MIMO Communications Lecture1

29
Forschungszentrum Telekommunikation Wien [Telecommunications Research Center Vienna] MIMO Communications (389.094) Lecture 1 Maxime Guillaud, Erwin Riegler October 9, 2008

Transcript of MIMO Communications Lecture1

Page 1: MIMO Communications Lecture1

5/7/2018 MIMO Communications Lecture1 - slidepdf.com

http://slidepdf.com/reader/full/mimo-communications-lecture1 1/29

 

Forschungszentrum Telekommunikation Wien[Telecommunications Research Center Vienna]

MIMO Communications (389.094)

Lecture 1

Maxime Guillaud, Erwin Riegler 

October 9, 2008

Page 2: MIMO Communications Lecture1

5/7/2018 MIMO Communications Lecture1 - slidepdf.com

http://slidepdf.com/reader/full/mimo-communications-lecture1 2/29

 

MIMO Communications

Lecturers

Maxime Guillaud {[email protected]}Erwin Riegler {[email protected]}

from FTW (Telecommunications Research Center Vienna)http://www.ftw.at/

Webpagehttp://userver.ftw.at/˜guillaud/MIMO_course/mimo_course.html

Grading - Written exam at the end of the winter term

Lecture notes: Hardcopy of the slides handed out at thebeginning of each lecture

Time: Thursdays 17:00h-18:30h, Room CG 0118..

October 9, 2008 Maxime Guillaud, Erwin Riegler  2

Page 3: MIMO Communications Lecture1

5/7/2018 MIMO Communications Lecture1 - slidepdf.com

http://slidepdf.com/reader/full/mimo-communications-lecture1 3/29

 

Reference Books

Fundamentals of Wireless Communications , D. Tse and P.Visvanath, Cambridge University Press, 2005. Available onlineat http://www.eecs.berkeley.edu/˜dtse/book.html

MIMO Wireless Communications , E. Biglieri, R. Calderbank, A.Constantinides, A. Goldsmith, A. Paulraj, H.V. Poor, CambridgeUniversity Press, 2007.

MIMO Wireless Communications , C. Oestges, B. Clerckx,

Academic Press, 2007.

October 9, 2008 Maxime Guillaud, Erwin Riegler  3

Page 4: MIMO Communications Lecture1

5/7/2018 MIMO Communications Lecture1 - slidepdf.com

http://slidepdf.com/reader/full/mimo-communications-lecture1 4/29

Outline (1)

Fundamentals

Electromagnetic wave propagation and channel models

MIMO channel and signal models

Tools from information theory

Coding theory, capacityImportance of channel knowledge

Channel fading

Frequency-selective channels, time-variant channels

Space-time codingDiversity and multiplexing

Receiver architecture and algorithms

Multi-user systems

October 9, 2008 Maxime Guillaud, Erwin Riegler  4 

Page 5: MIMO Communications Lecture1

5/7/2018 MIMO Communications Lecture1 - slidepdf.com

http://slidepdf.com/reader/full/mimo-communications-lecture1 5/29

Outline (2)

Applications

UMTS with MIMO enhancements in Release 7 andLong-Term Evolution

Wireless LAN according to IEEE 802.11n

WiMAX 802.16

October 9, 2008 Maxime Guillaud, Erwin Riegler  5 

Page 6: MIMO Communications Lecture1

5/7/2018 MIMO Communications Lecture1 - slidepdf.com

http://slidepdf.com/reader/full/mimo-communications-lecture1 6/29

A General Point-to-Point

Communication System

Transmitter ReceiverChannel(Tx) (Rx)

- --

Message

 Message ?

The engineer seek to design the Tx and Rx so that themessage is transmitted with a prescribed reliability

We have no control over the behaviour of the channel – but

it is a good idea to know it well and to adapt Tx and Rx to it

October 9, 2008 Maxime Guillaud, Erwin Riegler  6 

Page 7: MIMO Communications Lecture1

5/7/2018 MIMO Communications Lecture1 - slidepdf.com

http://slidepdf.com/reader/full/mimo-communications-lecture1 7/29

Multiple-Input Multiple-Output (MIMO)

Communications

RxTx H

      .

      .

      .

      .

      .

      .

October 9, 2008 Maxime Guillaud, Erwin Riegler  7 

Page 8: MIMO Communications Lecture1

5/7/2018 MIMO Communications Lecture1 - slidepdf.com

http://slidepdf.com/reader/full/mimo-communications-lecture1 8/29

Benefits of Multiple Antennas

Energy efficiency (array gain): Signal to thermal noise ratio is

improved. Increased coverage.

Error rate reduction (diversity gain): Mitigates fading throughspatial diversity.

Spectral efficiency (multiplexing gain): Increased bits/channel

access (bpca) rate.

 6

-Spectral

Error rate

Energy

reduction

efficiency

efficiency

Interference reduction: Improve the reuse factor in multi-userscenarios.

October 9, 2008 Maxime Guillaud, Erwin Riegler  8 

Page 9: MIMO Communications Lecture1

5/7/2018 MIMO Communications Lecture1 - slidepdf.com

http://slidepdf.com/reader/full/mimo-communications-lecture1 9/29

Obstacles to MIMO Implementations

Hardware costs: Multiple antennas mean multiple RF chains.

Hardware costs: More involved signal processing requiresmore computing power (and energy).

Portable consumer devices are especially sensitive to costarguments.

October 9, 2008 Maxime Guillaud, Erwin Riegler  9 

Page 10: MIMO Communications Lecture1

5/7/2018 MIMO Communications Lecture1 - slidepdf.com

http://slidepdf.com/reader/full/mimo-communications-lecture1 10/29

General Model of the Wireless

Propagation Channel

TxRx

-

3z

-

kpath 1 (LOS)

path 2

path 3

scatterers

U

Received signal contains multiple copies of the transmittedsignals, at different delays (τ l ) and attenuations (ηl ),correponding to different paths of the electromagnetic waves.

The straightest path (when it is not obstructed) is called

Line-of-Sight (LOS)October 9, 2008 Maxime Guillaud, Erwin Riegler  10

 

Page 11: MIMO Communications Lecture1

5/7/2018 MIMO Communications Lecture1 - slidepdf.com

http://slidepdf.com/reader/full/mimo-communications-lecture1 11/29

Some figures...

Absolute delay due to the propagation between Tx and Rx isrelated to the speed of light c  = 2.9979× 108m.s−1 (in theair:2.9970× 108m.s−1)

Current-generation telephone systems (UMTS) transmit3.84 × 106 symbols per second

The symbol duration T s  = 13.84×106 is equivalent to the time that

the electromagnetic waves propagates for T s c ≈ 78m

In general, this means that the various copies of the transmitted

signal will overlap with the next symbols

Classically modeled by a tapped delay line

October 9, 2008 Maxime Guillaud, Erwin Riegler  11 

Page 12: MIMO Communications Lecture1

5/7/2018 MIMO Communications Lecture1 - slidepdf.com

http://slidepdf.com/reader/full/mimo-communications-lecture1 12/29

SISO Channel Representation

Transmitted signal: baseband complex signal s b (t ) is modulating

a carrier of frequency f c 

s (t ) = Re[s b (t )e j2πf c t ] .

Example for UMTS: s b  has 5 MHz bandwidth,f c  = 1.8GHz, 1.9GHz, 2.1GHz

Received signal is the superposition of L paths and noise(thermal noise and interference from other transmitters)

x (t ) = Re[L−1=0

ηs b (t − τ )   r b (t )

e j2πf c t ] + n (t )

r b (t ): baseband complex received signal

October 9, 2008 Maxime Guillaud, Erwin Riegler  12 

Page 13: MIMO Communications Lecture1

5/7/2018 MIMO Communications Lecture1 - slidepdf.com

http://slidepdf.com/reader/full/mimo-communications-lecture1 13/29

SISO Tapped Delay Line Model

The previous expressions can be simplified by using anequivalent baseband model

Introduce the impulse response function

h (τ ) =L−1

=0

ηδ(τ − τ 

)

At the baseband level, the effect of the channel is a convolutionof s b (t ) with a time-variant filter h (τ ):

r b (t ) = +∞τ =−∞

s b (t − τ )h (τ )dτ + n b (t ) =L−

1=0

ηs b (t − τ ) + n b (t )

n b (t ) is the bandlimited version of the noise term n (t )

October 9, 2008 Maxime Guillaud, Erwin Riegler  13 

Page 14: MIMO Communications Lecture1

5/7/2018 MIMO Communications Lecture1 - slidepdf.com

http://slidepdf.com/reader/full/mimo-communications-lecture1 14/29

Some remarks

The previous model is missing the following features

Time dependency: h (t , τ ) instead of h (τ ) (τ  and η changewhen the relative position of Tx, scatterer , and Rx changes)

r b (t ) =

 +∞τ =−∞

s b (t − τ )h (t , τ )dτ + n b (t )

Multiple antennas at the transmitter and/or receiver !

October 9, 2008 Maxime Guillaud, Erwin Riegler  14 

Page 15: MIMO Communications Lecture1

5/7/2018 MIMO Communications Lecture1 - slidepdf.com

http://slidepdf.com/reader/full/mimo-communications-lecture1 15/29

Convolution with Time-Variant Channel

 6

-τ 

h (

t , ·)

 6

-

τ 

h (t  + T s , ·)

 6

-τ 

h (t  + 2T s , ·)

s (t )·

+s (t  + T s )·

+s (t  + 2T s )·

-

 6

October 9, 2008 Maxime Guillaud, Erwin Riegler  15 

Page 16: MIMO Communications Lecture1

5/7/2018 MIMO Communications Lecture1 - slidepdf.com

http://slidepdf.com/reader/full/mimo-communications-lecture1 16/29

Several effects at work (I)

Frequency Selectivity

h (t , τ ) is an impulse response in the “lag” domain (τ ) (there areτ 1, τ 2 . . . for which h (t , τ 1) = 0 and h (t , τ 2) = 0 . . .)

The maximum delay between paths (τ max − τ min ) is the delay spread .

Equivalently, the representation of h (t , ·) in the frequency

domain h̃ (t , f ) is not constant for all f .

The width (in f ) over which it can be assumed constant is thecoherence bandwidth.

October 9, 2008 Maxime Guillaud, Erwin Riegler  16 

Page 17: MIMO Communications Lecture1

5/7/2018 MIMO Communications Lecture1 - slidepdf.com

http://slidepdf.com/reader/full/mimo-communications-lecture1 17/29

Several effects at work (II)

Temporal Variation

h (t , τ ) depends on t 

The maximum time ∆t  over which the channel can be assumedconstant (h (t , τ ) ≈ h (t  + ∆t , τ )) is the coherence time.

Equivalently, the representation of h (·, τ ) in the (Doppler)

frequency domain h̃ (f d , τ ) has energy in non-zero frequencies

(h̃ 

(f 1, τ ) = 0 for f 1 = 0).

October 9, 2008 Maxime Guillaud, Erwin Riegler  17 

Page 18: MIMO Communications Lecture1

5/7/2018 MIMO Communications Lecture1 - slidepdf.com

http://slidepdf.com/reader/full/mimo-communications-lecture1 18/29

Time-Selective Fading - Doppler Effect

A stationary EM field of frequency f c 

is periodic in space (in thedirection of propagation), of period λc  = c 

f c .

Sampling it at a different point in space introduces a phaserotation (1λc  in space = 2π phase rotation).

t  + ∆t ~ v 

θ-∆d 

- d ∆d  = v ∆t cosθ

Phase rotation over time ∆t : e  j 2π∆d λc  = e  j 2π

v cosθλc 

∆t 

Doppler shift ν caused by a rectilinear uniform movement ofspeed v  of the Tx or Rx: ν = v 

λc cos(θ) [Hz ]

October 9, 2008 Maxime Guillaud, Erwin Riegler  18 

Page 19: MIMO Communications Lecture1

5/7/2018 MIMO Communications Lecture1 - slidepdf.com

http://slidepdf.com/reader/full/mimo-communications-lecture1 19/29

Time-Selective Fading - Doppler Effect

(II)

Movement of a scatterer can create a Doppler frequencymultiple of ν 

Non rectilinear uniform movement, or superposition of manypaths leads to Doppler spread.

For UMTS with carrier frequency 2GHz and users moving with

v  = 100km/h, Doppler is ν = 185Hz.

October 9, 2008 Maxime Guillaud, Erwin Riegler  19 

Page 20: MIMO Communications Lecture1

5/7/2018 MIMO Communications Lecture1 - slidepdf.com

http://slidepdf.com/reader/full/mimo-communications-lecture1 20/29

Multiple Antennas System

MIMO systems are useful when the various Tx-Rx antenna pairsexperience different  channels

This can be achieved through

Spatial separationPolarization separationDirection separation (directive antennas)

October 9, 2008 Maxime Guillaud, Erwin Riegler  20  

Page 21: MIMO Communications Lecture1

5/7/2018 MIMO Communications Lecture1 - slidepdf.com

http://slidepdf.com/reader/full/mimo-communications-lecture1 21/29

MIMO Channel

scattering

environment

y 1x 1

x M T  y M R 

U

R

1

Tx Rx M T  Number oftransmit antennas

M R  Number ofreceive antennas

Tx antenna n  and Rx antenna m  are linked by the lineartime-varying filter h m ,n (t , τ ).

October 9, 2008 Maxime Guillaud, Erwin Riegler  21 

Page 22: MIMO Communications Lecture1

5/7/2018 MIMO Communications Lecture1 - slidepdf.com

http://slidepdf.com/reader/full/mimo-communications-lecture1 22/29

Time-Variant MIMO Channel: Tx-Rx

relationship

Channel matrix: H(t , τ ) =

h 1,1(t , τ ) . . . h 1,M T 

(t , τ )...

...h M R ,1(t , τ ) . . . h M R ,M T 

(t , τ )

Tx-Rx relationship

y(t ) =

 H(t , τ )s(t − τ )dτ + n(t )

between the M T -dimensional transmitted signal s(t ) andM R -dimensional transmitted signal y(t )

October 9, 2008 Maxime Guillaud, Erwin Riegler  22 

Page 23: MIMO Communications Lecture1

5/7/2018 MIMO Communications Lecture1 - slidepdf.com

http://slidepdf.com/reader/full/mimo-communications-lecture1 23/29

Directional Discrimination Capability of

Antenna Arrays (I)

d

q

Tz

z(t)

y (t)1

y (t)2

Single Planar Wavefront modulated by has bandwidth B 

Wavefront z (t ) = β (t )e j2πf c t 

Two antenna array with inter-element spacing d , angle θ w.r.t.wavefront

October 9, 2008 Maxime Guillaud, Erwin Riegler  23 

Di i l Di i i i C bili f

Page 24: MIMO Communications Lecture1

5/7/2018 MIMO Communications Lecture1 - slidepdf.com

http://slidepdf.com/reader/full/mimo-communications-lecture1 24/29

Directional Discrimination Capability of

Antenna Arrays (II)

d

q

Tz

z(t)

y (t)1

y (t)2

Narrowband assumption: B  1/T z  ⇒ β (t − T z ) ≈ β (t )

y 1(t ) = z (t ) y 2(t ) = z (t )e j2π sin(θ) d 

λ

Define the array response vector a (θ) = [1, e j2π sin(θ) d λ ]T. Then

y(t ) =

y 1(t )y 2(t )

= a (θ)z (t )

October 9, 2008 Maxime Guillaud, Erwin Riegler  24 

Di ti l Di i i ti C bilit f

Page 25: MIMO Communications Lecture1

5/7/2018 MIMO Communications Lecture1 - slidepdf.com

http://slidepdf.com/reader/full/mimo-communications-lecture1 25/29

Directional Discrimination Capability of

Antenna Arrays: Beamforming

This effect has been exploited for a long time in radarapplications

The effect is reversible: one can transmit using the conjugateresponse vector as a ”precoder”

x(t ) =

x 1(t )x 2(t )

= a ∗(θ)s (t )

This technique favours one transmission direction given by θ:beamforming 

October 9, 2008 Maxime Guillaud, Erwin Riegler  25 

S tt i F ti

Page 26: MIMO Communications Lecture1

5/7/2018 MIMO Communications Lecture1 - slidepdf.com

http://slidepdf.com/reader/full/mimo-communications-lecture1 26/29

Scattering Function

Scattering functions represent the channel gains between two

antenna arrays as a function of directionsExample using only one angle parameter at each side:S (φi , τ i , θi ) is the scattering amplitude of scatterer i  located atangles φi  and θi . The propagation delay for this path is τ i .

Tx

Rx

U

φ1

φ2

θ1

-+

-

θ2

S (φ2, θ2, τ 2) = g 2S (φ1, θ1, τ 1) = g 1

October 9, 2008 Maxime Guillaud, Erwin Riegler  26 

S tt i F ti (II)

Page 27: MIMO Communications Lecture1

5/7/2018 MIMO Communications Lecture1 - slidepdf.com

http://slidepdf.com/reader/full/mimo-communications-lecture1 27/29

Scattering Function (II)

If the transmitter is sending x(t ) = a (φ)s b (t ) and the receiver isapplying the Rx beamformer r b (t ) = a H (θ)T y(t ) we have theequivalent channel

r b (t ) =  τ  a 

(θ)H(t , τ )a (φ)s b (t − τ ) + n (t )

Scattering function: S (φ,θ,τ ) = a H (θ)H(t , τ )a (φ).In the previous example, the scattering function has only twodiscrete scatterers:

S (φ,θ,τ ) = g 1δ(φ−φ1)δ(θ−θ1)δ(τ −τ 1)+g 2δ(φ−φ2)δ(θ−θ2)δ(τ −τ 2)

October 9, 2008 Maxime Guillaud, Erwin Riegler  27 

Scattering Function (III)

Page 28: MIMO Communications Lecture1

5/7/2018 MIMO Communications Lecture1 - slidepdf.com

http://slidepdf.com/reader/full/mimo-communications-lecture1 28/29

Scattering Function (III)

Channel experienced by the communications system is a

combination of the characteristics of the electromagneticchannel (S (φ,θ,τ )) and the antenna patterns (P T (φ) at thetransmitter and P R (θ) at the receiver.

h(t , τ ) =  θ  φ P R (θ)S (φ,θ,τ )P T (φ)

In our example, with isotropic antennas(P T (φ) = 1, P R (θ) = 1∀φ, θ) the equivalent channel is

h(t , τ ) = g 1δ(τ − τ 1) + g 2δ(τ − τ 2)

With a directional Rx antenna (e.g. P T (φ) = 1, P R (θ1) = α andP R (θ2) = 0), it becomes

h(t , τ ) = αg 1δ(τ − τ 1)

October 9, 2008 Maxime Guillaud, Erwin Riegler  28 

On The Importance of Channel

Page 29: MIMO Communications Lecture1

5/7/2018 MIMO Communications Lecture1 - slidepdf.com

http://slidepdf.com/reader/full/mimo-communications-lecture1 29/29

On The Importance of Channel

Statistics

So far, we assumed that we know perfectly the parameters of thechannel (τ , η, for each path and for each Tx-Rx antenna pair(n , m ))

It is possible to realistically evaluate those parameters throughray-tracing or other methods – however this is very complex anda very good knowledge of the antennas design and thescatterers (position, refractive index...) is required

In practical design and evaluation of communication systems,channels are stochastic, and some distribution must beassumed.

October 9, 2008 Maxime Guillaud, Erwin Riegler  29