MIUEUHYGIENE * 9IE S,essíon +t yoto Paper...

27
[i1sì-'J-:iJ INSTITUUT VOOR MIUEUHYGIENE EN GEZONDHEIÕSTECI.INIEK TNO Pubtikat¡ê "* 6O0 Postbusli4 3600AÊ ÞEt.Fi \ *.Þ !¡I&9{_9E$I9I_:_VrSUAL a¡rD THERMAL CoNSF.QIIENCES,. &<t U)loll- 9IE S,essíon +t yoto Paper NL 7 Bibliotheek HoofC!,antsor TNO 's-Gravcnhage I I fl¡rp.n, ¡"ut¡ Anal¿sis o! ghe therma! gnd da¿líghting perfoqeagca gf-w!n!qgs- By: Mrs. P.M. van Bergem-Jansen and R.S. Soeleman FENSTEREIIfl^IURF : VISIIELLE UND TIIER¡fISCHE FOLGEN Ana l¡s e 9 eg legs ge : ags !ülrgng 3 n_rgzgg_agf_lflqrne_ugd_Tgegs l igh tb e Lgughgugg- Von: Frau P.M. van Bergem-Jansen und R.$. Soelenan PFo¡FT DEJla TENETR{ ; coNsEQYr\c4s,v.ISuELtss EI THERMIQÏ{ES Analyse de lrexécuÈion-therm:ique et ¿,'!!c!a!rag! de la fenêtre --g Par: Ifuie. P.M. van BergenrJansen et R.S. Soeleman Publication nr. 680 of the Schoemakerstraat 97, Delft, InstÍtute for Environmental tlygiene 1N0' Ttre Netherlands. TNO 11419

Transcript of MIUEUHYGIENE * 9IE S,essíon +t yoto Paper...

[i1sì-'J-:iJINSTITUUT VOOR MIUEUHYGIENEEN GEZONDHEIÕSTECI.INIEK TNOPubtikat¡ê "* 6O0Postbusli4 3600AÊ ÞEt.Fi

\*.Þ

!¡I&9{_9E$I9I_:_VrSUAL a¡rD THERMAL CoNSF.QIIENCES,.

&<t U)loll-

9IE S,essíon +t yoto

Paper NL 7

Bibliotheek HoofC!,antsor TNO

's-Gravcnhage

I I fl¡rp.n, ¡"ut¡

Anal¿sis o! ghe therma! gnd da¿líghting perfoqeagca gf-w!n!qgs-

By: Mrs. P.M. van Bergem-Jansen and R.S. Soeleman

FENSTEREIIfl^IURF : VISIIELLE UND TIIER¡fISCHE FOLGEN

Ana l¡s e 9 eg legs ge : ags !ülrgng 3 n_rgzgg_agf_lflqrne_ugd_Tgegs l igh tb e Lgughgugg-

Von: Frau P.M. van Bergem-Jansen und R.$. Soelenan

PFo¡FT DEJla TENETR{ ; coNsEQYr\c4s,v.ISuELtss EI THERMIQÏ{ES

Analyse de lrexécuÈion-therm:ique et ¿,'!!c!a!rag! de la fenêtre--g

Par: Ifuie. P.M. van BergenrJansen et R.S. Soeleman

Publication nr. 680 of the

Schoemakerstraat 97, Delft,InstÍtute for Environmental tlygiene 1N0'

Ttre Netherlands.

TNO

11419

ABSTRACT

Selected results of an analysis for the Èhermal and lighting require-ments associated with windor¿s in utility buildings are presented. Thisanalysis concerns the effects of r¡indow size and shape, orientationand of different ways of supplementing the daylight by artifieial lightfor a Ëypical office situation in the Netherlands.Thereby it is assumed that daylight could replace or supplement artifi-cial light whenever it eould supply a specified minimum level of illu-minance on the working plane.

The selective operation of a sunshading device is Èaken intó accountto prevent glare by direct sunshine.

It is shown that substantíal savings in energy consumption for lightingcan be made by a combination of reasonable daylight contribution and a

rational switching or dimming policy in response to daylíght variations.0f those trrro the dinuning system consídered gives the greatest savings.The reduction in electricity demands for lighting results in lesssavings on the thermêl requirements. Here Èhe weather loads are noresígnificant than the lighting load. Because of the great variations inthe weather conditions considered in this studyn Èhe authors give pre-ference to the use of reaL weather data in thermal and energy calcula-tions above reference ones.

ZUSAMMENFASSI]NG

Es ¡¿erden einige selektierte Ergebnisse einer Analyse der thermischenund Beleuchtungsanforderungen an Fenster in Bürogebäuden gegeben. Es

betrifft hier die Effekte von Fensterabmessungen und Form, Orient.ierungund verschiedenen Möglichkeiten, das Tageslicht in einer typischen Büro-situation in den Niederlanden mit KunstLícht zu ergänzen.Dabei wird angenomnen, dass Tageslicht Kunstl-icht ersetzen oder ergän-zen kann, I{renn es nur ein spezifisches Mindestbeleuchtungsniveau auf derArbeitsfläche liefern kann.

Auch die selektive hlirkung eines Sonnenschutzgeräts wird berücksichtigt,um Blendung bei direktem Sonnenschein zu verhindern.Es r¿ird gezeígt, dass eine bedeutende Energíe-einsoarung für BeLeuchtung

möglich íst, wenn nan das TagesLieht nit einer rationellen Einschaltungsund Regelungspol í tik gegenüber den Tagesl ich tschr^rankungen kombiníert .

von diesen beiden liefert das betrachtete Lichtregelungssystem diegröss ten Einsparungen.

Die Abnahme des Elektrizitätsverbrauches für Beleuchtung hat wenigereEinsparungen der thermischen Anforderungen zur Folge. Díe I^letterbelas-tungen sind hier bedeutender als die Belastung der Beleuchtung. f,Iegen

der grossen Schwankungen in den tr{etterlagen, die hier betrachtet werden,bevorzugen die Verfasser die Vennrendung wirklicher [iletterdaten in ther-mischen und Energie-berechnungen vor der verwendung Referenz-daten.

RESI]ME

0n présente quelques résultats sélectionnés dtune analyse des demandes

thermíques et dréclairage aux fenêtres dans des bâtinents d'utilitépublique. 11 concerne ici les effets des dimensions et de la forme de

la fenêtrê, 1'oríentatíon eË 1es diffêrentes manières de suppléer de

la lumière artificielle ã la lt¡mière du jour dans une siruation typíquede bureau aux Pays Bas.

On suppose que 1a lumière du jour peut remplacer ou cornpléter la lunièreartificielle, au moment qutelle peut fournir un niveau dféclaírageminimum spécifié au le plan de rravail.LracÈion sélective dtun appareil protecteur contre le soleil est aussiconsidêrée' pour enrpêcher de la lunière éblouissante par du soleil direct.I1 est montré, guton peuÈ économiser considérablement sur énergie pouréclairage, si on comdine La lumière du jour avec une polítique rationeLLedréclairer et de régler en réponse aux variations de la lt¡rnière du jour.De ces deux systèmes, le système de régler considéré donne dréconomiepour les demandes' thermiques. Ici, 1es charges du tenps sont plus inrpor-Èantes que La charge de 1téclairage. A cause des grandes variations du

temps, guê sont considérées ici, les auteurs préfèrent ã user les don*nées du temps rêelles dans les calculations thermiques et drénergie.

- l-

I. INTRDUCTION

The energy required for elecrricity in utility buildings can be very.:- high. It has been shown that the energy used for the indoor lighting

consËitutes a major portion of this (Euser 1978).

Maximum use of daylight can reduce enrgy consumption for electriclight. In addiËion, the use of daylight can also reduce the coolingloads resulting frorn artificial lighting.In the area near the windoht to approximately 5 m distance from thewindor¿ wal1, daylight can be suffieient for illumination of the visualtask. The utilization of daylight, however, requires larger r¡indor^r

areas, whieh can result in increased \^rinter heat loss and sunrner heatgain. The reduction of energy usage for lighting and cooling by usingdaylight could, therefore, be partly or conrpletely offset by an in-crease in energy eonsurnption for heating or cooling. FurÈhermore,

visual task performance and comfort might be adversely affected by

glare produced by daylight and direct sunshine.AlÈhough, these effecÈs can be redueed somer¿hat by Ëhe proper opera-tion of sunshading devices, studies on Ëhis subjects are needed. The

results of these studies rnight be useful, l. to the designer in deter-mining the optimum asmount of fenestration and wíndow design thatbalances the benefits and disadvantages concerning Ëhe use of daylight,2. to the engineer in deciding which energy conservation systen iseffective r.rith a given window configuratíon.

Here a beginning with thís approach is made. An analysis of the thermaland daylíghting performance of windows of various sizes ís used, lühere-

byrthe effect of the selective operation of a sunshadíng device and ofdifferent ways of supplementing the daylight by artificial light ares tudied.SelecEive resul-ts for a typical office situation in the Netherlands

are presented to illustrate the effects on lighting and thermal require-ments.

2. DESCRIPTION OF ÎTIE ANALYSIS

¿.1 g"g".igt!og cf_the_o$rcg mo¡lufe_

A multi-person office in a building in the Dutch regionnríth a width of 7.2 m, a depth of. 7 ,2 mn and a heíght ofThe office has one external facade and is located in the

ís considered,

2.7 m.(rig. l)rniddle of a

Figure I

figure 2

fígure 3

-2-highrise building. Thus, all the non-facade areas are considered to

have no heat transfer. Calculations are carried out for an average

building construction. Afixed thernal load due to human occupancy

hras set to 5 persons occupying the office the whole working period

except during lunchtime. An equipment load rnras fixed to simulate

offíce equipment such as type writers and calculators (not conrputers).

See Appendix A.

The artificial lighting ínstallation is of the general fLuorescent

type and designed on a mean lighting level (in place and time) of

650 lux at desk top level (lighting load : ZZ w/n?) * See fig. 2.

Three windor¡ sizes are consideredz 302, 507. ar..d 707".

Each glass percentage is divided over the outer wall in such a way

that:a) a view out is guaranteed

b) a maximum entering of dayl-ight is provided on the working

plane, which means that the window çill is not lon¡er than

0.8 m above floor and the window heíght reaches the ceiling.c) the daylíght distribution over the room width is uniform.

No opposite buildings are considered (Fig. 3).

Venetian blinds of light colour are installed on the inside, which

forms common practice nowadays. the windows are double gl-azed. Tvo

orientations are considered : SE and Nlf.

2. Z gpgt grþg gf-t!e-s unshading devi ce-

The above mentíoned sun shading deviCe is considered to be operated

automatically; as soon as Èhe direct sunlight reaches further than

t m into the room on the working pl-ane, the sun shading device is

used cornpletely. To let as much dayl-ight enter the room the Louvres

are bLocked at 45o.

?.å srere f rom_day!íghlig8_

In the analysís the factor glare is not taken into account eomplete-

ly. As the blinds are automatically used when direct sunlight pene-

trates the interior (par. 2.2), glare is controll"ed in that case.

In the other cases, for exa¡nÞle on brigJrt days without dírect sun*'

light penetration in the interior, ít is supposed that the occupants

3-

do not experience glare discomfort. This assumption can only be

accepted when the occupants do not face the windows direetly and

the interior surface areas are of high reflectances. That is why

the following (high) reflectances are taken into account:ceiling - 707", walls - 5OZ, floor - 107.,

!. ! !o s s!t!l i t i es o f_s upp 1 ementing_day 1 i gh t by_ar t i f!c!a! !i gtt!Two ways of supplernenting daylight by artificial light are to be

distinguished: switching and dirmning. For both possibilities ít means

that the artificial light will be used where and when ít is necessary,

that is if the daylight level is below a certain value.

In this study the following conÈrol schemes are considered during nor-mal rrorking hours ( 8.OO - 17.00 o'cl"ock) :

g. per hour the following decisions are made, based on the hourly mean

admission of daylight in four zones of the working plane which corres-pond with the four rows of luminaíres parallel to the windor,¡ r¡all:

l. s¡¿itching system: which row of luminaires can be sr¡ítched off2. diruring system: which ror¿ of luminaires can be switched off and

v¡hich one can be dirmned to which Level

Þ. p"t hour the following decisions are made, based on the hourly mean

admission of daylight in one reference point of the working plane at2.5 n distance fron the window wall and between the side wall-s:

l. switching systen: can the whole lighting installation be switchedoff.

2. dirmning system: can the whole f.ighting installation be sr¿itched

off or can it be dirmned and if so to whích level.

g. during the ¡,rhole working period the whole lighting installationwill be switched on.

In every scheme considered the lights will be s¡^ritched off duringlunch tine (12.00 - 13.00 o'clock). As críteríon r.rill be applied thatthe concerning part of the ligtrting installation can be sr¡itched offas soon as the daylight level in the concerning zone or in the reference

point equals or exceeds 650 lux. In decidíng the din'¡ning percenÈages

a dirmning system is used that controls fluorescent 1íghting instaLla-tions r¿ith traditíonal baLLast círcuits. The lowest possible Light

-4-

output this system and the lamp type used is 72it, as the laurpsstart flickering or switch off aË lor.¡er Levels.

2.5 Therrnal caleulations_The presence of r^rindows and lighting fixtures involves light as wellas heat radiation coming into the room. This radiation as such can

not be picked up by the room-air. First this energy is taken up by thefloor and the walls (also by the furniture etc.).Second, when Ëhe floor and wa1l temperature have become higher than theroom air tenperature, a part of it is supplied to the room air. Thisamount of heaÈ supoly depends on the physical properties of the buildínemass of floor and r¡alls. rn the analysis an average building mass iscons idered.As the artificial lighting installation and the sunshading device areboth actívated along different criteria, the amount of l"ighting energy

and the amounË of solar heat gaín are determined seperately. The arqount

heat gain througJr the facade and by vençilation are also quantified.rn this hray Ëhe influence of the use of daylíght with the concerningwindow designs can be determined more systematícalIy, just as theeffect of the buildíng construction.

There are several methods for calculatíng the heating / cooling demand

in buildings. The one used here isa compuÈer program whích calculates the momentary (dependent on time-step) values of all temperatures and heatflon¡s for one room in a buil-ding with or without temperature control. rt makes use of so-calledresponse functions. It simulates all thermal resístances and capacitiesand ventilating air flows. Specifications as to the indoor conditionsto be maintaíned are given ín Appendix A.

In this analysis the calculations are carríed out using real weather

data.

3.9 Pa¿tlslt_calgulali gng

A corrputer subroutíne is developed to determine the hourly mean amount

of daylight antering a window.

The daylight calculation procedure for thr situation r^rithout sunshading

device ís based upon the dayLight factor approach (Hopkinson 1966). As

this is the same concept as used fot the preparation of the TN0-Dayligh=

ting-Diagrams (Van BergernrJansen 1978,1979), these diagrams - for the

-5-

clear as htell as for the overeast sky - have been used in this analysís.This has the advantage that the distribution of the entering daylightover the working plane can be obtained directly.Then, after having determíned the mean amount of internally reflecteddaylight, the indoor illuminance is for each hour obtained from the

hourly available mean horizontal outdoor illuminaqce.For the situation with sunshading devíce it is considered that theVenetian blinds diffuses the daylight entering through the windor^r íntothe room. The calculation method for the illuminance from a rectangularuniform source is used here (IES 1972).

The hourly available mean illuminance ouÈdoors on the vertical wíndo¡¿-

pane and on Ehe horizontal plane, needed for both caleul-ations, are

obtained using those for the clear and overeast sky and taking intoaccount the real sunshine periods for the Dutch region. According to(Rattunde 1975) Èhis caleulation method leads to reasonable resul-ts.

A scheme for switching off or reducing the artifícial- lighting whenever

the daylighting level at a given point or in a given zone in the roqm

exceeds a prescribed value of illuminaÈion for a specified task, isincluded in this computer program.

3. RESTILTS

Results are presenËed for tr¿o weeks: one r¿eek in November l97l and one

week in May 1972. Those tr^¡o weeks reDresent respectively a week in thewinter and one in the suÍtrner. For the r^reek in May the srnnmer time istaken into account.

For every working day the normal working hours (8.00 - 17.00 ofcLock)

are considered to determine the use of daylight.

The scheme for switching off or reducing the artificial lighting, in-cluded in the daylight program, can be based on two different referencesituations:g) whenever the mean daylight level in a given zone of the working pl-ane

exceeds a prescribed value of illuninance, the corresponding row ofluminaíres are switched off or dirnmed.

þ) whenever the dayt ight leveL in a given poínt of the working plane

exceeds a prescríbed vaLue of iLLurnínance, the nrhole lighting ínsta1La-tíon is switched off or dirnned.

figure 4

figure 5

figure 6

figure 7

-6-

As the criterion for the lighting of the office room is a mean

illuminance of 650 1ux at desk top level in the entire room, the

reference situat.ion b, concerning a reference point at 2.5 m dístancefrom the windor¡ wall, is.not useful here. Figure 4 shows the mean

lighting situations for one hour based on both reference situaËionsa and b for the switchting system. From figure 4b it is clear Ëhat

reference situation b results in a lighting level at the back of the

room that does not ful1fil the above mentioned reguírement.Therefor the following results given ín graphes, only concern thereference situation mentioned under a (switching or dirmring in zones).

4. CONCLUSIONS

The following conclusions are drarnm from the result.s presented withthe lighting situation "a11 lights on'Ì (par.2.4 under c) as thereference situation:

4. I concernine_tle_elegtricity_demand for f.ightingThe larger the glass percenËage, the greater the savings on the

electricity demand for líghting, caused by switching as r¡e1L as by

dinrning policy. Due to the increasing arnount of daylíght penetrationthe necessary supplemenË of artifieial 1-ighting decreases. Here savings

upto 652 are cal-culated.

The dinrning system results in more electrical energy savings than the

switching system does. The artificial lighting can only be sr¡itched offas a specified l-evel of illuminance is available by daylight. I,lhenever

daylight is only sufficient to Drovide a fraction of thís specífied levelof il-lurninance, it is "topped up" by artificial lighting when a dinrning

system is used.

N[,]-orientation gives more savings than SE-orientatíon. Due to the more

frequent necessary use of the sunshading device at the SE-orientation,the Nï,I-orientation results in a greater amount of daylight penetration.

-7-

As in the month of May the outdoor iLlurninances are higher than inËhe month of November, the electricity demand for the necessary suppLe-

menË by artificial light is less.

4. 2 concerning_the_thermal_requiremenÈs

T'he reduction of the thermal demands is not proportionate to the

reducÈion of the electricity demand; it is much smaller.In the situations considered here the r¿eather loads and the glasspercent,age are more significant.Ilhenever heating is necessary the reduction of the cooling Load isaccompanied by the increase of the heating load.

!. I concernir¡e*the_llglt_i-ng eng lheryal seguirenenrs_Though it seems to be obvious Ëhat maximum use of daylight withlarge wíndor¿ areas r¿ould lead to Ëhe greatest savings, from thisstudy it can be concluded that small windows together with dimingpolicy are more energy effective.

From this study no optimum can be found, because of the greaterinfluence of the rnreather load and the glass percentage.

Because of the great variations in the weather conditions and theirinfluence on the resulËs obtaíned here, the use of real weather data

in thermal and energy calculations should be prefered.

Further reduction of the light output than is possible ¡¡ith the dinming

system considered and a more sophisticated stmshading device could havegiven more sígnificant results.

5. RECOMMENDATIONS FOR FUTUP.E RESEARCIT

Further research is needed to verify the energy savings predicted in thispaper in field situaÈions.

In the model the demands concerning the lumínance variations are not

taken into account conrpletely and some assurnptions are made. Further' extension of the conputer subroutine on this field ís necessary.

Research on human acceptability of several ways of f.ightíng management

is needed.

*8-

6. REFERENCES

BERGEM-JANSEN, P.M. van , Aspekte des Fensters; Díe Bedeutung fürden Menschen und die darnit zusanmenhängenden MögLichkeiten beímEntr¡urf, Lichttechnik 30, l!, pp. 478...480 (t978) und Líchr 3,t,pp.28...29 (1979).

BERGEM-JANSEN, P.M. van , Ilíndow design from the visual and thermalpoint of víew, Verwarming en Ventilarie, nr.4, pp. 257...268.(lg7g)

EUSER, P. and M. Hugenholtz, Study on ençrgy savíngs in utilitybuildíngs, Vervarming en Ventilatíe, nr. 3 (1978),

HOPKINSON, R.G., Petherbridge, P. and J. Longmore, DayLighting,Heinemanp, London (1966).

Illuminating Engineering Society, IES Lighting llandbook V, IES,New York (1972).

RATTIINDE, R. , Auswertung von Tageslichtmessungen, Diplornarbeitam Institut für Lichttechnik der TU Berl-ín (1975).

7. ACKNOIÀITEDGEMENT

The authors thank B.v, REM v/h croon en co for the detailed infçr-mation on the dínrning system çonsidered in the caloulations.

EB/adv

May 1979

Figure I - Office nodule for a rurrlti-person offíce in the Dutch region.

Figure 2 - Artificial lighting insraLl-aripn:12 x 2 x 40 trI fluorescent/coo1-r,¡hite

Figure 3 - hrindow desígns

Figure 4 - Lighting situatíon on a sunny day in May 1972 betvreen

15.00 - 16.00 h; oríenrarion SE, 502 gl,ass.

g. SwitchÍng systenn, based on the mean admíssion of daylightin four zones of the working plane

Þ. Switching system, based on the mean admíssíon of dayLightÍn one. ref.eredcê p.oint of the worlíng pLane et 2.5 nn

distance from ¡.rindow waLl.

Figure 5 - Z4-}:'ours course of (momentary) thernal and f.ightíng requíre-ments for a sunny day in May t97'Z; oríentations SE, 302 glass

a. All the lÍghts are switehed on duríng worlcíng períod(8.00 - 17.00 h).

Þ. Switchíng system, based on the hourly mean admission

of daylight in four zones of the working pLane.

g. DÍrmning system, based on the hourly mean admission ofdayl-ight ln four zones of the workÍng plane.

Figure 6 - Course of thermêL and LÍghting requirements for síx days ofa week ín May 1972; orienrarion SE, 302 glass

a. ALl the lights are swítched on duríng working period(8.00 - 17.00 h).

Þ. Switchíng system, based on the hourly mean admission of,

daylight ln four zones of the working pLane

c. Diuunlng systemf based on the hourly eean admissíon ofdayt ight in four zones of the porking plane

Figure 7 - The total reguirements for líghting and air-condirioning for ene week in May lg7T,a) orientation Nt{

b) orientarion SE

Figure 8 - The total requirements for lighting and air-conditioning for one rnreek in November 1971,

a) orientation NW

b) orienraiion SE

Itindow wo[tGto¡¡ pcrccntogc30o'/o, 50o/o, 70o/o

fig. I

¡: W¡ndow-wot[

i-i

-t -t

--r

f-t

A

B

c

D

fie. 2

/ ///

/ ,/

/

un n

70o/o gIdss

//

/,/

/

//

//

/

/

50 o/o gl oss

30 o/o gtcss

fis. 3

doyl,ight

2136 Lux

- doylight t ortificial Light

'/\' 'l\989 tux

--- *Þ-b--_*,864 lux

---JC679 Lux

working ptonc

679 Lux

339 lux214 lur

lrorklng ptone

fig.4a,b

l*1.8I LL

c"lnpl # I =.K t

-*l * I *- t *ltgtTL rt¿L üt0t6 I

õu¡poqsuns !Er^

ô0

l+ael *l*l

pDo¡ õu¡¡q6¡¡

-

I coot¡ns tood

- tighting tood

23456 8 9 10 11 12 13 1t, 15 l6-1t 1 19 20 21 22 2? 2t ¡t

w2440

200

1800

1600

I

1200

1000

600

400

lx * l{: [#l-Xrlr* þ* l#lcfþs lo I o

I

t-tsu nshodi ng

tighting-situotionbetwecn 10.00-11.00 h

-

u t_!

ÊZZA êEEE' ÊEZA

@ çEEA EEEø

ræì çEEE ÊEA

tighting - ¡ituctionbetween 15.00 -15.00 h

-

L-...-J

ÉEEÐ øEA ÊEZA

Ø ZEEA ÊEEA

m úÃ EEE¡D

onoff

fig. 5b

I coot¡ns tood Lighting tood

l__..-{runshodi ng

I

I

tighting-situotion tbetween 10.00-11.00 h

øza onc=:= off

tighting - situotionbctwecn 15.00 -16.00 h

qEEA

EEEZ

w2¿00

2200

2000

1800

1

1200

1000

800

600

percentogcof futt tíghtoutput i

A

72olo B

TLolo C

84o/o D

56lx

fig. 5c

coot¡ng tood

tighting tood

Iøwh

?8000

2100

2000

1600

1200

IT'

¡r.

*K

rtEntaÞ

*

Itt5gtuCICgEÉ=

-)k c'tt!Êo:#

ú€ÊI

UI

*

fíg. 6a

J J t\t l\, À,¡\@l\rOlçr¡\(D<actacrctect<ctc¡cÐcrooêîoctoocrctoct

K\Sr t-r* sundoy

Mondoy

* Tuesdoy

fl:'ot¡l o,/èAG¡rO

ooɡOCrCL

t wednesdoy

# Thursdov

i# Fridoy

Fh

(XI

o\(t

wh28000

21/-00

1 2000

8000

coot ¡nE

tighting

heoti ng

tood

Iood

loo d

N

¿000

0

I!l¡.

#

àI!co=#

E!CJut

*

fig. 6c

L IG HT ING

30% 50% 700/o

AIR CONDITIONING

30% 50% 70o/okwh60

LO

20

0

wor m

cooI

kwh60

10

20

0

20

40

60

80

100Ø

ol,l. Lights

sw¡tching

d imm ing

MAY - NW

ON

7a

Ø ott Lishts oN

I switching

E dímming

MAY - 5E

AIR- CONDITIONING

30olo 50 olo 70o/o

LI6HT ING

30% 50% 70%kwh

60

LO

r'orm I

cool I

t

kwh60

lr0

20

0

20

LO

60

20

0

80

100

120

1¿0

160

180

200

220

Fig. 7b

@

kwh60

¿0

20

0

kwh60

LO

20

0

worm I

cooI I

t

kwh60

LO

20

0

20

¿0

60

80

100

kwh60

¿0

20

0

20

¿0

60

80

100

120

110

160

180

LIGHTING

30% 50% 70 o/"

30 ole 50% 70%

AIR - CONDITIONING

30olo 50o/o 70%

30olo 50% 70c/o

o *ort I

coot I

t

Ø ol,l, tights ON

I switchíng

E dimrning

NOVEMBERFig. 8a,b

åppeTii-x. A

Description of the HVAC-sySten corlsidered

Temperature control by the heating and coolíng equíprnent is set from7.00 - 18.00 orclock. The requíred room air temperature duríng thesebours ís 22 oc,

After this on-period the structure of the room can cool dor¡n to t5 oc.

then this temperagure is held consfant by heating.The aír-tenperature in the corrídor ís assmed to be 19 oc during thewhole day.

The ventiLation rate durÍng the on*period ís 4.During the rest of the day it Ís asquned that the natural ventilationrate is 0.5.An average buílding eonstruction ís considered; nedir¡rr weíght structure.The windoriTs are double-glazed. ltrq fnternal gtmshadíng devíce is assrnedto operate autonatÍcally on the eunlight-penetration (see par. 3,2).The heat radiation from the lighting fíxtures coming ínto the room isset at 602 of the total.Íhe caLculations are carríed out usíng real ¡¡eather data.