Milk to Market: Low-cost methods to pasteurize milk in ...Milk to Market: Low-cost methods to...

15
1 Milk to Market: Low-cost methods to pasteurize milk in East Africa Report Information Purpose: To support a study of lowcost milk sterilization Report Date: March 11, 2010 Organization Name: Social Profit Network with DRev: Design Revolution Report Prepared by: Krista Donaldson, Heather A. Hoell Report Edited (2011): Jacqueline del Castillo, Sara Tollefson, Hannah Lou Primary Contact Name: Krista Donaldson Title: CEO, DRev: Design Revolution Telephone: (650) 4852090 Address: 631 Emerson Street, Palo Alto, CA 94301 Email: [email protected] Web site: www.drev.org Report Disclaimer DRev provides information about its projects to build a community of innovators and entrepreneurs that address societies' most pressing problems. Please reference this report as follows: DRev "A study of lowcost milk sterilization in East Africa," 10 January 2010, DRev Report #MTM01, URL: www.drev.org/reports/111005drevmilkto marketreport.pdf

Transcript of Milk to Market: Low-cost methods to pasteurize milk in ...Milk to Market: Low-cost methods to...

1

 

 

Milk to Market: Low-cost methods to pasteurize milk in East Africa Report Information Purpose:  To  support  a  study  of  low-­‐cost  milk  sterilization        Report  Date:    March  11,  2010      Organization  Name:  Social  Profit  Network  with  D-­‐Rev:  Design  Revolution  Report  Prepared  by:    Krista  Donaldson,  Heather  A.  Hoell  Report  Edited  (2011):    Jacqueline  del  Castillo,  Sara  Tollefson,  Hannah  Lou    Primary Contact Name:    Krista  Donaldson  Title:    CEO,  D-­‐Rev:  Design  Revolution  Telephone:    (650)  485-­‐2090    Address:    631  Emerson  Street,  Palo  Alto,  CA    94301      E-­‐mail:    kdonaldson@d-­‐rev.org  Web  site:    www.d-­‐rev.org        Report Disclaimer D-­‐Rev  provides  information  about  its  projects  to  build  a  community  of  innovators  and  entrepreneurs  that  address  societies'  most  pressing  problems.    Please  reference  this  report  as  follows:  D-­‐Rev  "A  study  of  low-­‐cost  milk  sterilization  in  East  Africa,"  10  January  2010,  D-­‐Rev  Report  #MTM01,  URL:  www.d-­‐rev.org/reports/11-­‐10-­‐05-­‐d-­‐rev-­‐milk-­‐to-­‐market-­‐report.pdf      

2

I. Background & Rationale    The Problem  Remote  rural  farmers  with  dairy  livestock  have  an  acute  problem  getting  their  milk  to  market,  since  unpasteurized  milk  spoils  in  as  short  as  four  hours  in  30º  C  temperatures1.  This  is  especially  true  for  dairy  farmers  in  Sub-­‐Saharan  Africa  where  population  dispersal  and  poorly  maintained  infrastructure,  particularly  roads,  make  milk  collection  and  distribution  to  the  market  difficult.      Standard  methods  used  in  industrialized  and  urban  areas  for  sterilizing  and  preserving  milk  (e.g.  refrigeration)  are  too  costly  for  smallholder  dairy  farmers  living  in  remote  regions,  limiting  their  ability  to  sell  milk  for  cash  income.    They  are  confined  to  selling  their  milk  to  nearby  informal  traders  at  below-­‐market  prices  or  trading  it  with  neighbors.    The  UN’s  Food  and  Agriculture  Organization  (FAO  2004)  estimates  that  over  80%  of  milk  produced  in  East  Africa  is  traded  in  the  informal  market,  noting  that  “small-­‐holder  farmers  and  traders  are  the  backbone  of  this  essential  supply  chain,  which  provides  much  needed  milk  and  dairy  products  to  growing  regional  towns  and  capital  cities.”        The  challenge  of  transporting  the  milk  from  the  farm  to  the  chilling  plant  or  market  remains  the  main  gating  issue.    To  limit  spoiling,  farmers  must  bring  their  fresh  milk  to  the  plant  immediately  after  milking,  which  typically  occurs  twice  a  day  (morning  and  evening).    For  many  farmers,  this  is  simply  not  possible  –  they  live  too  far  away.    Instead  farmers  sell  their  milk  to  milk  collectors  who  come  by  bicycle  to  their  farms,  typically  in  the  morning  (See  Appendix  F).    The  long  distances  and  the  hot  climate  mean  that  the  

collector’s  milk  is  also  at  risk  of  spoilage  and  contamination  as  he  goes  on  his  collection  rounds.    It  is  possible  that  some  or  all  of  his  milk  could  be  rejected  at  the  plant.        In  industrialized  economies,  food  is  commonly  sterilized  by  either  irradiation  or,  in  the  case  of  liquids  like  milk,  ultra-­‐high  temperature  (UHT)  pasteurization  (e.g.  “milk  in  a  box”  such  as  Parmalat;  See  Figure  1).    UHT  pasteurization,  however,  is  costly  because  it  requires  high  energy  and  water  inputs  to  rapidly  heat  the  milk  to  110º  C  for  2  seconds  and  then  flash  cool  it  back  to  room  temperature.    The  start-­‐up  costs  for  UHT  pasteurization  are  

not  insignificant:  a  medium-­‐sized  UHT  facility  is  approximately  $1M  US.  UHT  is  simply  not  economically  or  technologically  feasible  for  bottom  of  the  pyramid  (BOP)  small-­‐scale  dairy  farmers.        

1 Average monthly temperatures in East Africa range from 21-36ºC depending on elevation and location (MSN UK 2010).

Figure 1. Parmalat UHT milk

3

If  farmers  had  access  to  a  low-­‐cost  on-­‐farm  method  for  extending  their  milk’s  time  until  spoilage  (shelf-­‐life),  their  market  opportunities,  thus  incomes,  would  increase,  as  would  the  overall  quality  of  the  milk  supply.      History of the Problem  Scientifically,  milk  spoils  because  bacteria  grow  in  it.    Once  a  high  level  of  bacteria  exists,  it  spoils.    In  the  United  States,  industry  standards  put  spoiling  at  100,000  colony  forming  units  per  milliliter  (CFU/mL),  but  humans  do  not  detect  spoilage  until  they  can  taste  sourness  at  approximately  10M  CFU/mL.        Figure  2  depicts  the  exponential  growth  of  bacteria  at  26ºC  (79ºF)  with  time  counting  down  from  24  hours.    The  model  illustrates  environmental  staphs,  streps,  and  coliforms  typically  found  in  milk.    During  the  first  16  hours,  if  the  initial  bacterial  count  is  low,  

there  is  no  detectable  change  in  taste  or  spoilage  of  the  milk.    Commonly  applied  ethanol  tests  and  the  free  oxygen  dye  tests,  such  as  the  Resazurin  10  minute-­‐test,  cannot  detect  bacterial  contamination  below  20M  CFU/mL.        Milk  spoilage  occurs  in  the  last  2-­‐3  hours  when  the  bacteria  populations  exponentially  “explode”.    As  a  general  rule  of  thumb:  every  10x  reduction  in  bacterial  inoculation  translates  to  just  over  three  doubling  cycles  at  28ºC  or  an  additional  2  hours  until  spoilage.        There  are  few  methods  viewed  by  the  development  community  as  economically  and  technologically  

feasible  for  extending  the  shelf-­‐life  of  milk  produced  by  small-­‐holder  farmers:  boiling  to  sterilize  the  milk,  and  chilling  to  preserve  it.    Boiling  milk  is  widely  practiced  in  rural  East  Africa.    The  capital  costs  for  a  small  cook  stove  are  low  (<$5  USD)  or  negligible  since  most  families  already  have  one.    The  cost  of  fuel,  however,  can  be  high  depending  on  scarcity:  as  much  as  10%  of  the  value  of  the  milk  or  about  $0.03  per  liter.    Furthermore,  boiling  milk  negatively  impacts  the  taste  and  nutritional  content  of  the  milk.    Chilling  with  refrigeration  systems  has  high  upfront  capital  and  operating  costs  for  power2.    Furthermore,  refrigeration  systems  do  not  scale  down  well  below  500L  making  them  

2 In East Africa, electricity from diesel generators is five times more costly than solar panels for basic refrigeration units.

Figure 2. Milk spoilage rate at 26ºC

4

unaffordable  to  most  farmers,  although  they  may  be  economically  feasible  at  collection  points  with  a  reliable  power  source  that  provides  30  kilowatt-­‐hours  (kW-­‐h)  for  less  than  $8  per  day.        Since  most  farmers  cannot  afford  refrigeration  (and  the  associated  energy  costs),  a  farmer  must  start  with  a  low  initial  bacterial  level  if  he/she  wants  to  extend  his/her  milk’s  shelf-­‐life.    There  are  two  complimentary  ways  to  do  this:  (1)  protect  the  milk  from  bacteria  inoculation  (disinfection)  and  (2)  kill  the  bacteria  off  before  spoilage  can  occur  (pasteurization).    Currently,  off-­‐grid  widely-­‐distributed  small-­‐holder  farmers  do  not  have  viable  sterilization  or  preservation  options  that  allow  them  to  bring  their  milk  to  market.        Magnitude of the Problem  According  to  the  UN  Food  and  Agriculture  Organization  (Lore  2004),  economic  losses  due  to  spoilage  and  waste  in  the  dairy  sectors  of  East  Africa  and  the  Middle  East  are  as  high  as  $90M  per  year.    These  “losses”  are  attributed  to  “a  combination  of  poor  production  and  handling  and  a  lack  of  technical  knowledge  related  to  possible  sterilization  options.”  Table  1  shows  that  the  total  of  estimated  economic  losses  in  Kenya,  Tanzania  and  Uganda  due  to  milk  failing  to  reach  market  is  $56.4M  USD  (FAO  2004).    

Table  1.  Estimates  of  economic  loss  due  to  milk  failing  to  reach  market  in  East  Africa    (FAO  2004)  

Country   Milk  Produced  (L)   Milk  Marketed  (L)   Milk  Loss  Amount  (L)   Economic  value  (USD)  

Kenya   2550M   585M   95M   $22.4M  Tanzania   1000M   271M   60M   $11M  Uganda   900M   585M   123M   $23M  Total   4450M   1441M   278M   $56.4M    We  learned  from  fieldwork,  however,  that  farm-­‐level  milk  was  not  so  much  “lost”  to  spoilage  as  it  was  never  making  it  to  market.    We  found  that  if  milk  could  be  preserved  for  8-­‐12  hours  more,  then  it  could  actually  reach  market.  Milk  that  could  not  go  to  market  was  usually  sold  informally  at  below-­‐market  prices,  traded  with  neighbors  and/or  given  to  family  members  and  livestock.          

5

II. Goals, Objectives, and Activities  Our  initial  objectives  as  stated  in  our  proposal  changed  as  we  learned  more  about  the  problem  and  the  limitations  of  UV-­‐C  technology  for  sterilizing  fresh  milk  (see  Table  2  and  VI  Challenges  for  more  information).    

Table  2.  Original  and  updated  objectives    Original  objectives  (December  2008)  

1.    Build  and  test  basic  100-­‐200  liter  UV-­‐C  portable  milk  sterilizer.  2.    Build  and  test  large-­‐scale  1000-­‐5000  liter  UV-­‐C  system.  

Updated  objectives  (May  2009)  

1.    Create  a  portable,  low-­‐powered  system  for  <$100  that  adds  3-­‐8  hours  over  the  existing  time  to  spoilage.  2.    Create  a  scaled-­‐up  version  of  our  first  system  for  <$400  to  fill  50-­‐liter  milk  drums  with  sterilized  milk  in  lieu  of  chilling  at  local  collection  points.  

 See  Appendix  A  for  the  visions  of  success,  activities,  outputs  and  outcomes  associated  with  the  updated  objectives.    Activities carried out to meet objectives  To  meet  Objective  #1  (see  Figures  3a-­‐c),  we:  

• designed,  prototyped  and  tested  a  UV-­‐C  sterilization  system  for  farms  • designed,  prototyped  and  tested  using  an  electro-­‐chlorinator  to  provide  low-­‐

cost  bleach  for  sterilizing  milking,  storage  and  transport  containers  • prototyped,  using  a  simple  off-­‐the-­‐shelf  kitchen  thermometer,  a  low-­‐cost  

system  to  pasteurize  milk  at  low  temperature    To  meet  Objective  #2:  we:  

• rapidly  prototyped  and  laboratory  tested  a  larger-­‐scaled  UV-­‐C  sterilization  system  for  aggregation  points  

     

Figures 3a-c. Three D-Rev technologies field-tested in Uganda to improve milk shelf-life (from left to right): (a) the electro-chlorinator to produce low-cost bleach, (b) low temperature pasteurization using a simple kitchen thermometer, and (c) UV-C pasteurization.

6

UV-­‐C  sterilization  system  for  farms  Working  with  Niparajá,  students  and  researchers  at  the  University  of  Arizona,  D-­‐Rev  developed  an  austere  version  of  cold  pasteurization  of  milk  using  UV-­‐C  ionizing  radiation,  which  is  inexpensive  to  generate  and  uses  little  electricity  (see  Figure  3(c)  and  Appendix  D  for  design  requirements,  product  figures  and  drawings).    Tests  run  at  the  University  of  Arizona  provided  a  positive  proof-­‐of-­‐concept  with  over  94%  reduction  in  countable  bacteria  when  treating  1  liter  per  minute  of  milk.    This  prototype  used  dual  UV-­‐C  lamps.        In  the  course  of  our  product  development  process,  we  ran  into  two  challenges  in  the  laboratory:  it  was  difficult  to  create  a  consistent  thinly-­‐flowing  curtain  of  milk  under  the  UV-­‐C  lamps,  and  the  energy  demands  for  treatment  were  higher  than  expected.    Our  team  did  additional  form  factor  iterations  to  achieve  the  appropriate  flow  of  milk  to  maximize  treatment.    The  energy  demands,  however,  were  problematic  because  a  single  20W  bulb  was  not  sufficient  to  produce  the  99.9%  reduction  in  bacterial  loads.    Instead  four  bulbs  with  a  lower  flow  rate  were  required  (resulting  in  a  treatment  time  of  2  hours!),  or  alternatively,  additional  lamps  were  required  to  increase  the  speed  of  the  treatment.    We  determined  that  a  four-­‐bulb  system  capable  of  processing  100  liters  per  day  required  a  power  input  equivalent  to  a  $60  car  battery  and  160  W-­‐h  of  daily  available  power.    A  50  W  solar  panel  capable  of  providing  this  input  increased  the  cost  by  $200,  resulting  in  a  significant  increase  in  estimate  cost  relative  to  initial  estimates  –  affordable  only  perhaps  to  the  aggregation  points  where  collectors  bring  their  milk  to  be  aggregated  and  taken  to  a  chilling  plant.    Despite  the  technical  and  cost  challenges,  we  tested  the  UV-­‐C  sterilization  system  in  the  field  and  confirmed  that  it  would  be  most  appropriately  placed  at  an  aggregation  point.    Unfortunately  the  UV-­‐C  system  did  not,  however,  perform  well  in  testing:  it  was  overly  sensitive  to  operating  conditions  (specifically,  tilt),  and  was  unable  to  treat  fresh  milk  because  the  UV-­‐C  rays  did  not  easily  penetrate  the  cream  layer.    Electro-­‐chlorinator  for  sterilizing  storage  containers  Cleaning  and  sterilizing  everything  in  the  milk-­‐handling  and  storage  chain  is  crucial  to  extending  milk  shelf-­‐life  (see  Appendix  F).    Even  a  small  amount  of  residual  contamination  in  a  jerrycan  effectively  inoculates  the  milk  with  bacteria  and  can  rapidly  accelerate  spoilage.  D-­‐Rev  felt  it  was  necessary  to  complement  the  UV-­‐C  pasteurization  with  a  low-­‐cost  bleach  to  sterilize  the  storage  vessels  (see  Figure  3a).    Chlorine  bleach  is  affordably  produced  using  an  electro-­‐chlorinator  which  converts  a  small  amount  of  salt  water  to  bleach.    D-­‐Rev’s  design  of  the  electro-­‐chlorinator  for  use  on  rural  East  African  farms  is  based  on  technology  already  developed  in  partnership  with  Cascade  Designs  and  MIOX  Corporation.    The  electro-­‐chlorinator  performed  very  well  in  field  testing  and  was  popular  with  farmers,  particularly  women  farmers,  excited  not  only  about  its  potential  for  cleaning  storage  containers,  but  to  sanitize  and  clean  other  household  items  as  well.  

7

 Low  temperature  pasteurization  using  a  simple  kitchen  thermometer  Once  determining  that  the  UV-­‐C  technology  would  be  too  expensive  for  on-­‐the  farm  pasteurization,  our  team  undertook  research  to  find  an  economically  and  technologically  feasible  means  for  farmers  to  sterilize  their  fresh  milk.        Pasteurization  at  a  lower  temperature  does  not  degrade  the  milk  or  noticeably  change  its  taste.    Thermal  pasteurization  is  also  easy  to  teach  since  it  is  simply  heating  the  milk  to  a  precise  temperature  for  a  specified  period  of  time.    To  do  this,  farmers  simply  use  a  thermometer  and  controllable  heat  source.    For  example,  during  field  testing,  we  showed  farmers  how  to  pasteurize  by  heating  the  milk  to  69º  C  for  15  seconds  using  a  gasifier  stove  (see  Figure  3b).    This  type  of  pasteurization  has  a  low  upfront  cost  for  rural  farmers,  particularly  compared  to  UV-­‐C  pasteurization  technology.    A  drawback  of  thermal  pasteurization  relative  to  the  UV-­‐C  treatment,  however,  is  the  cost  of  fuel  to  heat  the  milk.    The  fuel  cost  for  low  temperature  pasteurization,  however,  is  approximately  half  the  fuel  cost  for  boiling.    UV-­‐C  sterilization  system  for  aggregation  points  Working  with  students  and  researchers  at  the  University  of  Arizona,  D-­‐Rev  designed  and  rapidly  prototyped  a  larger  UV-­‐C  system  for  sterilizing  milk.    Because  of  performance  challenges  encountered  in  the  field  with  the  smaller  unit,  much  of  the  technical  product  design  was  focused  on  mixing  the  fresh  milk  for  UV-­‐C  penetration  (see  Figure  4).    Activities not completed

 We  did  not  carry  the  larger-­‐scale  system  into  beta  design  for  field-­‐testing  for  two  reasons.    First,  the  estimated  costs  of  the  smaller  and  larger  units,  once  factoring  the  increased  power  requirements,  moved  well  beyond  target  price  points.    Second,  the  smaller  unit  performed  poorly  in  the  field  and  we  felt  more  research  and  redesign  was  required  for  UV-­‐C  technology  before  moving  ahead  with  the  larger  system  (see  VI  Challenges  for  more  information).    Before  continuing  with  Objective  #2  and  developing  units  for  field  testing,  further  testing  and  redesign  are  required  to  (1)  ruggedize  the  product  so  it  is  not  overly  sensitive  to  usage  conditions  and  (2)  explore  viable  low-­‐cost  options  for  mixing  (homogenizing)  the  milk  to  eliminate  the  cream  barrier.            

Figure 4. Rapid prototype for mixing fresh milk for effective UV-C sterilization.

8

Activities completed in addition to original proposal  Our  original  proposal  focused  principally  on  UV-­‐C  technology  to  sterilize  fresh  milk  with  complementary  sterilizing  of  containers  using  low-­‐cost  chlorine  bleach  produced  with  an  electro-­‐chlorinator.    In  the  course  of  our  technology  development  process  and  laboratory  and  field  testing,  we  found  that  UV-­‐C  technology  has  serious  limitations  that  strongly  suggested  that  it  was  not  a  viable  solution  for  smallholder  dairy  farmers  and  their  informal  networks  of  milk  buyers  and  sellers.    To  better  understand  and  address  the  problem,  we  collected  data  on  contamination  in  the  stakeholder  chain  (see  Appendix  F)  and  refocused  efforts  on  finding  an  affordable  means  to  pasteurize  milk  on  the  farm.    This  research  led  us  to  pursue  low  temperature  pasteurization,  which  was  in  addition  to  the  original  proposal.    Additional accomplishments  Upon  recognizing  that  UV-­‐C  would  not  be  a  viable  market-­‐driven  option  for  farms,  D-­‐Rev  stepped  back  to  consider  the  goal  of  the  project,  which  we  understood  was  to  extend  the  shelf-­‐life  of  milk  so  that  farmers  could  bring  more  of  their  milk  to  market,  thus  increasing  their  incomes.    D-­‐Rev’s  team  then  undertook  a  review  of  existing  milk  sterilization,  storage  and  transportation  research  and  development  with  the  East  African  requirements  and  conditions  in  mind.    Based  on  our  testing  of  storage  containers,  knowledge  of  conditions  in  East  Africa  and  a  survey  of  methods,  we  refocused  our  efforts  on  disinfection  (keeping  bacteria  out  of  the  milk)  and  pasteurization  (limiting  bacteria  in  the  milk).      Our  additional  accomplishments:    

1. Rigorous  bacterial  testing  throughout  milk  chain  and  identification  of  jerrycans  as  main  contamination  points.      Our  aim  in  measuring  bacterial  load  in  milk  was  to  determine  where  the  milk  was  being  inoculated  so  as  to  best  target  our  interventions.    While  anecdotal  data  existed  generalizing  where  contamination  points  were,  there  was  no  literature  or  verifiable  data  that  provided  the  necessary  insight.      

 We  used  standard  plate  counts  (SPCs)  to  find  bacterial  contamination  (see  Appendix  E).    SPCs,  one  of  the  most  rigorous  quantitative  tests,  involve  sampling  milk  with  3M®  petrifilm  and  then  incubating  it  at  37ºC  in  a  small  egg  incubator.      We  identified  the  main  bacterial  inoculation  points  in  the  dairy  chain  to  be  when  the  milk  was  transferred  into  contaminated  storage  vessels;  typically,  these  were  the  ubiquitous  plastic  jerrycans.    We  then  targeted  our  interventions,  either  preventing  contamination  with  chlorine  bleach  or  pasteurizing  after  the  

9

contamination  to  eliminate  the  bacteria.    As  seen  in  Appendix  E,  we  incubated  several  hundred  plates  based  on  the  data  we  collected  with  the  Ugandan  farmers.  

 There  are  many  opportunities  for  milk  to  become  contaminated  on  the  farm  and  along  the  collection  routes  (see  Figures  5  and  Appendix  F).    The  first  contamination  point  is  milking  (Figure  5a).    The  open,  generally  unsanitary  conditions  under  which  cows  are  milked  permits  bacterial  inoculation  from  a  number  of  sources,  such  as  dirt,  flies,  fecal  residue,  etc.  (see  Figure  5b).        As  part  of  the  East  African  Dairy  Development  (EADD)  project,  local  staff  have  been  working  successfully  with  farmers  to  improve  hygiene  including  the  washing  of  hands,  the  cow’s  teats  and  milk  collection  buckets.    Using  the  bleach  produced  by  the  electro-­‐chlorinator  to  clean  hands,  teats  and  the  bucket  reduced  the  initial  bacterial  load  by  1.5  orders  of  magnitude.    We  found,  however,  that  the  initial  bacterial  load  was  remarkably  low  (in  the  hundreds  or  few  thousands)  at  these  sampling  points.    We  had  one  case  where  the  bacterial  count  jumped  significantly  despite  the  added  bleach  washing;  in  this  case,  the  milk  had  been  contaminated  by  another  (unwashed)  milking  bucket.  Even  with  low  levels  of  contamination,  a  single  drop  of  contaminated  water  or  particle  of  dirt  can  cause  a  drastic  percentage  increase  in  bacterial  counts  (see  Appendix  E).    We  concluded  based  on  our  data  collection  that  the  milking  process  is  not  a  major  source  of  contamination.    Despite  this  finding,  fresh  milk  was  observed  to  spoil  in  less  than  12  hours  during  storage  and  transport  to  market.    For  milk  to  spoil  in  this  timeframe,  the  initial  bacterial  load  would  be  approximately  50,000  CFU/mL.        

Figures 5a-c. Milk sampling points (from left): freshly expressed milk, transfer from milking cup to farmer’s storage and bike trader/collector’s jerrycans.

10

   We  determined  from  our  field  data  collection  that  the  main  contamination  point  is  the  jerrycans  used  for  storing  and  transporting  the  milk  once  it  leaves  the  farm.    These  plastic  jerrycans,  as  seen  in  Figures  5c  and  6,  cost  $1.80  -­‐  $2.00  and  are  used  both  on  the  farm  and  by  milk  collectors.    We  found  that  the  jerrycans  inoculated  the  milk  up  to  200,000  CFU/mL  (see  Appendix  E).    The  standard  jerrycans  in  use  in  East  Africa  (see  Figures  6)  have  small  mouths  and  it  is  impossible  to  fit  one’s  hand  inside  to  clean  thoroughly.    The  inside  of  the  jerrycans  have  a  rough  interior  with  flash  and  seams  from  manufacturing.    The  flash,  seams  and  handle  areas  are  ideal  geometries  for  protected  bacteria  breeding  since  the  milk  residue  is  difficult  to  clean  out.    Furthermore,  many  of  the  jerrycans  used  for  transporting  milk  are  not  made  of  food-­‐grade  plastics  (see  Figure  6b).    

2. Research  and  testing  of  milk  flow  paths  and  geometries  to  determine  optimal  mixing  for  maximum  UV-­‐C  penetration.    Once  understanding  the  limitations  of  the  UV-­‐C  technology,  we  tested  four  geometric  configurations  with  two  different  types  of  inoculated  sample  milk.    (See  Appendix  G  for  results  from  our  work).  

 3. Determination  of  low  temperature  pasteurization  best  suited  to  on-­‐the-­‐farm  

pasteurization.      Based  on  economic  analysis,  field  work  and  user  input,  we  determined  that  low  temperature  pasteurization  where  the  farmer  heats  her  milk  to  69º  C  for  15  seconds  to  be  the  most  viable  means  to  extend  the  shelf-­‐life  of  fresh  milk  on  the  farm.    The  payback  period  for  low  temperature  pasteurization  was  also  estimated  to  be  less  than  two  weeks  (see  Appendix  H).  

 

Figures 6a, b. Jerrycans used for milk storage and transportation in Kamira (left) and near Luwero, Uganda (right). Note the oil container being used for milk storage (right).

11

 III. Accomplishments  Our  top  five  accomplishments  were:    

1. Better  comprehension  of  the  problems  facing  farmers  and  stakeholders  in  the  East  African  smallholder  dairy  chain.        As  mentioned  earlier,  there  was  a  good  deal  of  anecdotal  evidence  and  data  suggesting  the  challenges  of  bringing  small-­‐holders’  milk  to  market.    We  were  able  to  establish  through  rigorous  data  collection,  analysis  and  need-­‐finding  that  jerrycans  were  the  main  source  of  contamination  as  milk  is  moved  through  storage  vessels  from  the  cow  to  distribution  centers  (see  Appendices  E  and  F).    We  also  documented  other  sources  of  contamination  related  to  user  activities  that  had  not  been  previously  reported  (see  V  Lessons  Learned).  

 Table  3.    Overview  of  Approaches  Tested  by  D-­‐Rev  to  Extend  Milk  Shelf-­‐life  in  East  Africa  

  UV-­‐C  sterilizer  system   Electro-­‐chlorinator    

Low  thermal  pasteurization  

How  does  it  work?  

It  kills  pathogens  in  milk  by  radiating  a  moving  thin  

film  of  milk  

It  sterilizes  the  inside  of  storage  vessels  and  other  surfaces  the  milk  contacts,  

preventing  bacterial  inoculation  

It  kills  pathogens  in  milk  by  heating  the  volume  evenly  to  

160ºF  for  30  seconds  

Required  consumables   electricity:  1  W-­‐h/L  

table  salt  and  filtered  water  (1oz  of  salt  per  gallon  of  

bleach)  

Bio-­‐fuel  for  stove  (charcoal,  wood)  

Recurrent  cost  per  L     $0     $0.001     $0.02    ($0.007  with  a  gasifier  

stove)  Initial  cost   $380  with  80W  solar  panel   $35  with  4W  solar  panel   $4  (accurate  thermometer)  

Time  to  treat   0.5  L/minute   5  minutes  per  cow  to  wash  all  vessels,  hands,  teats,  etc   0.5  L/min  for  8  L  batches  

Total  cost  for  1st  year  (100  

L/day)  $350     $71     $735x$250  with  improved  

stoves  

 2. Completed  preliminary  design,  testing  and  analysis  of  UV-­‐C  technology  for  milk  

sterilization  in  East  Africa.        

Although  laboratory  tests  had  initially  suggested  that  UV-­‐C  technology  was  promising  as  a  low-­‐cost  method  for  sterilizing  milk  on  farms,  we  found  that  in  field  tests  that  fresh  milk  was  not  easily  treated  by  UV-­‐C.    For  the  system  to  be  affordable,  we  believe  UV-­‐C  systems  need  further  exploration  and  research  and  should  be  aimed  at  “aggregation  points”  in  the  customer  chain  (see  Appendix  F).    

   

12

 3. Analysis  of  viable  market  price  points.      

 D-­‐Rev  believes  that  for  products,  whether  physical  artifacts  or  services,  to  increase  income  generation  among  BOP  populations,  they  must  be  market-­‐driven.    We  undertook  price  point  and  payback  period  calculations  throughout  our  design  process  to  ensure  that  introduced  technologies  would  have  the  anticipated  positive  impacts.    (See  Appendix  H).  

 4. Developed  and  field  tested  an  electro-­‐chlorinator  for  making  low-­‐cost  bleach;  

determined  that  it  had  market  potential  among  East  African  farmers.        During  field  testing,  we  talked  to  farmers  about  our  findings  on  contamination  points  in  the  dairy  chain  and  solicited  their  feedback.    Two  major  themes  emerged;  both  of  which  also  came  up  during  our  preliminary  need  assessment  field  work  in  August  2008:  (1)  farmers  want  to  sell  their  evening  milk,  and  (2)  they  were  extremely  concerned  with  the  prospect  of  rejected  milk  as  that  represented  lost  income.    We  learned  that  in  Kamira,  for  example,  that  on  average  one  farmer’s  milk  was  rejected  per  week.    When  this  happens,  the  trader  returns  the  spoiled  milk,  now  semi-­‐rancid,  at  the  end  of  the  day  and  tenders  no  payment  to  the  farmer.      

 5. Prototyped  and  field  tested  low  temperature  pasteurization;  determined  it  had  

market  potential  for  on-­‐farm  pasteurization.        After  trying  out  the  UV-­‐C  and  the  low  temperature  pasteurization,  farmers  greatly  preferred  the  thermal  pasteurization.    By  the  end  of  our  user  feedback  gathering,  there  was  significant  demand  among  the  farmers  for  the  $4  off-­‐the-­‐shelf  kitchen  thermometers  for  the  low  temperature  pasteurization.    The  UV-­‐C  systems  elicited  curiosity  from  farmers  but  the  estimated  retail  price  of  $200-­‐$380  was  too  high.    

 From  our  team’s  perspective,  we  observed  two  further  advantages  of  the  thermal  pasteurization  over  the  UV-­‐C  system.    First,  heating,  stirring  and  using  a  thermometer  is  an  easy  and  straight-­‐forward  protocol  for  farmers.    Second,  thermal  pasteurization  of  this  type  is  similar  to  what  other  small-­‐scale  dairy  farmers  use  all  over  the  world.    We  presented  it  to  farmers  as  a  farm-­‐scale  version  of  what  the  larger  sophisticated  East  African  dairies  do.    The  farmers  responded  favorably,  telling  us  that  they  aspired  to  modernize  sanitary  dairy  practices.      

       

13

IV. Impact  Because  this  project  was  a  technology  development  project,  we  do  not  have  reportable  impact  to  users  other  than  feedback  from  farmers,  milk  collectors  and  milk  distribution  center  workers  on  prototypes.        The  farmers  (and  EADD  staff)  were  most  impressed  when  we  were  able  to  demonstrate  that  with  chlorine  bleach  to  clean  jerrycans  and  low  temperature  pasteurization  of  fresh  milk,  it  was  possible  to  preserve  milk  for  over  21  hours  without  impacting  the  milk’s  taste.    From  a  farmer’s  perspective,  this  represents  a  new  income  source  –  he  or  she  can  store  evening  milk  overnight  (~12  hours,  well  below  any  detectable  level  of  deterioration)  and  add  it  to  the  morning  milk  for  sale  to  collectors.    We  estimate  that  a  farmer  with  a  moderate  to  high  producing  cow  would  earn  an  extra  $3.15  per  day  (see  Appendix  H).    To  bring  these  farm-­‐based  interventions  to  impact,  the  next  step  would  be  to  develop  distribution  and  commercialization  plans  for  the  electro-­‐chlorinator  and  kitchen  thermometer,  test  market  them  and  launch  the  product  to  East  African  markets.    For  larger  systems,  such  as  the  1000-­‐5000  liter  UV-­‐C  sterilization  system,  additional  research  needs  to  be  done  around  aggregation  points  and  on  the  UV-­‐C  technology  to  make  it  affordable  and  field-­‐ready.    V. Lessons Learned  What  worked  well  and  what  did  not?    As  detailed  in  IV  Impact,  the  farmers  greatly  preferred  the  thermal  pasteurization  to  UV-­‐C  pasteurization,  and  there  was  significant  demand  among  farmers  for  the  $4  off-­‐the-­‐shelf  kitchen  thermometers.      Farmers  also  told  us  they  would  use  the  electro-­‐chlorinator  to  make  bleach  for  other  purposes.    At  $0.75  for  a  150  mL  bottle,  the  local  bleach  Jik  is  too  costly  to  be  afforded  by  most  farmers.    Using  local  inputs  (salt  at  $0.50/kg  and  available  water)  150  mL  of  the  chlorine  bleach  costs  less  than  1¢.    What  recommendations  do  we  have  for  other  organizations  attempting  similar  efforts?    First,  we  recommend  that  they  partner  with  ILRI  and  other  knowledgeable  organizations  located  in  East  Africa  to  best  have  access  to  and  understand  user  needs.        Second,  we  were  unable  to  find  reliable  data  (scientifically  sound)  that  provided  the  necessary  insights  for  product  development.    If  we  were  to  plan  this  project  again,  we  would  spend  more  time  upfront  doing  user  research,  as  well  as  a  rigorous  study  of  the  

14

local  economies,  current  methods  in  use  and  user  habits.  This  early  stage  work  would  have  better  informed  our  product  development  process,  particularly  in  designing  for  scale.    Finally,  based  on  the  farmers’  positive  and  enthusiastic  responses  to  the  electro-­‐chlorinator  and  low  temperature  pasteurization  in  field  testing,  we  recommend  that  the  project  be  continued  with  efforts  focused  on  developing  distribution  channels  for  bringing  these  interventions  to  markets.        What  other  lessons  were  learned?    From  our  limited  user  research,  we  observed  local  cultural  behaviors  that  impacted  milk  contamination  and  were  not  previously  noted  in  literature:  

• When  milking,  farmers’  hands  often  become  slippery.    To  counteract  this  and  provide  friction  to  improve  grip  on  the  cows’  teats,  farmers  often  tap  their  hands  in  the  dirt  below  the  cow.    This  tapping  introduces  additional  bacteria  to  the  milking  process.  

• Farmers  were  well  aware  that  it  was  necessary  to  wash  their  storage  containers  and  they  did.    The  most  common  practice  is  to  rinse  a  cup  with  soapy  water  or  shake  the  soapy  water  in  a  container.    The  farmers’  inability  to  thoroughly  clean  the  containers  is  due  to  the  lack  of  clean  water  and,  in  the  case  of  jerrycans,  the  geometry  of  the  vessels.  

• Some  farmers  told  us  that  they  washed  their  milk  storage  vessels  with  urine.    Urine  can  act  as  a  mild  astringent,  but  does  not  provide  any  real  level  of  disinfection.  

• Although  directed  by  extension  workers  as  to  the  sanitary  care  of  cows,  our  team  found  that  basic  steps  such  as  cleaning  the  area  where  the  cow  is  kept  and  tying  its  tail  were  not  frequently  done.  

• As  mentioned  earlier,  our  most  insightful  lesson  was  identifying  plastic  jerrycans  as  being  the  main  contamination  point  in  the  stakeholder  chain.    Although  there  are  aluminum  storage  vessels  that  are  easier  to  clean,  they  cost  $70-­‐$100  and  are  not  affordable  to  farmers.    The  low  cost  of  the  plastic  jerrycans  at  $2  suggests  that  these  storage  vessels  will  continue  indefinitely  to  be  the  primary  mode  of  milk  storage  and  transport.  

 VI. Challenges  This  project  had  a  number  of  challenges  with  technology  development,  particularly  related  to  the  UV-­‐C  system.    First,  the  UV-­‐C  system  faced  several  functional  challenges  relative  to  the  problem.    We  were  unable  to  achieve  high  net  disinfection  levels  in  raw  milk  using  the  UV-­‐C  system’s  reduced  flow  rate  with  low-­‐energy  requirements.    The  higher  energy  requirements  

15

increased  the  cost  of  the  technology  to  $300-­‐$380  per  unit,  putting  it  out  of  the  reach  of  our  target  small-­‐holder  farmers.    The  central  technical  problem  is  that  fresh  milk  has  a  layer  of  cream  that  forms  at  the  top  of  a  container  and  this  layer  hinders  UV-­‐C  penetration,  which  was  not  predicted  in  laboratory  testing.    To  overcome  this,  it  is  possible  to  vigorously  mix  or  stir  the  milk  to  “homogenize”  it,  but  doing  so  increases  the  cost  and  size  of  the  system  as  well  as  the  energy  required.      Furthermore,  UV-­‐C  systems  are  fairly  sensitive  to  operating  conditions.  For  example,  they  require  somewhat  clean  environments  and  a  stable  even  surface  to  operate  effectively.    The  UV-­‐C  systems  we  tested  in  the  field  in  August  2009  did  not  function  properly;  we  later  determined  that  this  was  because  they  could  not  be  tilted  more  than  5º  in  any  direction.        VII. References  FAO  (2004).  Milk  and  Dairy  Products,  Post-­‐Harvest  Losses  and  Food  Safety.  FAO,  

accessed:  5  March.    Lore,  T.  (2004).  Synthesis  Report.  Rome,  ILRI.    MSN  UK  (2010).  Weather  Averages  (Kenya,  Uganda).  Foreca,  database  on  website,  

accessed:  5  March  2010.