Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1...

66
Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose- Einstein Condensates

Transcript of Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1...

Page 1: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Ming-Shien Chang

Institute of Atomic and Molecular SciencesAcademia Sinica

Dynamics of Spin-1 Bose-Einstein Condensates

Page 2: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Outline

Introduction to spinor condensates

Dynamics of spin-1 condensatesTemporal dynamics: coherent spin mixingSpatial dynamics: miscibility and spin domain formation

Progress report:BEC experiments at the IAMS

Summary

Page 3: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Quantum Gases

Exquisitely clean experimental system

Widely variable parameters: Different atomic species Bosons, fermions Internal d.o.f.

Spin systems Tunable interactions

Feshbach resonances Molecular quantum gases Lattice systems

Benefits from 80+ yrs of theoretical many-body research Stimulating much new research

Tests of mean-field theories ground state properties

Interactions: repulsive, attractive, ideal gas Excitations

Free expansion, vortices, surface modes Multi component mixtures

Beyond mean field theories Strongly correlated systems

Mott-insulator states, BCS Entanglement and squeezing

Page 4: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

BEC Physics

BEC

JILA, 1995

Order parameter χ(r) ~ N1/2 ψs(r)Coherent Matter Wave

Mean-field theory works

Page 5: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Phase space density

BEC occurs when: interparticle spacing, n01/3 ~ de Broglie

wavelength

Phase space densityAmbient conditions 10-15

Laser cooling 10-6 Nobel Prize, 1997BEC 1 Nobel Prize, 2001

30 dBn 22 /dB Bmk T

Phase space density De Broglie wavelength

30 2.6dBn

Page 6: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Quest for BEC

W. Ketterle (1995)

BEC,

1995

Nobel Prize, 2001A. Cornell

C. Wieman

Standard recipe

M. Chapman (2001)

All-optical approach

Page 7: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

All-Optical BEC Gallery

Cross trap 1-D lattice Single focus

~ spherical diskcigar

30,000 atoms 30,000 atoms 300,000 atoms

Common features:

87Rb CO2 trapping laser

Simple MOT < 2 s evaporation time

Page 8: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

F=1 Spinor BEC

1

0

1

( )

( ) ( )

( )

r

r r

r

Stern-Gerlach absorption image of a BEC created in an optical trap(GaTech, 2001)

mF = -1

mF = 0

mF = 1

F = 1

Page 9: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Studies of F=1 Spinor BEC

in an optical trap

A multi-component (magnetic)

quantum gas

Page 10: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Spinor Condensates A multi-component magnetic quantum

gas

Spinor system

Spin mixing

Spin domains, spin tunneling

(Anti-) Ferromagnetism

Rotating spinors

Spin textures

Skyrmion vortices

Quantum Magnetism

Spin squeezing, entanglement

Spinors in an optical lattice

Spin chains

QPT, quantum quench

Page 11: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Interacting Spin-1 BEC

a0

(Bohr)

a2

(Bohr)

c0

(x10-12

Hz·cm3

)

c2

(x10-12

Hz·cm3

)

87Rb 101.8 100.4 7.793 -0.0361

23Na 50.0 55.0 15.587 0.4871 anti-ferromagnetic

ferromagnetic

Intuitive picture: F = 0, 1, 2

Atomic Parameters

20 2

0

24

3

a ac

m

22 0

2

4

3

a ac

m

c2 << c0

Ho, 98

f=1

f=1

Page 12: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Hamiltonian for Spin-1 BEC

3int 0 2 1 1 1 1 0 0 0 0 0

0 2 1 1 1 1

0 2 1 0 0 1 0 2 1 0 0 1

0 2 1 1 1 1

2 1 1 0 0 2 0 0 1 1

{( )

(

2( ) 2( )

2(

)

)

2 }2

c c c c

H d r c c c

c

c

c

c

c

c

Ho, PRL (98)

Machida, JPS (98)

Spin changing collisions

2nd Quantized Form

2

22 2

01

1( ) ( )

2 2( )

Ni

i i ji i

ij

j z

pH m r c r rc S S H B

m

intH

Page 13: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Coupled Gross-Pitaevskii Eqn. for Spin-1 Condensates

Cross-phase modulationModulational instability, domain formation

Coherent spin (4-wave) mixing

2 21,0 1,0 1 0 1( 2 ) and .L m U n n n n

1 0 1( )T

r

Condensate wave function

Bigelow, 98-00 Meystre, 98-99…….

* 211 1 0 1 2 1 0 1 1 2 1 0( )i L c n c n n n c

t

* 211 1 0 1 2 1 0 1 1 2 1 0( )i L c n c n n n c

t

*00 0 0 0 2 1 1 0 2 0 1 1( ) 2i L c n c n n c

t

Page 14: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

When c2 = 0…

3 Zeeman components are decoupled.

First BEC in 1995Nobel Prize in 2001

2 21,0 1,0 1 0 1( 2 ) and .L m U n n n n

1 0 1( )T

r

Condensate wave function

11 1 0 1i L c n

t

11 1 0 1i L c n

t

00 0 0 0i L c n

t

Page 15: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Spinors In B fields

20 1 12 c n

Bm m m

72 Hz/G2

One can study spinor condensates in mG ~ G regime.

When linear Zeeman effects are canceled,

quadratic Zeeman effect favors m0.

2 10 Hz,c n

m=+1 m=0 m=-1

m=+1 m=0 m=-1

0 22

272

E E EB

Page 16: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Single mode approximation (SMA)

4 32 2( )c c r d r c n +1 1 0=(E 2 ) / 2E E 1 1M

Spin-dependent interaction strength

Quadratic Zeeman energy

Condensate magnetization

Hamiltonian reduces to just two variables to describe internal spin :

0( ) 2t

20 0 0

20[(1 (1 ) cos )] (1 )E c M

1

0

1

1 1

0 0

1 1

( )

( ) ( ) ( )

( )

i

i

i

r e

r r n r e

r e

Simplification on spinor dynamics if all spin components have same spatial wave function

(SMA):

1 0(1 ) / 2M Population of ±1 components follows:

0 0 1 0 1(t)= /( ),n n n n

Page 17: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Spinor energy contours—zero field

2 20 0 0 0[(1 ) (1 ) cos ] (1 ),E c M

1.0

0.8

0.6

0.4

0.2

0.0

-6 -4 -2 0 2 4 6

Ferromagnetic1.0

0.8

0.6

0.4

0.2

0.0

-6 -4 -2 0 2 4 6

Anti-ferromagnetic

Page 18: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Spinor energy contours—finite field

2 20 0 0 0[(1 (1 ) cos )] (1 ),E c M

1.0

0.8

0.6

0.4

0.2

0.0

-6 -4 -2 0 2 4 6

Ferromagnetic1.0

0.8

0.6

0.4

0.2

0.0

-6 -4 -2 0 2 4 6

Anit-ferromagnetic

Page 19: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Spin Mixing in spin-1 condensates

2 sec

For no interactions,

m0 is lowest energy

(2nd order Zeeman shift)

20 1 12 c n

Bm m m

mF = 1 0 -1

mF = 1 0 -1

t = 0 s

Page 20: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Ferromagnetic behavior

Ferromagnetic spinor

Anti-ferromagnetic spinor

Chapman, 04 You, 03

Sengstock, 04

Page 21: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Deterministically initiate spin mixing

At t=0: (ρ1, ρ0, ρ-1) = (0, 0.75, 0.25)

. and )2

( where 1010,1

22

0,1

nnnnUm

L

* 211 1 0 1 2 1 0 1 1 2 1 0( )i L c n c n n n c

t

*00 0 0 0 2 1 1 0 2 0 1 1( ) 2i L c n c n n c

t

* 211 1 0 1 2 1 0 1 1 2 1 0( )i L c n c n n n c

t

Page 22: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Coherent Spin Mixing

Chapman, 05

Josephson dynamics driven only by spin-dependent interactions

Page 23: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Coherent Spin Mixing

1 1 0( 2 )c Oscillation Frequency: Bigelow, 99

Direct measurement of c (c2)

Page 24: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Direct measurement of c2 (or aF=2 - aF=0)

aF=2 - aF=0 = -1.4(3) aB (this work)

aF=2 - aF=0 = -1.40(22) aB (spect. + theory)

/ 2 4.3(3) rad/sc

14 30 2.1(4) 10 cmn

4 32 2 0

4( )

7c c N r d r c n

from oscillation frequency

from condensate expansion

Page 25: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

4 32 2where ( ) ,c c N r d r c n

20 0

0 2 20

(1 )(1 2 )2 2 2(1 2 ) cos

(1 )

Mc c

M

2 20 0 0

2(1 ) sin

cM

2+1 1 0=(E 2 ) / 2 2 72 ,E E B

Spin mixing is a nonlinear internal AC Josephson effect

1 -1= - ,M You, 05

de Passos, 04

20 0 0

20[(1 (1 ) cos )] (1 )E c M

0 0 1 0 1(t)= /( ),n n n n 1 1 0( ) 2 ,t

Page 26: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

AC Josephson Oscillations

0 ( ) ( / )sint A

( ) 2 /t

For high fields where d >> c, the system exhibits small oscillations analogous to AC-Josephson oscillations:

( ) sincI t I

( ) 2 /t eV

Compare with weakly linked superconductors:

Page 27: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Controlling spinor dynamics

+1 1 0=(E 2 ) / 2E E

Quadratic Zeeman energy

0.5

0.4

0.3

0.2

0.1

0.0

(rad)θ (rad)

(2 / ) dt

2d

dt

when 2c c n

Pulse on a magnetic field

Page 28: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Controlling spinor dynamics

(2 / ) dt

Change trajectories by applying phase shifts via the quadratic zeeman effect

2

t

θ (rad)

Ferromagnetic ground state

Page 29: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Coherence of the ferromagnetic ground state

0.5

0.4

0.3

0.2

0.50.0B (G

)

0.60.40.20.0Time (s)

Restarting the coherent spin mixing by phase-shifting out of the ground state at a later time

Spin coherence time = condensate lifetime

Page 30: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Beyond the Single-Mode Approx. (SMA)

Formation of spin domains

Miscibilities of spin components

Formation of spin waves

Atomic four-wave mixing

Page 31: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Healing length

Healing length: smoothes the boundary layer and determines the size of vortices.

2 22

22 2M M

0 /n gUsing

shortest distance ξ over which the wavefunction can change

2 2

0 02

4

2

an n

M M

g

01/ 8 an

Page 32: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Beyond SMA: formation of spin domains

2

~ 15 m2

smc n

Spin healing length:

Condensate size: (2rc,2zc) ~ (7, 70) m

condensate is unstable along the z direction.2 > :c sz

Single-Mode Approx. (SMA): ( ) ( ) jij jr r e

weak B gradient during TOF

z

Page 33: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Miscibility of spin-1 (3-component) superfluid

3 2 2 21 1 0 0

10 1 0 10 1 0 1

00,1 1 0 1

1

1

1 1

1

1

2

1

4

{2

2 2

}

MF

g n n g n n g n

E d r g n g n g n

n

n

g n n

1-fluid M-F

2-fluid M-F

3-fluid M-F

Goal: minimize the total mean-field energy

0 2 0 20 2

0 2 0 20

0 2 0 20 2

1 0 1

12 2

02 2

12 2

ijg m m m

c c c cm c c

c c c cm c

c c c cm c c

00,1 1 2g c

MIT, 98-99

Page 34: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Miscibility of two-component superfluids

Total Energy of two-component superfluid

If they are spatially overlapped with equal mixture:

If they are phase separated:

The condensates will phase –separated if

22 2 31 4

( 2 ) , g2 a a b b ab a b

aE g n g n g n n d r

m

)2(2

2

abba gggV

NEo

)(2

2

b

b

a

aS V

g

V

gNE

ab a bg g g

Page 35: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Miscibility of two-component superfluid

201,1

200,1

00

2011

ccg

ccg

cg

ccgg

<1miscible

>1immiscible23Na

>1immiscible

<1miscible87Rb

1,0

1 0

g

g g

1, 1

1 1

g

g g

2 0c Ferromagnetic:

Stern-Gerlach Exp. During TOF

Page 36: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Invalidity of the Single-Mode Approx.

Page 37: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

80-80Rz (m)

0.8

0.6

0.4

0.2

0.0

Tim

e (s

)

Spin waves induced by coherent spin mixing

0.8

0.6

0.4

0.2

0.0

mix

ing

time

(sec

)

mF 1 0 -1

- Validate coupled GP eqn.- Theoretical explanation of

spin waves.- Atomic 4-wave mixing- Evidence of dynamical

instability

(r1, r0, r-1) = (0, 0.75, 0.25)

Page 38: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

0.8

0.6

0.4

0.2

0.0

Tim

e (s

)

80-80Rz (m)

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Tim

e (s

)

mF 1 0 -1

(r1, r0, r-1) = (0, 0.5, 0.5)

(r1, r0, r-1) = (0, 0.83, 0.17)

total

Domain formation induced by dynamical instability

Page 39: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Miscibility of ferromagnetic spin-1 superfluid

- 3 components in the ferromagnetic ground state appear to be miscible- Energy for spin waves (external) is derived from internal spinor energy

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Tim

e (s

)

(c)

1

2

mF 1 0 -1

Page 40: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Return to the SMA

mF = -1

mF = 0

mF = 1

Single focus trap Cross trap

Page 41: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Validity of the SMA

2

~ 10 15 m2

s

h

mc n Spin healing length:

(2rc,2zc) ~ (7, 70) m

Condensate should be physically smaller than spin healing length

Cross trap 1-D lattice Single focus

~ spherical diskcigar

(2rc,2zc) ~ (1, 10) m

Condensate size

(2rc,2zc) ~ (7, 7) m

Page 42: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Improving the SMA

1.0

0.8

0.6

0.4

0.2

0.0

m

0.80.60.40.20.0

Time (s)

Single-focus trap result

Page 43: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Improving the SMA

1.0

0.8

0.6

0.4

0.2

0.0

m

1.21.00.80.60.40.20.0

Time (s)

Cross trap result

Page 44: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Improving the SMA

1.0

0.8

0.6

0.4

0.2

0.0

m

1.21.00.80.60.40.20.0

Time (s)

1.0

0.8

0.6

0.4

0.2

0.0

m

1.21.00.80.60.40.20.0

Time (s)

Page 45: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

SMA vs. spin waves (domains)0.6

0.5

0.4

0.3

0.2

0.1

0.0

Tim

e (s

)(b)

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Tim

e (s

)

(d)

-80 0 80Rz (m)

Single-focused trap

Rz = 70 μm

ξs = 15 μm

Cross trap

Rz = 7 μm

ξs = 11 μm

mF 1 0 -1

Page 46: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Research projects with ultracold atoms

at the IAMS

Optical dipole trap (ODT) for cold-atom experiments

Optical lattice for quantum simulation / quantum information

experiment

ODT for Single atom trapping

All-optical BEC of Potassium / Rubidium

Spinor condensates studies of Potassium / Rubidium

Determination of the spin nature of potassium

complex ground state, SSS

spin mixing of only two atoms (entangled pair after mixing)

Mixture of bosonic and fermionic spinors

Rydberg atom quantum information

Page 47: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Quest for all-Optical BEC at the IAMS

Page 48: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Optical Trap

Far off-resonant lasers work as static field

Focused laser beam form a 3D trap: gaussian beam: radial focus: longitudinal

Importance of optical trap State-Independent Potential Trapping of Multiple Spin States Evaporative Cooling of Fermions

20

2

20

/2

/11

0r

zzeUU

2

0

1

2 2U E I

c

+-

Page 49: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

All-Optical BEC Gallery

Cross trap 1-D lattice Single focus

~ spherical diskcigar

30,000 atoms 30,000 atoms 300,000 atoms

Page 50: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

III. BEC in a Single-Focused Trap

weak focuslarge trap volume

low density

Initial loading:

tight focussmall trap volume

high density

Compression and evaporation:

Scaling for Optical Trap

Scaling for adiabatic compression

Density

Elastic collision rate

nw0 4

50

21 wP

Effective Trap Volume

Trap frequency

40wV

370

21 wP

Page 51: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Dynamical Trap Compression

Time 0 0.6 s

2.5

mm

P = 70 ww0 30 μm70

Page 52: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Gallery of optical lattices

In-situ imagingCO2 lattice constant: 5.3 μm

Time-of-flight(TOF) imagingCO2 lattice constant: 0.43 μm

Bookjen, PhD thesis

I. Bloch (01)

Weiss(07)

Greiner (09)

Page 53: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

CO2 laser vs. Nd:YAG laser

CO2 laser Nd:YAG

(μm) 10.6 1.06

P (W) 1000 100030 (single frequency)

Scattering rate (same trap parameters)

1 2200

Rayleigh range (same beam waist)

1 10

Optics ZnSe / Ge Usual glass

Spatial mode Usually better

Lattice constant of an optical lattice(μm)

5.3 (easier to resolve)

0.53 (lattice physics)

Page 54: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

1

2

3

4

56

10

2

3

4

56

100

Asp

ect

Rat

io

9080706050403020100Crossing Angle (degree)

fx / fz (YAG) fy / fz (YAG)

fx / fz (CO2) fy / fz (CO2)

Aspect ratio: CO2 vs. Nd:YAG

Page 55: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

2500

2000

1500

1000

trap

fre

quen

cy (

Hz)

9080706050403020100crossing angle (degree)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

fYA

G / fC

O2

0.986

f (YAG) f (CO2) f_YAG / f_CO2

Trap frequency: CO2 vs. Nd:YAG

Page 56: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Trap Loading: single-focus beam

𝑤0=30 μ𝑚

(each)

𝜆=1.06 μ𝑚

Vapor cell MOT

𝑁=2×107

Dipole trap

𝑇 𝐷=800𝜇K

ω=2𝜋×(2300 ,23 00 ,19)Hz

𝑇=30𝜇 K

Page 57: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Trap Loading: cross beams

Hold time (1 sec)

𝑤0=30𝜇m

(each)

𝜆=1.06𝜇m

x-angle

𝑇 𝐷=1.6mK

Page 58: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Free evaporation

kBT

hot atoms escape 3 30 ( / )dB Bn N k T

Page 59: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Free Evaporation

# of atoms N 1.0x105

trap frequency f 2,120 Hz

trap frequency ω 13,300 rad/s

temperature T 50 μK

peak density n0 4.57147E+13 1/c.c.

phase space density Λ 8.5x10-4

𝟖𝑾→𝟖𝑾 𝒊𝒏𝟏 𝒔𝒆𝒄

Page 60: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Force evaporation

# of atoms N 3000

trap frequency f 530 Hz

trap frequency ω 3300 rad/s

temperature T 6 μK

peak density n0 3.4x1011 1/c.c.

phase space density Λ 2.3x10-4

𝟖𝑾→𝟎 .𝟓𝑾 𝒊𝒏𝟏 .𝟕𝒔𝒆𝒄

Page 61: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Spinor condensates with potassium atoms

Spinor condensates of potassium in an optical trap

Spin mixing

Determine nature of the spinors

Determine spin-dependent scattering lengths

Spinor condensates in an optical lattice

Simulation of quantum magnets

Mixture of Bosonic and Fermionic spinors

Page 62: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Zeeman slower for potassium experiment

Page 63: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Zeeman slower for potassium experiment

Page 64: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Zeeman slower for potassium experiment

Page 65: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Summary

Formation of spinor condensates in all-optical traps

Observation of coherent spinor dynamics

Observation of spatial-temporal spinor dynamics

Current progress of the BEC experiments at the IAMSPreliminary data of Rb force evaporationZeeman slowing of K

Page 66: Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica Dynamics of Spin-1 Bose-Einstein Condensates.

Acknowledgement

吳耿碩陳俊嘉黃智遠廖冠博鄭毓璿彭有宏