxides and a gaseous phase such as oxygen is oxidation of metals

Consider the oxidation of copper

4Cu ๐‘  + O2 ๐‘” = 2Cu2O(๐‘ )

โˆ†๐ป๐‘œ298 = โˆ’334400 J

โˆ†๐‘†๐‘œ298 = โˆ’152.07 J/K

โˆ†๐ถ๐‘ƒ = 4.18 + 0.01839๐‘‡ +1.67 โˆ— 105

๐‘‡2 J/K

๐ผ๐‘œ = โˆ’334400 โˆ’ 1500๐ผ1 = 4.18 + 152.07 + 28.35

Using the above thermochemical data

โˆ†๐บ๐‘œ = โˆ’335900 + 184.59๐‘‡ โˆ’ 4.18๐‘‡ ln๐‘‡ โˆ’ 0.0092๐‘‡2 โˆ’0.84 โˆ— 105

๐‘‡J

Alternatively the standard free energy for formation of pure Cu2O from pure Cu and oxygen

is

โˆ†๐บ๐‘œ = ๐‘…๐‘‡ ln๐‘ƒ๐‘‚2(๐‘’๐‘ž๐‘š)

Experimental variation of โˆ†๐บ๐‘œwith T can be calculated from the measured oxygen partial

pressure ๐‘ƒ๐‘‚2(๐‘’๐‘ž๐‘š) that is in equilibrium with Cu and Cu2O

When experimental โˆ†๐บ๐‘œ vs T is fit to

โˆ†๐บ๐‘œ = ๐ด + ๐ต๐‘‡ log๐‘‡ + ๐ถ๐‘‡โˆ†๐บ๐‘œ = โˆ’338580 โˆ’ 32.77๐‘‡ log๐‘‡ + 246.62๐‘‡ J

If a 2-term fit is used

โˆ†๐บ๐‘œ = ๐ด + ๐ต๐‘‡โˆ†๐บ๐‘œ = โˆ’328580 + 137.94๐‘‡ J

The comparison of โˆ†๐บ๐‘œ calculated from the thermochemical data and experimental data is

made, the difference in temperature range 400 to 1200 K is seen between 293 to 794 J

The comparison of โˆ†๐บ๐‘œ calculated from the experimental data and 2-term fit shows that

the difference in the 400 to 1200 K temperature range is even less, between 286 to 788 J

T (K) Thermochemical Experimental 2-term fit a-b b-c a-c

400 -273748 -274041 -273324 293 -717 -424

600 -244655 -245241 -245736 586 495 1081

800 -216566 -217360 -218148 794 7881582

1000 -189480 -190274 -190560 794 286 1080

1200 -163270 -163689 -162972 419 -717 -298

Table shows that overall difference between โˆ†๐บ๐‘œ calculated from the thermochemical data

and 2-term fit in the temperature range is at most 1.6 kJ which is within the experimental

error for most of the โˆ†๐บ๐‘œmeasurements

Therefore the variation of โˆ†๐บ๐‘œwith temperature for oxidation and sulfidation reactions can

be approximated to linear forms

This observation lead to representation of the reaction free energies as Ellingham

diagram:

Ellingham plotted the experimentally determined โˆ†๐บ๐‘œ values as a function of T for the

oxidation and sulfidation of a series of metals

The general form of the relationships approximated to straight lines over temperature

ranges in which no change in physical state occurred

The complex terms TlnT, T2 and 1/T does not affect the linearity of the curves for the

considered range

โˆ†๐บ๐‘œ = โˆ†๐ป๐‘œ โˆ’ ๐‘‡โˆ†๐‘†๐‘œ

โˆ†๐บ๐‘œ = ๐ด + ๐ต๐‘‡

A, which is the intercept at 0 K, is the temperature independent โˆ†๐ป๐‘œ

B, the slope, โˆ’โˆ†๐‘†๐‘œ

These approximations imply that ฮ”CPโ‰ˆ 0 for oxidation reactions

Another important characteristic of Ellingham diagram is that; all the lines represent

reactions involving one mole of oxygen:

2๐‘ฅ

๐‘ฆM + O2

2

๐‘ฆMxOy

Therefore, the ordinate โˆ†๐บ๐‘œ of all the oxidation reactions become ๐‘…๐‘‡ ln๐‘ƒ๐‘‚2(๐‘’๐‘ž๐‘š)

Almost all the โˆ†๐บ๐‘œ lines have positive slopes since โˆ†๐‘†๐‘œ < 0:

M(s) + O2(๐‘”) MO2(๐‘ )

โˆ†๐‘†๐‘œ = โˆ†๐‘†๐‘œ๐‘€๐‘‚2 โˆ’ โˆ†๐‘†๐‘œ

๐‘€ โˆ’ โˆ†๐‘†๐‘œ๐‘‚2

๐‘†๐‘œ๐‘‚2 is generally dominant in the temperature range where M and MO2 are solid

So โˆ†๐‘†๐‘œ โ‰ˆ โˆ’๐‘†๐‘œ๐‘‚2

The slopes are approximately equal in the temperature range where metal and oxide are

solid

Therefore almost all the lines are parallel to each other in this temperature range

Examples

2Ni ๐‘  + O2 ๐‘” 2NiO ๐‘ 

๐‘†๐‘œ๐‘‚2 = 205.11

๐ฝ

๐‘š๐‘œ๐‘™. ๐พ

๐‘†๐‘œ๐‘๐‘–(๐‘ ) = 29.8

๐ฝ

๐‘š๐‘œ๐‘™. ๐พ

๐‘†๐‘œ๐‘๐‘–๐‘‚(๐‘ ) = 38.09

๐ฝ

๐‘š๐‘œ๐‘™. ๐พ

โˆ†๐‘†๐‘œ = โˆ’188.53 J/K

Sn s + O2 ๐‘” SnO2 ๐‘ 

๐‘†๐‘œ๐‘†๐‘›(๐‘ ) = 51.49

๐ฝ

๐‘š๐‘œ๐‘™. ๐พ

๐‘†๐‘œ๐‘†๐‘›๐‘‚2(๐‘ ) = 48.59

๐ฝ

๐‘š๐‘œ๐‘™. ๐พ

โˆ†๐‘†๐‘œ = โˆ’208.04 J/K

Standard entropies at 298 K

Standard entropies at 298 K

The exceptions to the general trends in oxidation lines are

C ๐‘  + O2 ๐‘” CO2 ๐‘” โˆ†๐‘†๐‘œ โ‰ˆ 0

and

2C ๐‘  + O2 ๐‘” 2CO ๐‘” โˆ†๐‘†๐‘œ > 0

Lines on Ellingham diagrams often have sharp breaks in them which are caused by phase

transformations

The straight line representation of โˆ†๐บ๐‘œ vs T relationships are valid if there is no physical

change taking place for any one of the components taking part in the reaction equilibrium

Consider the transformation of M(s) to M(l) at Tm

M ๐‘  + O2 ๐‘” MO2 ๐‘”

M ๐‘™ + O2 ๐‘” MO2 ๐‘” 1

2

T

โˆ†๐ป๐‘œ

Tm

T

โˆ†๐‘†๐‘œ

Tm

โˆ†๐ป๐‘œ1> โˆ†๐ป๐‘œ

2

โˆ†๐‘†๐‘œ1> โˆ†๐‘†๐‘œ

2

The net effect of phase transformation of a reactant from a low temperature to a high

temperature phase is an increase in slope

T

โˆ’๐‘‡โˆ†๐‘†๐‘œ

Tm

M(s)

M(l)

T

โˆ†๐บ๐‘œ

Tm

M(s)

M(l)

Consider the transformation of product MO2(s) to MO2(l) at Tm

M ๐‘  + O2 ๐‘” MO2 ๐‘ 

M ๐‘  + O2 ๐‘” MO2 ๐‘™

1

2

TTm

T

โˆ†๐‘†๐‘œ

โˆ†๐ป๐‘œ1< โˆ†๐ป๐‘œ

2

โˆ†๐‘†๐‘œ1< โˆ†๐‘†๐‘œ

2

โˆ†๐ป๐‘œ

Tm

The net effect of phase transformation of a product from a low temperature to a high

temperature phase is a decrease in slope

T

โˆ’๐‘‡โˆ†๐‘†๐‘œ

Tm

MO2 (s)MO2 (l)

T

โˆ†๐บ๐‘œ

Tm

M(s)

M(l)

Effect of evaporation on โˆ†๐บ๐‘œ vs T plots is similar to melting, but more pronounced since

โˆ†๐ป๐‘œ๐‘ฃ is about 10 times greater than โˆ†๐ป๐‘œ

๐‘š

Slope changes for allotropic transformations will be less than that for melting

T

โˆ†๐บ๐‘œ

Tm

M(s)

M(l)

M(g)

Tb

The Ellingham line for the M/MO2 equilibrium is shown in the figure

โˆ†๐บ = 0 all along the line and oxygen partial pressure is PO2(eqm)

Let the partial pressure of oxygen be PO2(actual) when a metal is exposed to an oxidizing

atmosphere

โˆ†๐บ = โˆ†๐บ๐‘œ + ๐‘…๐‘‡ ln1

๐‘ƒ๐‘‚2(๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™), โˆ†๐บ = ๐‘…๐‘‡ ln๐‘ƒ๐‘‚2 ๐‘’๐‘ž๐‘š โˆ’๐‘…๐‘‡ ln๐‘ƒ๐‘‚2 ๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™

At any point above the line, ๐‘ƒ๐‘‚2 ๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™ > ๐‘ƒ๐‘‚2 ๐‘’๐‘ž๐‘š , then โˆ†๐บ < 0This implies that MO2 formation is spontaneous and MO2 is stable above the line

At any point below the line, ๐‘ƒ๐‘‚2 ๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™ < ๐‘ƒ๐‘‚2 ๐‘’๐‘ž๐‘š , then โˆ†๐บ > 0This implies that MO2 formation is impossible and M is stable below the line

T

โˆ†๐บ๐‘œ

M, O2

MO2, O2

Most of the lines on Ellingham diagram are almost parallel to each other

Consider the Ellingham lines for the M/MO2 and N/NO2 equilibria:

The oxide with the larger region of stability is more stable

It is evident from the figure that NO is relatively more stable than MO

The element with the more stable oxide is more reactive

The element of the less stable oxide is more stable in elemental form, M is more stable

than N

2MO ๐‘  2M ๐‘  + O2(๐‘”)

2N ๐‘  + O2 ๐‘” 2NO(๐‘ )

2MO ๐‘  + 2N ๐‘  2M ๐‘  + 2NO ๐‘  Net reaction

T

โˆ†๐บ๐‘œ

M, NO2

MO2, NO2

M, N

Ellingham lines sometimes intercept each other

Consider the two lines for X/XO and Y/YO equilibria:

Relative stability of oxides changes with temperature in this case

Below the equilibrium temperature, YO2 is more stable, XO2 becomes more stable above TE

All the components X, Y, XO2, YO2 coexist at the equilibrium temperature

There is no stability region for Y and XO2 together below TE, and for X, YO2 together above

TE

If Y and XO2 are brought together at a temperature below TE, Y will be oxidized while XO2

will be reduced

T

โˆ†๐บ๐‘œ

X, YO2

XO2, YO2

X, Y

XO2, Y

TE

Partial pressure grid lines

Ellingham diagram offers a simple and useful way to estimate equilibrium oxygen

pressures as a function of temperature

For constant ๐‘ƒ๐‘‚2 values, โˆ†๐บ๐‘œ vs T is represented by straight lines with R ln๐‘ƒ๐‘‚2slope and

โˆ†๐บ๐‘œ = 0 intercept

Constant oxygen partial pressures can be read from the oxygen partial pressure scale

when these lines are superimposed

The intersections of the constant oxygen partial pressure lines and the X-XO2equilibirum

line give the equilibrium oxygen partial pressures for this reaction at various temperatures

Oxygen partial pressure at 700 ยฐC, in equilibrium with X and XO2 is 10-11atm

Oxide is stable if the oxide lines are under the partial pressure line at a temperature

T

โˆ†๐บ๐‘œ

XO2, O2

X, O2

700 ยฐC

0PO2

1 atm

10-11 atm

Oxide is stable if the

oxide lines are under

the partial pressure

line at a temperature