MIT Lecture05

download MIT Lecture05

of 12

Transcript of MIT Lecture05

  • 8/8/2019 MIT Lecture05

    1/12

    Lecture 05 Friday, Sept. 142.004 Fall 07

    Summary from previous lecture

    Electrical dynamical variables and elements

    Electrical networks

    Charge q(t), Q(s).Current i(t) = q(t), I(s) = sQ(s).

    Voltage v(t), V(s) = Z(s)I(s).

    Resistor v(t) = Ri(t), ZR(s) = R.Capacitor i(t) = Cv(t), ZC(s) = 1/Cs.Inductor v(t) = Ldi(t)/dt, ZL(s) = Ls.

    +

    ++

    v1

    vk

    Pvk(t) = 0

    PVk(s) = 0

    i1

    ik

    P ik(t) = 0PIk(s) = 0

    Z1 Z2

    Impedances in series

    Z = Z1 + Z21

    G =

    1

    G1 +

    1

    G2 .

    Z1 Z2 Impedances in parallel

    1Z

    = 1Z1

    + 1Z2

    G = G1 + G2.

    +

    V2Vi

    Z1

    Z2

    +

    +

    I

    Vi V2Z2Z1 + Z2

    Voltage divider

    KCL

    KVL

    OpAmp in feedbackconfiguration:

    Vo(s)

    Vi(s)=

    Z2(s)

    Z1(s).

    V1(s)I2(s)

    Ia(s)I1(s)

    Z1(s)

    Z2(s)

    Vi(s)

    Vo(s)

    +

    -

    Figure by MIT OpenCourseWare.

  • 8/8/2019 MIT Lecture05

    2/12

    Lecture 05 Friday, Sept. 142.004 Fall 07

    Goals for today

    The DC motor: basic physics & modeling,

    equation of motion,

    transfer function. Next week:

    Properties of 1st and 2nd order systems

    Working in the s-domain: poles, zeros, and their significance

  • 8/8/2019 MIT Lecture05

    3/12

    Lecture 05 Friday, Sept. 142.004 Fall 07

    Power dissipation in electrical systems

    + v(t)

    i(t)

    Instantaneous power dissipation

    P(t) = i(t) v(t).

    Unit of power: 1 Watt=1 A 1 V.NOTE: P(s) 6= I(s) V(s). Why?

  • 8/8/2019 MIT Lecture05

    4/12Lecture 05 Friday, Sept. 142.004 Fall 07

    DC Motor as a system

    Transducer:

    Converts energy from one domain (electrical)

    to another (mechanical)

  • 8/8/2019 MIT Lecture05

    5/12Lecture 05 Friday, Sept. 142.004 Fall 07

    Physical laws applicable to the DC motor

    F = (i B) l = iBl (i

    B) ve = V B l = V B l (V

    B)

    Lorentz law:magnetic field applies force to a current

    (Lorentz force)

    Faraday law:moving in a magnetic field results

    in potential (back EMF)

  • 8/8/2019 MIT Lecture05

    6/12Lecture 05 Friday, Sept. 142.004 Fall 07

    DC motor: principle and simplified equations of motion

    multiple windings N:continuity of torque

    T = 2F r = 2(iBNl)r

    ve = 2V BNl = 2(r)BN l

    or

    T = Kmi

    ve = Kv

    where

    Km 2BNlr torque constant

    Kv 2BNlr back-emf constant

    (Lorentz law)

    (Faraday law)

  • 8/8/2019 MIT Lecture05

    7/12Lecture 05 Friday, Sept. 142.004 Fall 07

    DC motor: equations of motion in matrix form

    ve

    i

    =

    "2BNlr 0

    01

    2BNlr

    #

    T

    orve

    i

    =

    "Kv 0

    01

    Km

    #

    T

    multiple windings N:continuity of torque

  • 8/8/2019 MIT Lecture05

    8/12Lecture 05 Friday, Sept. 142.004 Fall 07

    DC motor: why is Km=Kv?

    Pin = Pout

    ive = T

    Kvi = Kmi

    Kv = Km

    (power conservation)

    QED.

  • 8/8/2019 MIT Lecture05

    9/12Lecture 05 Friday, Sept. 142.004 Fall 07

    DC motor with mechanical load and

    realistic electrical properties (R, L)

    Equation of motion Electrical

    KCL: vs vL vR ve = 0

    vs Ldi

    dtRiKv = 0

    Equation of motion Mechanical

    Torque Balance: T = Tb

    + TJ

    Kmi b = Jd

    dt

    Combined equations of motion

    Ldidt

    + Ri + Kv = vs

    Jd

    dt+ b = Kmi

    inductance

    (due to windings)

    load

    (inertia)

    dissipation

    (resistance of windings)

    dissipation

    (viscous friction

    in motor bearings)

  • 8/8/2019 MIT Lecture05

    10/12

  • 8/8/2019 MIT Lecture05

    11/12

  • 8/8/2019 MIT Lecture05

    12/12

    Lecture 05 Friday, Sept. 142.004 Fall 07

    Review: step response of 1st order systems weve seen

    Inertia with bearings (viscous friction)

    RC circuit (charging of a capacitor)

    DC motor with inertia load, bearings and negligible inductance

    +

    vi

    +

    C vC

    R

    Step input Ts(t) = T0u(t) Step response

    (t) =T0b 1 e

    t/

    , where =J

    b.

    Step input vi(t) = V0u(t) Step response

    vC(t) = V0

    1 et/

    , where = RC.

    Step input vs(t) = V0u(t) Step response

    (t) =Km

    RV0

    1 et/

    ,

    where =J

    b +

    KmKv

    R

    !.