MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon...

78
The Mid-Infrared Interferometric Instrument for the Very Large Telescope Interferometer Sterrewacht Leiden MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14, 2008 Prepared Richard J. Mathar March 14, 2008 Signature Approved Walter J. Jaffe March 14, 2008 Signature Released Signature

Transcript of MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon...

Page 1: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

The Mid-Infrared Interferometric

Instrument for the

Very Large Telescope

Interferometer

SterrewachtLeiden

MIDI

Correlation of MIDI Phase Fluctuations with Fluctuations ofWater and Carbon Dioxide, Paranal June 2007

Doc. No. UL-TRE-MID-15829-0113Issue 1Date March 14, 2008

Prepared Richard J. Mathar March 14, 2008Signature

Approved Walter J. Jaffe March 14, 2008Signature

ReleasedSignature

Page 2: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

ii Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

Change Record

Issue Date Section/Parag. affected Reason/Initiation/Documents/Remarks

0.1.185 04-Jul-2007 all created (rjm)1.0 13-Mar-2008 all first official release (rjm)

Contents

1 OVERVIEW 11.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4 Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 FITTED DISPERSED MIDI SCANS 52.1 Parameters: times, baselines, meteorological . . . . . . . . . . . . . . . . . . . . . . . . 52.2 Reduction of Dispersion with Linear Fits to Wavenumber . . . . . . . . . . . . . . . . 11

3 COMPARISON INTERFEROMETRY AND GAS ANALYZER 473.1 Refractive Index Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473.2 Structure Functions and Fried Parameter . . . . . . . . . . . . . . . . . . . . . . . . . 513.3 Power Spectra of Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583.4 Phases Extrapolated to Zero Wavenumber . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 SUMMARY 73

List of Figures

1 associated MIDI data files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 wind velocity 300 mbar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Wind Speed during MIDI nights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 MIDI data file 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 MIDI data file 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 MIDI data file 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 MIDI data file 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 MIDI data file 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 MIDI data file 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1910 MIDI data file 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2011 MIDI data file 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2112 MIDI data file 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2213 MIDI data file 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2314 MIDI data file 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2415 MIDI data file 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Page 3: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 iii

16 MIDI data file 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2617 MIDI data file 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2718 MIDI data file 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2819 MIDI data file 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2920 MIDI data file 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3021 MIDI data file 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3122 MIDI data file 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3223 MIDI data file 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3324 MIDI data file 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3425 MIDI data file 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3526 MIDI data file 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3627 MIDI data file 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3728 MIDI data file 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3829 MIDI data file 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3930 MIDI data file 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4031 MIDI data file 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4132 MIDI data file 28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4233 MIDI data file 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4334 Phase Structure Function, weak points flagged . . . . . . . . . . . . . . . . . . . . . . 4435 Phase Structure Function Dϕ0 with oscillations, weak points flagged . . . . . . . . . . 4536 Structure Function Dϕ′ , weak points flagged, slope 1.3 . . . . . . . . . . . . . . . . . . 4537 N-band water vapor dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4838 N-band dry air dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4939 N-band carbon dioxide dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5040 fitted H2O structure functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5241 fitted CO2 structure functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5442 Digitization error of molar densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5543 Expected phases from VLTI mirror vibrations . . . . . . . . . . . . . . . . . . . . . . . 5944 Comparison Clifford model and MIDI 10 µm PDF 1st night . . . . . . . . . . . . . . . 6045 Comparison Clifford model and MIDI 10 µm PDF 2nd night . . . . . . . . . . . . . . 6146 Comparison Clifford model and MIDI 10 µm PDF 4th night . . . . . . . . . . . . . . 6247 Correlation phase and delay 1st night . . . . . . . . . . . . . . . . . . . . . . . . . . . 6548 Correlation phase and delay 2nd night . . . . . . . . . . . . . . . . . . . . . . . . . . . 6649 Correlation phase and delay 3rd night . . . . . . . . . . . . . . . . . . . . . . . . . . . 6750 Correlation phase and delay 4th night . . . . . . . . . . . . . . . . . . . . . . . . . . . 6851 Comparison Clifford model and MIDI zero-k PDF 1st night . . . . . . . . . . . . . . . 7052 Comparison Clifford model and MIDI zero-k PDF 2nd night . . . . . . . . . . . . . . . 7153 Comparison Clifford model and MIDI zero-k PDF 4th night . . . . . . . . . . . . . . 72

List of Tables

1 Parameters of MIDI data sets: baselines, dates, delays . . . . . . . . . . . . . . . . . . 72 MIDI data delayed start times, star altitudes and azimuths . . . . . . . . . . . . . . . 133 Parameters of data sets: wind angles, structure constants . . . . . . . . . . . . . . . . 57

Page 4: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

iv Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

Page 5: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 1

1 OVERVIEW

1.1 Scope

Fluctuations of water and carbon dioxide densities have been measured by W. J. Jaffe and R. S. LePoole on the roof top of the VLTI control building, in the VLTI tunnel, and the hull of the VST domewith a LI-COR gas analyzer at the end of June 2007 [16].

During four nights in the same period, the fringe tracker of the MIDI/VLTI interferometer collecteddata on the motion jitter at the mid-infrared wavelength of 10 µm. We combine a subset of 30of these exposures on visibility calibrators—each of a duration of approximately 2 minutes—wherean overlap with ambient LI-COR data exists. A quantitative comparison between phase powerspectra and structure functions is drawn here; the adjective “quantitative” indicates that not onlythe power exponents of these spectra are examined—which has been done before in OI [2] and willnot be reviewed—but also the strength of the turbulence, commonly associated with various seeingparameters.

1.2 Data Sources

This manuscript has drawn information from

• a one-time campaign with a loaned LI-COR water/carbon-dioxide gas analyzer, June 25–30,2007 [16].

• an ASCII interface to the temperatures, pressures, relative humidities, wind directions, windvelocities and seeing parameters stored in the Paranal ambient server data base [19].

• data on precipitable water vapor, wind speed and wind direction on the 300 mbar level (height)originating from the ECMWF.

• characterisation of interferometric geometry (including air mass), snapshots of the ambientmeteorology and seeing, and stored in FITS files of MIDI raw data of four nights overlappingwith the gas analyzer data during 30 exposures of approximately 2 minutes duration (each).

• data reduction products of the same MIDI detector data with the MIDI prism, equivalent to aspectral resolution of roughly 32 channels in the N band,

• Temperatures and relative humidities of four sensors in the VLTI tunnel and ducts copied froma directory on ESO’s anonymous ftp server.

1.3 References

[1] Clifford, S. F. 1971, J. Opt. Soc. Am., 61, 1285

[2] Colavita, M. M., Shao, M., & Staelin, D. H. 1987, Appl. Opt., 26, 4106

Page 6: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

2 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

[3] d’Arcio, L. 1995, Differential anisoplanatic OPDs and OPD spectra for the VLTI at CerroParanal from PARSCA 1992 Balloon Data. VLT-TRE-ESO-15000-0835

[4] de Mooij, E. 2006, Atmospheric turbulence measured with MIDI, Tech. rep.

[5] Fried, D. L. 1965, J. Opt. Soc. Am., 55, 1427. E: [6]

[6] — 1966, J. Opt. Soc. Am., 56, 410E

[7] Hufnagel, R. E., & Stanley, N. R. 1964, J. Opt. Soc. Am., 54, 52

[8] Koehler, B. 2000, Results of OPD measurement on UT#3 in May ’00, Test Report. VLT-TRE-ESO-15000-2258

[9] Koresko, C., Colavita, M., Serabyn, E., Booth, A., & Garcia, J. 2006, in Advances in Stellar In-terferometry, edited by J. D. Monnier, M. Scholler, & W. Danchi (Int. Soc. Optical Engineering),vol. 6268, 626817

[10] Labit, P. 1998, Meteorological Prediction Software, User and Maintenance Manual. VLT-TRE-ESO-17443-1678

[11] Leveque, S. 2002, Temperature sensor network for the VLTI. VLT-TRE-ESO-15000-2532

[12] Marchetti, S., & Simili, R. 2006, Infr. Phys. Techn., 47, 263. Presumbably, the factor 10−4 oughtread 10+4 and the temperature 296 ◦C read 23 ◦C in Table 1.

[13] Mathar, R. J. 2006, Astrometric Survey for Extra-Solar Planets with PRIMA, Astrometricdispersion correction. UL-TRE-AOS-15753-0010

[14] — 2007, Baltic Astronomy, 16, 287

[15] — 2007, J. Opt. A: Pure and Appl. Optics, 9, 470

[16] Mathar, R. J., Jaffe, W. J., & Le Poole, R. S. 2007, High Frequency Fluctuations of Water andCarbon Dioxide, Paranal July 25–27, 2007. UL-TRE-ESO-15000-0836

[17] Roddier, F. 1981 (Amsterdam: North Holland), vol. XIX of Prog. Opt., 281–376

[18] Roddier, F., & Lena, P. 1984, J. Optics (Paris), 15, 171

[19] Sarazin, M. 2003, Astroclimatology of Paranal, Tech. rep., European Southern Observatory.URL http://www.eso.org/gen-fac/pubs/astclim/paranal

[20] Schwider, J. 1990 (Amsterdam: Elsevier), vol. 28 of Prog. Opt., 271–359

1.4 Acronyms

AO Adaptive Optics

DICB Data Interface Definition Board (of ESO) http://archive.eso.org/dicb

DL Delay Line

ECMWF European Center for Medium-Range Weather Forecasts http://www.ecmwf.int/

Page 7: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 3

ESO European Southern Observatory http://www.eso.org

FITS Flexible Image Transport System http://fits.gsfc.nasa.gov

FT Fourier Transform

GPS Global Positioning System

GUI Graphical User Interface

IDL Interactive Data Language http://www.uni-giessen.de/hrz/software/idl/

IR Infrared

IRIS Infrared Image Sensor http://www.eso.org/projects/vlti/iris/

ISS Interferometric Supervisor-Software

MDL main delay linehttp://www.eso.org/outreach/press-rel/pr-2000/phot-26-00.html

MIDI Mid-Infrared Interferometric Instrument http://www.mpia.de/MIDI

NOVA Nederlandse Onderzoekschool voor Astronomiehttp://www.strw.leidenuniv.nl/nova/

OI Optical Interferometry http://olbin.jpl.nasa.gov/

OPD optical path difference

OS Observation Software

PDF Power Density Function http://en.wikipedia.org/wiki/Spectral_density

PWV precipitable water vapor

UT Unit Telescope (of the VLTI) http://www.eso.org/projects/vlt/unit-tel/

UTC Universal Time Coordinated

VLT Very Large Telescope http://www.eso.org/

VLTI Very Large Telescope Interferometer http://www.eso.org/vlti

VST VLT Survey Telescope http://vstportal.oacn.inaf.it/

Page 8: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

4 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

Page 9: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 5

2 FITTED DISPERSED MIDI SCANS

2.1 Parameters: times, baselines, meteorological

An overview of the time allocation of the 30 MIDI exposures in the four nights is in Figure 1. Someparameters extracted from the primary headers of the first in each group of FITS files of an exposureare in table 1.

• The first column is a small integer to avoid tagging with the full standard file name that isgiven in the second column.

• Baselines are listed in the third column.

• Two temperatures along the DL tunnel are in the 4th and 5th column, taken from the keywordsISS TEMP TUN1 and ISS TEMP TUN4 [11].

• P is the column with the projected baseline, ISS PBL12 START.

• D and D are the external path delay (in vacuum) and its time derivative, using LST, OCS ISSRA and OCS ISS DEC as inputs. The sum b2 = P 2 + D2 is the squared baseline length andconstant for a pair of stations, b = 46.4 m (46.6 m according to the distance between thestation coordinates in the OPD model of Mfile22) for UT23 and b = 62.4 m for UT34.

• The column τ0 is the mean of AMBI TAU0 START and AMBI TAU0 END.

• The column ∂T/∂h is the value of AMBI LRATE.

• The column AIRM is the air mass of ISS AIRM START.

The detector cycle time (average distance between start of two exposures) was 20.9 ms (49 Hz) inall cases. These are non-chopped observations which basically ensures that the stream of data fillsthe time axis almost continuously. The number of piezo steps per scan was 40 in all cases (keywordPIEZ POSNUM), which means block adjustments of the internal or main delay lines initiated by theMIDI fringe tracker could occur in intervals of 0.836 seconds. (This is roughly equivalent to the meanpassage time for a UT diameter at characteristic wind speeds of 10 m/s.) Multiplication with D ofTable 1—which is of the order of 1 mm/s—gives an estimate of how much the main delay line movedduring that time.

Some additional characterization of the seeing conditions is in Figure 2; its data will not be used inthe followup analysis.

Page 10: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

6 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

-500

006/2500:00

06/2504:00

06/2508:00

06/2512:00

06/2516:00

06/2520:00

06/2600:00

delay [mu]

Mfile0

-500

0

50006/2600:00

06/2604:00

06/2608:00

06/2612:00

06/2616:00

06/2620:00

06/2700:00

delay [mu]

Mfile1

Mfile2Mfile3Mfile4

Mfile5

Mfile6Mfile7

Mfile8 -500

0 500

1000 1500 200006/27

00:0006/2704:00

06/2708:00

06/2712:00

06/2716:00

06/2720:00

06/2800:00

delay [mu]

LI-CO

R to tunnel

Mfile9Mfile10

Mfile11

Mfile12Mfile13

Mfile14Mfile15

-1500-1000 -500

0 500

1000 1500 200006/28

00:0006/2804:00

06/2808:00

06/2812:00

06/2816:00

06/2820:00

06/2900:00

delay [mu]

LI-CO

R to V

ST

Mfile16

Mfile17Mfile18

Mfile19

Mfile20

Mfile21

Mfile22

1000 1500 2000 2500 300006/29

00:0006/2904:00

06/2908:00

06/2912:00

06/2916:00

06/2920:00

06/3000:00

delay [mu]

Mfile23

Mfile24

Mfile25

Mfile26Mfile27

Mfile28

Mfile29

Figure 1: Timing overview of the four nights with MIDI data files.

Page 11: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 7

ARCFILE

TELESCOP

TUN1

TUN4

PBL12

TAU0

LRATE

AIRM

WINDSP

Mfilen

startstations

TW

estE

astP

DD

τ0

∂T

/∂h

( ◦C)

( ◦C)

(m)

(m)

(mm

/s)(m

s)( ◦C

/m)

(m/s)

0M

IDI.2007-06-25T

23:53:33U

3413.49

14.2762.3

4.0-1.2

1.00-0.0143

1.47811.90

1M

IDI.2007-06-25T

01:42:35U

3412.96

14.4161.9

6.2-0.7

1.18-0.0054

1.45112.78

2M

IDI.2007-06-26T

02:58:18U

3413.37

14.3162.2

6.2-0.7

0.95-0.0100

1.73010.73

3M

IDI.2007-06-26T

03:41:14U

3413.38

14.3658.5

-21.8-3.6

1.24-0.0139

1.06711.68

4M

IDI.2007-06-26T

03:49:39U

3413.32

14.3557.8

-23.6-3.5

1.21-0.0136

1.08011.38

5M

IDI.2007-06-26T

04:56:08U

3413.29

14.3443.8

44.6-1.3

0.94-0.0171

1.77911.53

6M

IDI.2007-06-26T

05:54:39U

3413.39

14.3758.3

22.6-2.9

0.81-0.0171

1.1228.98

7M

IDI.2007-06-26T

06:35:22U

3413.34

14.4250.9

36.2-2.1

0.84-0.0275

1.3828.68

8M

IDI.2007-06-26T

08:15:15U

3413.22

14.4949.5

38.1-3.4

0.83-0.0504

1.3238.48

9M

IDI.2007-06-27T

01:24:27U

2313.41

14.5045.2

-11.4-0.8

0.78-0.0121

1.26716.25

10M

IDI.2007-06-27T

01:50:36U

2312.36

14.4344.9

-12.7-0.9

0.78-0.0107

1.22814.73

11M

IDI.2007-06-27T

03:04:41U

2312.09

14.4439.9

-24.2-1.5

0.60-0.0282

1.18317.10

12M

IDI.2007-06-27T

04:26:37U

2312.30

14.4946.0

-7.70.2

0.83-0.0304

1.96715.88

13M

IDI.2007-06-27T

04:31:47U

2312.29

14.5146.0

-7.70.2

0.87-0.0268

1.92516.00

14M

IDI.2007-06-27T

07:06:52U

2312.30

14.5245.8

-8.9-0.7

0.94-0.0304

1.28915.15

15M

IDI.2007-06-27T

07:27:32U

2312.31

14.4445.7

-9.2-0.8

0.97-0.0357

1.22816.58

16M

IDI.2007-06-28T

04:50:12U

3412.88

14.3560.6

-15.1-1.4

3.12-0.0189

1.44913.45

17M

IDI.2007-06-28T

05:42:41U

3413.16

14.3756.8

-26.0-3.7

3.22-0.0111

1.1049.93

18M

IDI.2007-06-28T

06:27:47U

3413.08

14.4354.6

-30.4-2.0

3.44-0.0132

1.35610.53

19M

IDI.2007-06-28T

07:15:28U

3413.08

14.5039.2

48.7-1.4

4.73-0.0061

1.8698.90

20M

IDI.2007-06-28T

08:23:48U

3413.28

14.5646.9

-41.3-3.2

2.68-0.0304

1.3998.43

21M

IDI.2007-06-28T

09:42:30U

3413.19

14.6458.0

23.2-3.4

1.91-0.0671

1.9839.93

22M

IDI.2007-06-28T

23:51:18U

2313.34

14.6446.6

2.1-0.4

2.68-0.0236

1.3979.13

23M

IDI.2007-06-29T

01:29:51U

2313.37

14.6546.6

1.4-0.7

2.98-0.0218

1.2649.80

24M

IDI.2007-06-29T

02:46:08U

2313.39

14.6345.8

-8.7-1.5

2.94-0.0039

1.0548.23

25M

IDI.2007-06-29T

03:58:27U

2313.39

14.5546.4

4.5-1.7

3.11-0.0054

1.0167.72

26M

IDI.2007-06-29T

05:11:09U

2313.41

14.5643.6

-16.5-1.8

2.89-0.0089

1.0716.95

27M

IDI.2007-06-29T

05:56:11U

2313.40

14.6446.2

-6.1-2.1

2.71-0.0032

1.0117.80

28M

IDI.2007-06-29T

07:01:57U

2313.42

14.5242.8

-18.4-2.2

2.43-0.0021

1.1736.50

29M

IDI.2007-06-29T

08:26:56U

2313.47

14.4739.2

-25.3-2.0

3.28-0.0346

1.3367.00

Table 1: Parameters of the 30 MIDI data sets derived from primary FITS headers.

Page 12: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

8 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

0 5 10 15 20 25 30 35 40 45 5025 Jun

00:0026 Jun00:00

27 Jun00:00

28 Jun00:00

29 Jun00:00

300 mbar wind [m/s]

0 1 2 3 4 5 6

PWV [mm]

0 1 2 3 4 5 6

τ0 [ms]

Mfile0Mfile1

Mfile2Mfile3Mfile4Mfile5

Mfile6Mfile7Mfile8

Mfile9Mfile10Mfile11

Mfile12Mfile13

Mfile14 Mfile15

Mfile16Mfile17Mfile18

Mfile19Mfile20

Mfile21

Mfile22Mfile23

Mfile24Mfile25

Mfile26Mfile27Mfile28

Mfile29

0.51.01.52.02.53.025 Jun

00:0026 Jun00:00

27 Jun00:00

28 Jun00:00

29 Jun00:00

seeing [as]

Figure 2: Upper two plots: The wind velocity during the five days of observation at the 300 mbarpressure level, and the precipitable water vapor, from the ECMWF [10, 19]. The PWV plot is a sectionof Figure 57 in [13]. Lower two plots: seeing and coherence time from the ambient data base serverat the same times. The 25th of June is included in the plot to demonstrate implicitly through thePWV that it was rainy.

Page 13: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 9

Fig. 3 is a close-up (redundant) view on the wind speeds of Figs. 2–7 of [16] during the times of the30 MIDI observations, a synopsis of the WINDSP column of Table 1 with the markers of Fig. 1. Theintent is to demonstrate that the wind speed is stable over the approximate 2 minutes of an exposureonly to within 0.5 m/s. The WINDSP entry in the FITS headers are (due to some known constraintsof data handling procedures in the instrument software) a snapshot taken at some time during thepart of the exposure covered by the first FITS file of the series; the nominal accuracy of 0.01 m/s isnot achieved.

Page 14: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

10 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

6 8 10 12 14 16

26 Jun00:00

26 Jun01:00

26 Jun02:00

26 Jun03:00

26 Jun04:00

26 Jun05:00

26 Jun06:00

26 Jun07:00

26 Jun08:00

26 Jun09:00

26 Jun10:00

wind (m/s)

Mfile0

Mfile1

Mfile2

Mfile3Mfile4

Mfile5

Mfile6

Mfile7

Mfile8

10 12 14 16 18

27 Jun00:00

27 Jun01:00

27 Jun02:00

27 Jun03:00

27 Jun04:00

27 Jun05:00

27 Jun06:00

27 Jun07:00

27 Jun08:00

27 Jun09:00

27 Jun10:00

wind (m/s)

Mfile9

Mfile10

Mfile11

Mfile12Mfile13

Mfile14

Mfile15

6 8 10 12 14 16

28 Jun00:00

28 Jun01:00

28 Jun02:00

28 Jun03:00

28 Jun04:00

28 Jun05:00

28 Jun06:00

28 Jun07:00

28 Jun08:00

28 Jun09:00

28 Jun10:00

wind (m/s)

Mfile16

Mfile17

Mfile18

Mfile19

Mfile20

Mfile21

2 4 6 8 10 12

29 Jun00:00

29 Jun01:00

29 Jun02:00

29 Jun03:00

29 Jun04:00

29 Jun05:00

29 Jun06:00

29 Jun07:00

29 Jun08:00

29 Jun09:00

29 Jun10:00

wind (m/s)

Mfile22

Mfile23

Mfile24

Mfile25

Mfile26

Mfile27

Mfile28

Mfile29

Figure 3: Ground wind speeds from the ambient server database during the MIDI observations.

Page 15: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 11

2.2 Reduction of Dispersion with Linear Fits to Wavenumber

The interferometric phase ϕϕ = n(k)kDi − kDe (1)

measured at wave vectors k = 2πσ at internal (stepped) delays Di, external geometric path delay De

for nominal refractive index n(k) is fitted over the MIDI band width to a model of constant interbandgroup delay [9]

ϕ = ϕ0 + kϕ′. (2)

This is a self-sustained data reduction without “astrometric” support, which means the input isessentially the cosine of ϕ, so ϕ0 is only determined modulo 2π. The algorithm is essentially thetechnique of taking the FT of the interferograms and putting a window around one of the two sidebands that arise from splitting the cosine with the Euler formula [20, §3.4].

Some cleansing of the 2-parametric reduced data is done before display and further use of φ0 and φ′:

• At the start of some MIDI files, the initial time segment shows the behaviour during fringeacquisition, with much larger changes than for the rest of the approximately 2 1/2 minutescovered in total. Chopping off some initial frames of the MIDI exposures—typically a sequenceof fringe acquisition—leads to modified start times of the exposures of Table 2. For exposureswith index 12, Fig. 16, such a simple way of discarding data is not effective and has not beenattempted.

• Some spikes in ϕ′ are removed: frames where ∆ϕ′ differs from the average of the previous 15frames by more than 20 µm are discarded. This removes data which claim an OPD motion ofmore than 20 µm within 0.3 seconds.

• One second is chopped off the end to remove the tail wiggle.

In each of the figures 4–33

• The top 4 plots show data as a function of UTC. Each small vertical bar represents the spreadof values within an individual second, so we have 60 of these per major tic mark on the timeaxis.

• the two plots with ordinate ϕ0 and ϕ′ show the MIDI parameters reduced to ϕ0 (in units ofcycles, ie, 2π) and reduced to ϕ′ (in units of µm) after this removal of some optional initialnumber of frames.

• the plots carrying ordinate units of some powers of mol/m3 summarize the LI-COR measure-ments at its local position (outdoors or tunnel) during that same time. The CO2 densities areas monitored, the water densities transformed with the linear equation (1) of [16] for Lfile6and later. The power spectral density derived for the water vapor is the third plot from below.The enumeration Lfile1—Lfile10 is the same as in [16].

• The MIDI phase fluctuation at λ = 10 µm, the value

ϕ(10µ) ≡ ϕ0 + 2πϕ′/(10µm) (3)

that combines the two variables ϕ0 and ϕ′ of each MIDI frame, is transformed to the PDF of ϕand ϕ0 with ordinate units rad2/Hz. A local maximum in PDFϕ0 near 1.2 Hz with occasionalghosts at multiples seems to be some artifact of the data reduction algorithm, where 1.2 Hz isthe inverse of the period of the sawtooth pattern of the phase shifting internal delay line.

Page 16: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

12 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

• In PDF plots, the frequency abscissa axis is accompanied by a second logarithmic axis, whichshows wave numbers

σ ≡ ν/v (4)

in units of inverse meters associated with the frequencies ν by the individual wind velocity vduring that observation (Fig. 3 and Table 1). They are inverse length scales of the densityfluctuations assuming constant speed during the exposure.

As mentioned earlier, the Nyquist frequency of the LI-COR data is 10 Hz, the Nyquist frequency ofthe MIDI data 25 Hz. In all spectra and structure functions, a linear drift term has been removedbefore the Fourier transform; the sub-plots with the data as a function of UTC time show the dataprior to this transformation. The spectra appear noisier than those of Fig. 29–45 in [16] because anadditional averaging on the time axes has been introduced in Fig. 29–45 of [16] for display (but notfor calculation of the derived quantities like autocorrelation and structure function) but not here.

The time axis of LI-COR is a PC clock manually adjusted to UTC, whereas the MIDI exposures areclocked with a GPS based system with sub-second accuracy. A relative shift of the two time axes ofthe order of 2 seconds is expected.1 The PDF of the molecular LI-COR water density is calculatedover the time interval shown in the upper part of the figures. A linear drift has been removed, andthe water density correction (1) of [16] is made for all measurements in the tunnel and in the VST.

1The UTC keyword of the MIDI primary headers does not show the start of the exposures but a time when ISS

received some specific message from the MIDI OS. This is typically 8 seconds ahead of the values of MJD-OBS andOBS-DATE which should be used for accurate reference of the start of exposures.

Page 17: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 13

start ALT AZMfilen (deg) (deg)

0 2007-06-25T23:53:45 42.509 15.8391 2007-06-25T01:42:47 43.512 9.9542 2007-06-26T02:58:30 35.245 13.8493 2007-06-26T03:41:26 69.571 108.7944 2007-06-26T03:49:51 67.571 106.4345 2007-06-26T04:56:20 34.124 321.3016 2007-06-26T05:54:52 62.991 328.0857 2007-06-26T06:35:33 46.294 323.8128 2007-06-26T08:15:27 49.061 269.3639 2007-06-27T01:24:39 52.051 333.53210 2007-06-27T01:50:48 54.498 338.09211 2007-06-27T03:04:53 57.676 25.90612 2007-06-27T04:27:16 30.470 321.10013 2007-06-27T04:32:04 31.209 321.10714 2007-06-27T07:07:04 50.852 327.67915 2007-06-27T07:27:44 54.485 329.78516 2007-06-28T04:50:24 43.570 40.32217 2007-06-28T05:42:53 64.872 122.50618 2007-06-28T06:27:59 47.452 66.85519 2007-06-28T07:15:42 32.262 313.86120 2007-06-28T08:23:59 45.577 130.04621 2007-06-28T09:42:42 30.196 226.21022 2007-06-28T23:51:29 45.663 306.28223 2007-06-29T01:30:03 52.278 307.14724 2007-06-29T02:46:19 71.600 346.12425 2007-06-29T03:58:38 79.934 276.84626 2007-06-29T05:11:20 69.035 31.84327 2007-06-29T05:56:22 81.636 66.87528 2007-06-29T07:02:08 58.453 81.03529 2007-06-29T08:27:07 48.414 75.355

Table 2: Time stamps of the first exposures in the MIDI data files of Table 1 after optional removalof a variable initial portion (of typically up to 550 frames) which show large variation of the delayparameter. ALT and AZ are the pointing coordinates in degrees in the local coordinate system followingDICB conventions, from the FITS headers.

Page 18: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

14 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

-200

-150

-100

-50

23:54 23:55 23:56

MID

I ϕ’ (

µm) Mfile0

2.0

3.0

4.0

5.0

ϕ 0 (

cycl

)

UTC 2007 06 25

Mfile0

0.0260.0270.0280.0290.0300.0310.0320.0330.0340.035

LI-C

OR

wat

er (

mol

/m3 )

Lfile3

11.95

12.00

CO

2 (m

mol

/m3 ) Lfile3

1e-10

1e-8

1e-6

0.01 0.1 1 10

0.001 0.01 0.1 1

PD

F (

(mol

/m3 )2 /H

z)

ν/v (1/m)

Lfile3

1e-2

1e+0

1e+2

0.01 0.1 1 10

PD

(rad

2 /Hz) Mfile0

0.0010.010.1

110

100

0.01 0.1 1 10

PD

Fϕ 0

(ra

d2 /Hz)

ν (Hz)

Mfile0

Figure 4: Correlation of MIDI data file 0 with LI-COR densities.

Page 19: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 15

-150

-100

-50

0

50

01:43 01:44 01:45

MID

I ϕ’ (

µm) Mfile1

2.0

3.0

4.0

ϕ 0 (

cycl

)

UTC 2007 06 26

Mfile1

0.026

0.027

0.028

0.029

LI-C

OR

wat

er (

mol

/m3 )

Lfile3

11.90

11.95

12.00

CO

2 (m

mol

/m3 ) Lfile3

1e-10

1e-8

1e-6

0.01 0.1 1 10

0.001 0.01 0.1 1

PD

F (

(mol

/m3 )2 /H

z)

ν/v (1/m)

Lfile3

1e-2

1e+0

1e+2

0.01 0.1 1 10

PD

(rad

2 /Hz) Mfile1

0.0010.010.1

110

100

0.01 0.1 1 10

PD

Fϕ 0

(ra

d2 /Hz)

ν (Hz)

Mfile1

Figure 5: Correlation of MIDI data file 1 with LI-COR densities.

Page 20: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

16 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

-50

0

50

100

150

02:59 03:00 03:01

MID

I ϕ’ (

µm) Mfile2

-2.0

-1.0

0.0

1.0

ϕ 0 (

cycl

)

UTC 2007 06 26

Mfile2

0.027

0.028

0.029

0.030

0.031

LI-C

OR

wat

er (

mol

/m3 )

Lfile3

11.90

11.95

12.00

CO

2 (m

mol

/m3 ) Lfile3

1e-10

1e-8

1e-6

0.01 0.1 1 10

0.001 0.01 0.1 1

PD

F (

(mol

/m3 )2 /H

z)

ν/v (1/m)

Lfile3

1e-2

1e+0

1e+2

0.01 0.1 1 10

PD

(rad

2 /Hz) Mfile2

0.0010.010.1

110

100

0.01 0.1 1 10

PD

Fϕ 0

(ra

d2 /Hz)

ν (Hz)

Mfile2

Figure 6: Correlation of MIDI data file 2 with LI-COR densities.

Page 21: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 17

-200

-150

-100

-50

03:42 03:43

MID

I ϕ’ (

µm) Mfile3

1.0

2.0

3.0

ϕ 0 (

cycl

)

UTC 2007 06 26

Mfile3

0.026

0.027

0.028

0.029

0.030

0.031

LI-C

OR

wat

er (

mol

/m3 )

Lfile3

11.90

11.95

12.00

CO

2 (m

mol

/m3 ) Lfile3

1e-10

1e-8

1e-6

0.01 0.1 1 10

0.001 0.01 0.1 1

PD

F (

(mol

/m3 )2 /H

z)

ν/v (1/m)

Lfile3

1e-2

1e+0

1e+2

0.01 0.1 1 10

PD

(rad

2 /Hz) Mfile3

0.0010.010.1

110

100

0.01 0.1 1 10

PD

Fϕ 0

(ra

d2 /Hz)

ν (Hz)

Mfile3

Figure 7: Correlation of MIDI data file 3 with LI-COR densities.

Page 22: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

18 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

-250

-200

-150 -100

-50

0

03:50 03:51 03:52

MID

I ϕ’ (

µm) Mfile4

2.0

3.0

4.0

ϕ 0 (

cycl

)

UTC 2007 06 26

Mfile4

0.029

0.030

0.031

LI-C

OR

wat

er (

mol

/m3 )

Lfile3

11.90

11.95

12.00

12.05

CO

2 (m

mol

/m3 ) Lfile3

1e-10

1e-8

1e-6

0.01 0.1 1 10

0.001 0.01 0.1 1

PD

F (

(mol

/m3 )2 /H

z)

ν/v (1/m)

Lfile3

1e-2

1e+0

1e+2

0.01 0.1 1 10

PD

(rad

2 /Hz) Mfile4

0.0010.010.1

110

100

0.01 0.1 1 10

PD

Fϕ 0

(ra

d2 /Hz)

ν (Hz)

Mfile4

Figure 8: Correlation of MIDI data file 4 with LI-COR densities.

Page 23: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 19

100

150

200

250

04:57 04:58

MID

I ϕ’ (

µm) Mfile5

2.0

3.0

4.0

ϕ 0 (

cycl

)

UTC 2007 06 26

Mfile5

0.028

0.029

0.030

0.031

LI-C

OR

wat

er (

mol

/m3 )

Lfile3

11.90

11.95

12.00

CO

2 (m

mol

/m3 ) Lfile3

1e-10

1e-8

1e-6

0.01 0.1 1 10

0.001 0.01 0.1 1

PD

F (

(mol

/m3 )2 /H

z)

ν/v (1/m)

Lfile3

1e-2

1e+0

1e+2

0.01 0.1 1 10

PD

(rad

2 /Hz) Mfile5

0.0010.010.1

110

100

0.01 0.1 1 10

PD

Fϕ 0

(ra

d2 /Hz)

ν (Hz)

Mfile5

Figure 9: Correlation of MIDI data file 5 with LI-COR densities.

Page 24: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

20 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

100

150

200

250

300

05:55 05:56 05:57

MID

I ϕ’ (

µm) Mfile6

-1.0

0.0

1.0

2.0

ϕ 0 (

cycl

)

UTC 2007 06 26

Mfile6

0.029

0.030

0.031

0.032

0.033

LI-C

OR

wat

er (

mol

/m3 )

Lfile3

11.90

11.95

12.00

12.05

CO

2 (m

mol

/m3 ) Lfile3

1e-10

1e-8

1e-6

0.01 0.1 1 10

0.01 0.1 1

PD

F (

(mol

/m3 )2 /H

z)

ν/v (1/m)

Lfile3

1e-2

1e+0

1e+2

0.01 0.1 1 10

PD

(rad

2 /Hz) Mfile6

0.0010.010.1

110

100

0.01 0.1 1 10

PD

Fϕ 0

(ra

d2 /Hz)

ν (Hz)

Mfile6

Figure 10: Correlation of MIDI data file 6 with LI-COR densities.

Page 25: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 21

50

100

150

200

250

06:36 06:37 06:38

MID

I ϕ’ (

µm) Mfile7

-2.0

-1.0

0.0

1.0

ϕ 0 (

cycl

)

UTC 2007 06 26

Mfile7

0.0290.0300.0310.0320.0330.0340.0350.0360.0370.038

LI-C

OR

wat

er (

mol

/m3 )

Lfile3

11.90

11.95

12.00

CO

2 (m

mol

/m3 ) Lfile3

1e-10

1e-8

1e-6

0.01 0.1 1 10

0.01 0.1 1

PD

F (

(mol

/m3 )2 /H

z)

ν/v (1/m)

Lfile3

1e-2

1e+0

1e+2

0.01 0.1 1 10

PD

(rad

2 /Hz) Mfile7

0.0010.010.1

110

100

0.01 0.1 1 10

PD

Fϕ 0

(ra

d2 /Hz)

ν (Hz)

Mfile7

Figure 11: Correlation of MIDI data file 7 with LI-COR densities.

Page 26: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

22 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

-350

-300

-250 -200

-150

-100

08:16 08:17 08:18

MID

I ϕ’ (

µm) Mfile8

-3.0

-2.0

-1.0

0.0

ϕ 0 (

cycl

)

UTC 2007 06 26

Mfile8

0.0320.0330.0340.0350.0360.0370.0380.0390.0400.0410.042

LI-C

OR

wat

er (

mol

/m3 )

Lfile3

11.90

11.95

12.00

CO

2 (m

mol

/m3 ) Lfile3

1e-10

1e-8

1e-6

0.01 0.1 1 10

0.01 0.1 1

PD

F (

(mol

/m3 )2 /H

z)

ν/v (1/m)

Lfile3

1e-2

1e+0

1e+2

0.01 0.1 1 10

PD

(rad

2 /Hz) Mfile8

0.0010.010.1

110

100

0.01 0.1 1 10

PD

Fϕ 0

(ra

d2 /Hz)

ν (Hz)

Mfile8

Figure 12: Correlation of MIDI data file 8 with LI-COR densities.

Page 27: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 23

1150

1200

1250

1300

1350

01:25 01:26 01:27

MID

I ϕ’ (

µm) Mfile9

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

ϕ 0 (

cycl

)

UTC 2007 06 27

Mfile9

0.101

0.102

0.103

0.104

0.105

0.106

LI-C

OR

wat

er (

mol

/m3 )

Lfile5

11.75

11.80

11.85

CO

2 (m

mol

/m3 ) Lfile5

1e-10

1e-8

1e-6

0.01 0.1 1 10

0.001 0.01 0.1

PD

F (

(mol

/m3 )2 /H

z)

ν/v (1/m)

Lfile5

1e-2

1e+0

1e+2

0.01 0.1 1 10

PD

(rad

2 /Hz) Mfile9

0.0010.010.1

110

100

0.01 0.1 1 10

PD

Fϕ 0

(ra

d2 /Hz)

ν (Hz)

Mfile9

Figure 13: Correlation of MIDI data file 9 with LI-COR densities.

Page 28: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

24 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

1200

1250

1300

1350

1400

01:51 01:52 01:53

MID

I ϕ’ (

µm) Mfile10

-1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

ϕ 0 (

cycl

)

UTC 2007 06 27

Mfile10

0.105

0.106

0.107

0.108

LI-C

OR

wat

er (

mol

/m3 )

Lfile5

11.75

11.80

11.85

CO

2 (m

mol

/m3 ) Lfile5

1e-10

1e-8

1e-6

0.01 0.1 1 10

0.001 0.01 0.1 1

PD

F (

(mol

/m3 )2 /H

z)

ν/v (1/m)

Lfile5

1e-2

1e+0

1e+2

0.01 0.1 1 10

PD

(rad

2 /Hz) Mfile10

0.0010.010.1

110

100

0.01 0.1 1 10

PD

Fϕ 0

(ra

d2 /Hz)

ν (Hz)

Mfile10

Figure 14: Correlation of MIDI data file 10 with LI-COR densities.

Page 29: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 25

1500

1550

1600

1650

1700

03:05 03:06 03:07

MID

I ϕ’ (

µm) Mfile11

-3.0

-2.0

-1.0 0.0

1.0

2.0

ϕ 0 (

cycl

)

UTC 2007 06 27

Mfile11

0.1030.1040.1050.1060.1070.1080.109

LI-C

OR

wat

er (

mol

/m3 )

Lfile5

11.80

11.85

CO

2 (m

mol

/m3 ) Lfile5

1e-10

1e-8

1e-6

0.01 0.1 1 10

0.001 0.01 0.1

PD

F (

(mol

/m3 )2 /H

z)

ν/v (1/m)

Lfile5

1e-2

1e+0

1e+2

0.01 0.1 1 10

PD

(rad

2 /Hz) Mfile11

0.0010.010.1

110

100

0.01 0.1 1 10

PD

Fϕ 0

(ra

d2 /Hz)

ν (Hz)

Mfile11

Figure 15: Correlation of MIDI data file 11 with LI-COR densities.

Page 30: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

26 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

-250 -200 -150 -100 -50 0

50 100 150 200

04:28 04:29

MID

I ϕ’ (

µm) Mfile12

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

10.0

ϕ 0 (

cycl

)

UTC 2007 06 27

Mfile12

0.119

0.120

0.121

0.122

0.123

0.124

LI-C

OR

wat

er (

mol

/m3 )

Lfile5

11.75

11.80

11.85

CO

2 (m

mol

/m3 ) Lfile5

1e-10

1e-8

1e-6

0.01 0.1 1 10

0.001 0.01 0.1

PD

F (

(mol

/m3 )2 /H

z)

ν/v (1/m)

Lfile5

1e-2

1e+0

1e+2

0.01 0.1 1 10

PD

(rad

2 /Hz) Mfile12

0.0010.010.1

110

100

0.01 0.1 1 10

PD

Fϕ 0

(ra

d2 /Hz)

ν (Hz)

Mfile12

Figure 16: Correlation of MIDI data file 12 with LI-COR densities.

Page 31: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 27

-100

-50

0 50

100

150

04:33 04:34

MID

I ϕ’ (

µm) Mfile13

-2.0 -1.0 0.0 1.0 2.0 3.0 4.0

ϕ 0 (

cycl

)

UTC 2007 06 27

Mfile13

0.118

0.119

0.120

0.121

0.122

LI-C

OR

wat

er (

mol

/m3 )

Lfile5

11.75

11.80

11.85

CO

2 (m

mol

/m3 ) Lfile5

1e-10

1e-8

1e-6

0.01 0.1 1 10

0.001 0.01 0.1

PD

F (

(mol

/m3 )2 /H

z)

ν/v (1/m)

Lfile5

1e-2

1e+0

1e+2

0.01 0.1 1 10

PD

(rad

2 /Hz) Mfile13

0.0010.010.1

110

100

0.01 0.1 1 10

PD

Fϕ 0

(ra

d2 /Hz)

ν (Hz)

Mfile13

Figure 17: Correlation of MIDI data file 13 with LI-COR densities.

Page 32: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

28 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

1200

1250

1300

1350

07:08 07:09

MID

I ϕ’ (

µm) Mfile14

0.0

1.0

2.0

3.0

ϕ 0 (

cycl

)

UTC 2007 06 27

Mfile14

0.107

0.108

0.109

0.110

0.111

0.112

LI-C

OR

wat

er (

mol

/m3 )

Lfile5

11.75

11.80

11.85

CO

2 (m

mol

/m3 ) Lfile5

1e-10

1e-8

1e-6

0.01 0.1 1 10

0.001 0.01 0.1 1

PD

F (

(mol

/m3 )2 /H

z)

ν/v (1/m)

Lfile5

1e-2

1e+0

1e+2

0.01 0.1 1 10

PD

(rad

2 /Hz) Mfile14

0.0010.010.1

110

100

0.01 0.1 1 10

PD

Fϕ 0

(ra

d2 /Hz)

ν (Hz)

Mfile14

Figure 18: Correlation of MIDI data file 14 with LI-COR densities.

Page 33: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 29

1300

1350

1400

07:28 07:29 07:30

MID

I ϕ’ (

µm) Mfile15

-1.0

0.0

1.0

2.0

3.0

ϕ 0 (

cycl

)

UTC 2007 06 27

Mfile15

0.108

0.109

0.110

0.111

LI-C

OR

wat

er (

mol

/m3 )

Lfile5

11.75

11.80

11.85

CO

2 (m

mol

/m3 ) Lfile5

1e-10

1e-8

1e-6

0.01 0.1 1 10

0.001 0.01 0.1

PD

F (

(mol

/m3 )2 /H

z)

ν/v (1/m)

Lfile5

1e-2

1e+0

1e+2

0.01 0.1 1 10

PD

(rad

2 /Hz) Mfile15

0.0010.010.1

110

100

0.01 0.1 1 10

PD

Fϕ 0

(ra

d2 /Hz)

ν (Hz)

Mfile15

Figure 19: Correlation of MIDI data file 15 with LI-COR densities.

Page 34: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

30 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

-500

-450

-400

04:51 04:52

MID

I ϕ’ (

µm) Mfile16

-1.0

0.0

1.0

ϕ 0 (

cycl

)

UTC 2007 06 28

Mfile16

0.123

0.124

0.125

0.126

0.127

0.128

LI-C

OR

wat

er (

mol

/m3 )

Lfile6

10.20

10.25

10.30

10.35

CO

2 (m

mol

/m3 ) Lfile6

1e-10

1e-8

1e-6

0.01 0.1 1 10

0.001 0.01 0.1 1

PD

F (

(mol

/m3 )2 /H

z)

ν/v (1/m)

Lfile6

1e-2

1e+0

1e+2

0.01 0.1 1 10

PD

(rad

2 /Hz) Mfile16

0.0010.010.1

110

100

0.01 0.1 1 10

PD

Fϕ 0

(ra

d2 /Hz)

ν (Hz)

Mfile16

Figure 20: Correlation of MIDI data file 16 with LI-COR densities. The water densities in Figs. 20–33 are those reduced with Equation (1) of [16]. The wavenumber scale ν/v on the LI-COR densitiesdoes not make much sense in these figures because they have been measured in the tunnel and arescaled here with the weather pole wind velocity.

Page 35: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 31

-800

-750

-700

-650

05:43 05:44 05:45

MID

I ϕ’ (

µm) Mfile17

-4.0

-3.0

-2.0

ϕ 0 (

cycl

)

UTC 2007 06 28

Mfile17

0.127

0.128

0.129

0.130

0.131

LI-C

OR

wat

er (

mol

/m3 )

Lfile6

10.35

10.40

10.45

CO

2 (m

mol

/m3 ) Lfile6

1e-10

1e-8

1e-6

0.01 0.1 1 10

0.001 0.01 0.1 1

PD

F (

(mol

/m3 )2 /H

z)

ν/v (1/m)

Lfile6

1e-2

1e+0

1e+2

0.01 0.1 1 10

PD

(rad

2 /Hz) Mfile17

0.0010.010.1

110

100

0.01 0.1 1 10

PD

Fϕ 0

(ra

d2 /Hz)

ν (Hz)

Mfile17

Figure 21: Correlation of MIDI data file 17 with LI-COR densities. Note that the wavenumber scaleon the LI-COR densities does not make much sense here because they have been measured in thetunnel and are scaled here with the weather pole wind velocity.

Page 36: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

32 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

-800

-750

-700

06:28 06:29 06:30

MID

I ϕ’ (

µm) Mfile18

-3.0

-2.0

-1.0

ϕ 0 (

cycl

)

UTC 2007 06 28

Mfile18

0.145

0.146

0.147

LI-C

OR

wat

er (

mol

/m3 )

Lfile6

10.05

10.10

10.15

CO

2 (m

mol

/m3 ) Lfile6

1e-10

1e-8

1e-6

0.01 0.1 1 10

0.001 0.01 0.1 1

PD

F (

(mol

/m3 )2 /H

z)

ν/v (1/m)

Lfile6

1e-2

1e+0

1e+2

0.01 0.1 1 10

PD

(rad

2 /Hz) Mfile18

0.0010.010.1

110

100

0.01 0.1 1 10

PD

Fϕ 0

(ra

d2 /Hz)

ν (Hz)

Mfile18

Figure 22: Correlation of MIDI data file 18 with LI-COR densities. Note that the wavenumber scaleon the LI-COR densities does not make much sense here because they have been measured in thetunnel and are scaled here with the weather pole wind velocity.

Page 37: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 33

-750

-700

-650

-600

-550

07:16 07:17 07:18

MID

I ϕ’ (

µm) Mfile19

-1.0

0.0

1.0

2.0

ϕ 0 (

cycl

)

UTC 2007 06 28

Mfile19

0.137

0.138

0.139

LI-C

OR

wat

er (

mol

/m3 )

Lfile6

10.25

10.30

10.35

10.40

CO

2 (m

mol

/m3 ) Lfile6

1e-10

1e-8

1e-6

0.01 0.1 1 10

0.01 0.1 1

PD

F (

(mol

/m3 )2 /H

z)

ν/v (1/m)

Lfile6

1e-2

1e+0

1e+2

0.01 0.1 1 10

PD

(rad

2 /Hz) Mfile19

0.0010.010.1

110

100

0.01 0.1 1 10

PD

Fϕ 0

(ra

d2 /Hz)

ν (Hz)

Mfile19

Figure 23: Correlation of MIDI data file 19 with LI-COR densities. Note that the wavenumber scaleon the LI-COR densities does not make much sense here because they have been measured in thetunnel and are scaled here with the weather pole wind velocity.

Page 38: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

34 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

-1050

-1000

-950

-900

08:24 08:25 08:26

MID

I ϕ’ (

µm) Mfile20

-1.0

0.0

1.0

2.0

ϕ 0 (

cycl

)

UTC 2007 06 28

Mfile20

0.136

0.137

0.138

0.139

0.140

LI-C

OR

wat

er (

mol

/m3 )

Lfile6

10.20

10.25

10.30

CO

2 (m

mol

/m3 ) Lfile6

1e-10

1e-8

1e-6

0.01 0.1 1 10

0.01 0.1 1

PD

F (

(mol

/m3 )2 /H

z)

ν/v (1/m)

Lfile6

1e-2

1e+0

1e+2

0.01 0.1 1 10

PD

(rad

2 /Hz) Mfile20

0.0010.010.1

110

100

0.01 0.1 1 10

PD

Fϕ 0

(ra

d2 /Hz)

ν (Hz)

Mfile20

Figure 24: Correlation of MIDI data file 20 with LI-COR densities. Note that the wavenumber scaleon the LI-COR densities does not make much sense here because they have been measured in thetunnel and are scaled here with the weather pole wind velocity.

Page 39: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 35

-550 -500 -450 -400 -350 -300 -250 -200

09:43 09:44 09:45

MID

I ϕ’ (

µm) Mfile21

-1.0

0.0

1.0 2.0

3.0

4.0

ϕ 0 (

cycl

)

UTC 2007 06 28

Mfile21

0.115

0.116

0.117

0.118

LI-C

OR

wat

er (

mol

/m3 )

Lfile6

10.40

10.45

10.50

10.55

CO

2 (m

mol

/m3 ) Lfile6

1e-10

1e-8

1e-6

0.01 0.1 1 10

0.001 0.01 0.1 1

PD

F (

(mol

/m3 )2 /H

z)

ν/v (1/m)

Lfile6

1e-2

1e+0

1e+2

0.01 0.1 1 10

PD

(rad

2 /Hz) Mfile21

0.0010.010.1

110

100

0.01 0.1 1 10

PD

Fϕ 0

(ra

d2 /Hz)

ν (Hz)

Mfile21

Figure 25: Correlation of MIDI data file 21 with LI-COR densities. Note that the wavenumber scaleon the LI-COR densities does not make much sense here because they have been measured in thetunnel and are scaled here with the weather pole wind velocity. The origin of the sudden piston near09:43:40 and of the even more obvious hub in Fig. 27 is unknown.

Page 40: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

36 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

1500

1550

1600

1650

1700

23:52 23:53 23:54

MID

I ϕ’ (

µm) Mfile22

-7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0

ϕ 0 (

cycl

)

UTC 2007 06 28

Mfile22

0.0900.0910.0920.0930.0940.0950.0960.097

LI-C

OR

wat

er (

mol

/m3 )

Lfile8

10.75

10.80

10.85

CO

2 (m

mol

/m3 ) Lfile8

1e-10

1e-8

1e-6

0.01 0.1 1 10

0.01 0.1 1

PD

F (

(mol

/m3 )2 /H

z)

ν/v (1/m)

Lfile8

1e-2

1e+0

1e+2

0.01 0.1 1 10

PD

(rad

2 /Hz) Mfile22

0.0010.010.1

110

100

0.01 0.1 1 10

PD

Fϕ 0

(ra

d2 /Hz)

ν (Hz)

Mfile22

Figure 26: Correlation of MIDI data file 22 with LI-COR densities.

Page 41: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 37

1400 1450 1500 1550 1600 1650 1700

01:31 01:32

MID

I ϕ’ (

µm) Mfile23

-3.0

-2.0

-1.0

0.0

ϕ 0 (

cycl

)

UTC 2007 06 29

Mfile23

0.084

0.085

0.086

0.087

0.088

0.089

LI-C

OR

wat

er (

mol

/m3 )

Lfile8

10.80

10.85

CO

2 (m

mol

/m3 ) Lfile8

1e-10

1e-8

1e-6

0.01 0.1 1 10

0.001 0.01 0.1 1

PD

F (

(mol

/m3 )2 /H

z)

ν/v (1/m)

Lfile8

1e-2

1e+0

1e+2

0.01 0.1 1 10

PD

(rad

2 /Hz) Mfile23

0.0010.010.1

110

100

0.01 0.1 1 10

PD

Fϕ 0

(ra

d2 /Hz)

ν (Hz)

Mfile23

Figure 27: Correlation of MIDI data file 23 with LI-COR densities.

Page 42: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

38 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

2300

2350

2400

02:47 02:48

MID

I ϕ’ (

µm) Mfile24

-1.0

0.0

1.0

ϕ 0 (

cycl

)

UTC 2007 06 29

Mfile24

0.086

0.087

0.088

LI-C

OR

wat

er (

mol

/m3 )

Lfile8

10.80

10.85

10.90

CO

2 (m

mol

/m3 ) Lfile8

1e-10

1e-8

1e-6

0.01 0.1 1 10

0.01 0.1 1

PD

F (

(mol

/m3 )2 /H

z)

ν/v (1/m)

Lfile8

1e-2

1e+0

1e+2

0.01 0.1 1 10

PD

(rad

2 /Hz) Mfile24

0.0010.010.1

110

100

0.01 0.1 1 10

PD

Fϕ 0

(ra

d2 /Hz)

ν (Hz)

Mfile24

Figure 28: Correlation of MIDI data file 24 with LI-COR densities.

Page 43: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 39

2100

2150

2200

2250

03:59 04:00 04:01

MID

I ϕ’ (

µm) Mfile25

0.0

1.0

2.0

3.0

ϕ 0 (

cycl

)

UTC 2007 06 29

Mfile25

0.094

0.095

0.096

0.097

LI-C

OR

wat

er (

mol

/m3 )

Lfile8

10.80

10.85

10.90

CO

2 (m

mol

/m3 ) Lfile8

1e-10

1e-8

1e-6

0.01 0.1 1 10

0.01 0.1 1

PD

F (

(mol

/m3 )2 /H

z)

ν/v (1/m)

Lfile8

1e-2

1e+0

1e+2

0.01 0.1 1 10

PD

(rad

2 /Hz) Mfile25

0.0010.010.1

110

100

0.01 0.1 1 10

PD

Fϕ 0

(ra

d2 /Hz)

ν (Hz)

Mfile25

Figure 29: Correlation of MIDI data file 25 with LI-COR densities.

Page 44: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

40 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

1900

1950

2000

2050

05:12 05:13

MID

I ϕ’ (

µm) Mfile26

1.0

2.0

3.0

ϕ 0 (

cycl

)

UTC 2007 06 29

Mfile26

0.098

0.099

0.100

0.101

0.102

LI-C

OR

wat

er (

mol

/m3 )

Lfile8

10.80

10.85

10.90

CO

2 (m

mol

/m3 ) Lfile8

1e-10

1e-8

1e-6

0.01 0.1 1 10

0.01 0.1 1

PD

F (

(mol

/m3 )2 /H

z)

ν/v (1/m)

Lfile8

1e-2

1e+0

1e+2

0.01 0.1 1 10

PD

(rad

2 /Hz) Mfile26

0.0010.010.1

110

100

0.01 0.1 1 10

PD

Fϕ 0

(ra

d2 /Hz)

ν (Hz)

Mfile26

Figure 30: Correlation of MIDI data file 26 with LI-COR densities.

Page 45: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 41

2350

2400

2450

2500

2550

05:57 05:58

MID

I ϕ’ (

µm) Mfile27

0.0

1.0

2.0

3.0

ϕ 0 (

cycl

)

UTC 2007 06 29

Mfile27

0.100

0.101

0.102

0.103

LI-C

OR

wat

er (

mol

/m3 )

Lfile8

10.80

10.85

10.90

CO

2 (m

mol

/m3 ) Lfile8

1e-10

1e-8

1e-6

0.01 0.1 1 10

0.01 0.1 1

PD

F (

(mol

/m3 )2 /H

z)

ν/v (1/m)

Lfile8

1e-2

1e+0

1e+2

0.01 0.1 1 10

PD

(rad

2 /Hz) Mfile27

0.0010.010.1

110

100

0.01 0.1 1 10

PD

Fϕ 0

(ra

d2 /Hz)

ν (Hz)

Mfile27

Figure 31: Correlation of MIDI data file 27 with LI-COR densities.

Page 46: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

42 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

2650

2700

2750

07:03 07:04

MID

I ϕ’ (

µm) Mfile28

-2.0

-1.0

0.0

ϕ 0 (

cycl

)

UTC 2007 06 29

Mfile28

0.0940.0950.0960.0970.0980.0990.1000.1010.1020.1030.1040.105

LI-C

OR

wat

er (

mol

/m3 )

Lfile8

10.80

10.85

10.90

CO

2 (m

mol

/m3 ) Lfile8

1e-10

1e-8

1e-6

0.01 0.1 1 10

0.01 0.1 1

PD

F (

(mol

/m3 )2 /H

z)

ν/v (1/m)

Lfile8

1e-2

1e+0

1e+2

0.01 0.1 1 10

PD

(rad

2 /Hz) Mfile28

0.0010.010.1

110

100

0.01 0.1 1 10

PD

Fϕ 0

(ra

d2 /Hz)

ν (Hz)

Mfile28

Figure 32: Correlation of MIDI data file 28 with LI-COR densities.

Page 47: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 43

2450

2500

2550

08:28

MID

I ϕ’ (

µm) Mfile29

-2.0

-1.0

0.0

1.0

ϕ 0 (

cycl

)

UTC 2007 06 29

Mfile29

0.100

0.101

0.102

0.103

LI-C

OR

wat

er (

mol

/m3 )

Lfile8

10.80

10.85

10.90

CO

2 (m

mol

/m3 ) Lfile8

1e-10

1e-8

1e-6

0.01 0.1 1 10

0.01 0.1 1

PD

F (

(mol

/m3 )2 /H

z)

ν/v (1/m)

Lfile8

1e-2

1e+0

1e+2

0.01 0.1 1 10

PD

(rad

2 /Hz) Mfile29

0.0010.010.1

110

100

0.01 0.1 1 10

PD

Fϕ 0

(ra

d2 /Hz)

ν (Hz)

Mfile29

Figure 33: Correlation of MIDI data file 29 with LI-COR densities.

Page 48: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

44 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

Figures 34–36 show the structure function of ϕ0 or ϕ′ for Mfile25–Mfile28 after flagging of weakpoints.

Figure 34: Dϕ0 in units of rad2.

Page 49: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 45

Figure 35: Dϕ0 in units of rad2. The detector cycle time has been the same for all 30 runs, and isnot any different for run 5 shown here (see page 5). It is therefore not possible to evaluate from thedata in this report whether the oscillations are an artifact of instrumental hardware, or some part ofthe data evaluation, for example Gibb’s oscillations of some Fourier Transform.

Figure 36: Dϕ′ in units of µm2.

Page 50: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

46 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

Page 51: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 47

3 COMPARISON INTERFEROMETRY AND GAS ANALYZER

3.1 Refractive Index Model

An instrument like MIDI with some spectral dispersion may differentiate the chemical componentsin the optical paths if their refractive indices offer sufficient differences in the instrument’s spectralband. We employ a linearized phase model of the dispersion [4]

kχdry(λ) = adry + bdryk; kχwet(λ) = awet + bwetk. (5)

We use the variables χ for the susceptibility, and χ for its value (“intrinsic” polarizability) dividedby the molecular number density. Differentiation of (5) with respect to k shows that the parametersbdry and bwet represent the augmented group refractive indices ng−1 [14, (7)] divided by the numberdensities.2

Numerical examples of the theory are shown in Fig. 37, Fig. 38 and 39. The coefficients in the fitsquoted there are supposedly all proportional to the densities—that is, for our purposes here we mayignore the higher-order effects [15] because we do not need to achieve astrometric accuracy—and aredivided through the partial pressures to generate the intrinsic, density-independent numbers.3

In the N-band, the intrinsic linear fitting coefficients are

bdry ≈2.0485× 10−4

31.771mol ·m−3≈ 6.45× 10−6 m3

mol; bwet ≈

1.3224× 10−6

0.166mol ·m−3≈ 7.97× 10−6 m3

mol(6)

adry ≈−3.608× 10−4cm−1

31.771mol ·m−3≈ −1.14×10−5 m3

mol · cm; awet ≈

−4.21× 10−3cm−1

0.166mol ·m−3≈ −2.53×10−2 m3

mol · cm(7)

This means the two b coefficients (inclinations of the fit) are almost the same for the two components,whereas the a coefficients (constant terms, axis intersections) differ by a factor of 2× 103—on a per-molecule basis.

2This means (5) is the solution to the differential equation ng(k) ≡ n(k) + kdn/dk = b, assigning a constant grouprefractive index ng = 1 + b to the dispersion.

3Doing this quickly is supported by the water vapor saturation curve, Fig. 37 in [13] and the GUI in http://www.

strw.leidenuniv.nl/~mathar/progs/prWaterWeb.html.

Page 52: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

48 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

0.0e+00

1.0e-07

2.0e-07

3.0e-07

4.0e-07

5.0e-07

6.0e-07

7.0e-07

8.0e-07

9.0e-07

1.0e-06

0 200 400 600 800 1000 1200 1400

n-1

wavenumber σ(cm-1)

393.7 Pa pure H2O, 285.15 K, 0.166 mole/m3

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0 200 400 600 800 1000 1200 1400

(n-1

)k (

rad/

cm-1

)

wavenumber σ(cm-1)

393.7 Pa pure H2O, 285.15 K, 0.166 mole/m3

Figure 37: Upper plot: pure water vapor susceptibility χwet at an average ambient partial pressurein the N band. Lower plot: product of this susceptibility χwet and k = 2π/λ = 2πσ. A linear fit tothe lower plot is χk = −4.21× 10−3cm−1 + 1.3224× 10−6k, which means the group refractive indexis 1 + 1.3224 × 10−6 and “enhanced” by a factor of two relative to the 1 + 6.5 × 10−7 of the phaserefractive index of the upper plot.

Page 53: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 49

0.0e+00

5.0e-05

1.0e-04

1.5e-04

2.0e-04

2.5e-04

0 200 400 600 800 1000 1200 1400

n-1

wavenumber σ(cm-1)

75286.9 Pa dry air, 285.15 K, 31.771 mole/m3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 200 400 600 800 1000 1200 1400

(n-1

)k (

rad/

cm-1

)

wavenumber σ(cm-1)

75286.9 Pa dry air, 285.15 K, 31.771 mole/m3

Figure 38: Upper plot: dry air susceptibility χdry in the N band at a typical Paranal pressure.Lower plot: product of this susceptibility χdry and k = 2π/λ = 2πσ. A linear fit to the lower plot isχk = −3.608×10−4cm−1+2.0485×10−4k, which means the group refractive index is 1+2.0485×10−4

and close to the phase refractive index of the upper plot.

Page 54: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

50 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

0.0e+00

2.0e-08

4.0e-08

6.0e-08

8.0e-08

1.0e-07

1.2e-07

1.4e-07

0 200 400 600 800 1000 1200 1400

n-1

wavenumber σ(cm-1)

27.4 Pa pure CO2, 289.15 K, 0.0113 mole/m3

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0 200 400 600 800 1000 1200 1400

(n-1

)k (

rad/

cm-1

)

wavenumber σ(cm-1)

27.4 Pa pure CO2, 289.15 K, 0.0113 mole/m3

Figure 39: Upper plot: pure CO2 susceptibility χc at a typical partial pressure in the N band. Lowerplot: product of this susceptibility χc and k = 2π/λ = 2πσ. Each molecule of Carbon Dioxide hasa polarizability which is approximately 1.53 times the polarizability of the average air molecule, inaccordance with 10.5 µm measurements [12, Tabl 2].

Page 55: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 51

3.2 Structure Functions and Fried Parameter

Density fluctuations C2ρ are converted to line-of-sight-integrated refractive index structure functions

and corresponding phase structure functions Dϕ with

C2n = C2

ρ χ2; (8)

Dϕ = k2χ2C(0)(α)C2ρKP 1+α/ sin a (9)

at scale height K, projected baseline length P , Kolmogorov power α = 2/3, and star altitude a abovethe horizon. The sum of the fits (5) for the product kχ at k = 2π/(10 µm), and the definition of theFried parameter r0 [5, (6.3)] yield

Dϕ = (kχ)2C(0)(α)C2ρKP 1+α/ sin a = 6.884(P/r0)1+α. (10)

The constants are C(0)(α) = 2.914 [17] and kχ ≈ (−2.53 + 7.97× 10−62π/1× 10−5 − 1.14× 10−3 +6.45× 10−62π/1× 10−5) m2/mol ≈ 6.5 m2/mol as discussed in the other parts of the manuscript.

r0 =

(6.884 sin a

(kχ)2C(0)(α)C2ρK

)3/5

≈ 0.176

(sin a

C2ρK

)3/5mol6/5

m12/5. (11)

The fit of the water structure functions DH2O to a Kolmogorov 2/3 power law within the spatialdistances from 1 to 10 m is illustrated in Figure 40.4 On doubly-logarithmic axes, these are straight-line fits with fixed inclination. For Mfile16–Mfile21 this computation is skipped because the LICORmeasurements occurred in the VLTI tunnel during these observations.

4The only difference to Table 2 in [16] is that 4 hours of observation were summarized there, whereas the observationshere cover approximately 2 minutes each.

Page 56: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

52 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

1e-08

1e-07

1e-06

1 10

DH

2O (

(mol

e/m

3 )2 )

∆x (m)

012345678

1e-08

1e-07

1e-06

1 10∆x (m)

9101112131415

1e-08

1e-07

1e-06

1 10

DH

2O (

(mol

e/m

3 )2 )

∆x (m)

2223242526272829

Figure 40: Kolmogorov fits to the LICOR water vapor structure functions. One panel is shown pernight, curves enumerated with the file numbers as in Table 3. The colored curves are the structurefunctions; the black straight lines are the fits ∝ (∆x)2/3, each with C2

H2O as the single free parameter.

Page 57: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 53

The procedure is repeated for the carbon dioxide data in Figure 41. The structure function is flatterthan the exponent 2/3 if DCO2 is small, particularly in the fourth night. The main reason for this isuncovered in Figure 42: the digitization of the LI-COR data is quantized in units of 10−5 mol/m3,which leads to a constant, distance-independent background noise level of 10−10 (mol/m3)2 in thestructure function. At the 1 Hz time intervals at which the fit is attempted here, this is most ofthe value of the structure function itself, and not providing information on the actual air densityfluctuations.

In detail, the connection between the density and refractive index structure functions is with (8) andscaling with C2

dry/C2CO2 = 1/(3.8× 10−4)2,

C2n =

(2.04× 10−4

31.771m3

mol

)2

C2dry ≈ 4.1× 10−11 m6

mol2C2

dry ≈ 2.9× 10−4 m6

mol2C2

CO2. (12)

For Paranal, C2n is in the range 5× 10−17/m2/3 –5× 10−16/m2/3 [3], which means the expected range

of C2CO2 is from 2 × 10−13/m2/3 to 2 × 10−12/m2/3, not 1 × 10−11/m2/3. If we reverse-engineer the

C2dry from the R0 MEAN data of the primary FITS headers at 500 nm with (11) for all 30 MIDI files,

C2dry =

6.884

r5/30

sin a

K

1k2χ2C(0)(α)

, (13)

a maximum of 4.75 × 10−6/m2/3 is found at MFILE22. Multiplied by (3.8 × 10−4)2 to extrapolateto the 380 ppm level of CO2, C2

CO2 is actually not supposed to be larger than 7 × 10−13/m2/3, inobvious discrepancy with the naıve fits to the noise level of the LI-COR CO2 data in Table 3.

Page 58: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

54 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

1e-11

1e-10

1 10

DC

O2

((m

ole/

m3 )2 )

∆x (m)

012345678

1e-11

1e-10

1 10∆x (m)

9101112131415

1e-11

1e-10

1 10

DC

O2

((m

ole/

m3 )2 )

∆x (m)

2223242526272829

Figure 41: Kolmogorov fits to the LICOR CO2 vapor structure functions. One panel is shown pernight, curves enumerated with the file numbers as in Table 3. The colored curves are the structurefunctions; the black straight lines are the fits ∝ (∆x)2/3, each with C2

CO2 as the single free parameter.

Page 59: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 55

11.960

11.970

11.980

11.990

12.000

CO

2 (m

mol

/m3 ) Mfile0, Lfile3

0.026 0.027 0.028 0.029 0.030 0.031 0.032 0.033 0.034 0.035

H2O

(m

ol/m

3 )

Mfile0, Lfile3

11.920

11.930

11.940

11.950

11.960

11.970

11.980

CO

2 (m

mol

/m3 ) Mfile1, Lfile3

0.026

0.027

0.028

0.029

20 40 60 80 100 120 140 160

H2O

(m

ol/m

3 )

time since MJD-OBS (sec)

Mfile1, Lfile3

Figure 42: These replots of the LI-COR molar densities of Figures 4 and 5 demonstrate that adigitization (quantisation) noise of 1× 10−5 mol/m3 is inherent (and dominant at short time scales)to the CO2 measurements, and a noise of 5×10−5 mol/m3 is inherent (and relatively less important)to the water measurements.

Page 60: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

56 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

The fitted C2ρ for water and carbon dioxide are gathered in Table 3 in the columns C2

H2O and C2CO2—

although the latter is not of any value as discussed above.

• R0 MEAN is the mean of the two COU A01 and COU A02 values of the primary FITS headers scaledfrom 500 nm to 10 µm proportional to λ6/5 [18, Table I]. Although the RO MEAN of the VLTI

FITS headers are essentially undocumented in DICB’s ESO-VLT-DIC.COU, we assume that thisis the value for pointing to the zenith.

• The column αv is the platform wind direction (primary header keyword WINDDIR) relative tothe baseline direction (ie, 111 and 40 degrees from North for the two UT baselines) reducedto the interval from 0 to 90 degrees. As expected from the dominant seasonal wind directionon Paranal, the U23 baseline of the second and fourth night is better aligned with the winddirection than the U34 baseline of the first and third night.

• The column v⊥ is the component of the wind vector (derived from WINDDIR and the WINDSPof Table 1 assumed horizontal) perpendicular to the pointing direction, i.e., parallel to theprojected baseline. (The latter is obtained from ALT and AZ of Table 2. If pointing were to thezenith, v⊥ would be |v cos Av|.)

• The column Av is the pointing direction relative to the wind direction—difference betweenWINDDIR and AZ if converted to a common coordinate system—reduced to the interval [0◦,180◦].0 refers to pointing into the wind, which is the worst case of shaking the main telescopestructures [8].

• The column ρwet is the mean water number density reading of the LI-COR instrument over theexposure time, corrected as documented [16], outdoors or in the tunnel.

• The column C2dry is the dry air fluctuation derived from the R0 MEAN keyword of the primary

FITS header via (13), the scale height guessed at K = 9600 m.

Page 61: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 57

R0 MEAN αv v⊥ C2H2O C2

CO2 Av ρwet C2dry

Mfilen (m) (deg) (m/s) (mol2/m20/3) (mol2/m20/3) (deg) (mol/m3) (m2/3)0 4.37 15 11.57 2.13× 10−7 1.15× 10−11 110 0.030 8.76× 10−7

1 4.24 31 11.34 4.42× 10−9 7.98× 10−12 132 0.027 9.37× 10−7

2 3.35 55 9.23 1.38× 10−8 1.50× 10−11 152 0.029 1.17× 10−6

3 6.32 57 10.25 1.85× 10−8 1.83× 10−11 59 0.030 6.56× 10−7

4 5.75 59 10.37 8.26× 10−9 1.63× 10−11 64 0.030 7.58× 10−7

5 3.35 61 10.10 1.25× 10−8 1.58× 10−11 149 0.029 1.13× 10−6

6 3.44 75 6.39 3.09× 10−8 2.61× 10−11 142 0.031 1.72× 10−6

7 3.08 83 7.69 2.76× 10−7 3.51× 10−11 130 0.034 1.68× 10−6

8 3.15 87 8.05 1.51× 10−7 2.77× 10−11 65 0.036 1.69× 10−6

9 2.93 2 15.28 3.42× 10−8 2.61× 10−11 116 0.104 1.99× 10−6

10 3.17 6 13.11 1.36× 10−8 1.73× 10−11 124 0.107 1.80× 10−6

11 2.59 9 10.76 3.13× 10−8 1.36× 10−11 157 0.106 2.62× 10−6

12 2.48 8 15.87 1.56× 10−8 1.30× 10−11 93 0.121 1.70× 10−6

13 2.75 6 15.98 1.48× 10−8 1.08× 10−11 95 0.120 1.46× 10−6

14 3.68 4 14.89 8.83× 10−9 1.06× 10−11 104 0.110 1.34× 10−6

15 3.68 8 16.35 7.02× 10−9 1.16× 10−11 102 0.110 1.40× 10−6

16 7.10 65 11.70 136 0.125 3.98× 10−7

17 7.76 77 9.20 65 0.129 4.51× 10−7

18 6.68 83 9.43 127 0.146 4.70× 10−7

19 5.70 85 8.78 108 0.138 4.45× 10−7

20 4.19 71 8.43 90 0.138 9.93× 10−7

21 2.46 62 8.59 3 0.117 1.70× 10−6

22 3.28 1 9.12 7.69× 10−8 1.18× 10−11 87 0.095 4.75× 10−6

23 4.62 2 9.80 1.37× 10−8 1.40× 10−11 89 0.086 9.32× 10−7

24 6.34 24 4.68 6.19× 10−9 1.15× 10−11 150 0.087 6.61× 10−7

25 4.95 23 7.60 7.96× 10−9 1.77× 10−11 80 0.095 1.03× 10−6

26 4.62 28 3.32 1.61× 10−8 1.83× 10−11 160 0.100 1.10× 10−6

27 5.68 18 5.56 4.72× 10−9 1.18× 10−11 135 0.101 8.27× 10−7

28 4.55 18 5.84 3.12× 10−7 1.70× 10−11 121 0.100 1.03× 10−6

29 4.22 2 5.47 2.79× 10−8 1.64× 10−11 147 0.102 1.03× 10−6

Table 3: Parameters of the 30 MIDI data sets—continued from Tables 1 and 2. The meaning ofcolumns is detailed on page 56.

Page 62: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

58 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

3.3 Power Spectra of Phases

The conversion of C2ρ to predicted power spectra of the phase fluctuations is done with the Clifford

formula (last line of Table 1 in [1]),

PDFϕ(ν) = 0.06601k2 K

sin aC2

nv5/3⊥ [1− cos(2πPν/v⊥)]ν−8/3 (14)

where 0.06601 = Γ(8/3) sin(π/3)/(2π2) [17], where v⊥ is in Table 3, P the projected baseline of Table1, and the air mass in Table 1 or the reciprocal sine of the altitude of table 2.

Supposed the water vapor and dry air contributions to the statistics are independent and add inquadrature, the factor in (14) is replaced by

k2KC2n = k2KwetC

2n,wet + k2KdryC

2n,dry = k2χ2

wetKwetC2H2O + k2χ2

dryKdryC2dry (15)

with Kwet ≈ 1660 m, Kdry ≈ 9600 m (Fig. 25 in [13]), and kχ as in (5).

The synopsis of these predictions from the water vapor fluctuations (red) or all contributions (blue)compared to the individual MIDI fringe tracker data of Figures 4, 5, 6,. . . ,33 (green) follows in Figures44–46.

• The predictions (red) constructed/extrapolated from LI-COR water vapor fluctuations aretypically a factor 100 too small.

• The predictions (blue) constructed from re-interpretation of the R0 MEAN keywords of the FITS

headers (blue) via (13)—essentially not using any LI-COR data and therefore out-of-topic forthis report here—are approximately correct in the frequency range up to 5 Hz.

The expected discrepancy is at most a factor of 2, because the contribution of various surface vi-brations within the VLTI train to the PDF [8] of ϕ—as estimated in Fig. 43—is typically less thanthe expected contribution of the fluctuations of the ambient air humidity, supposed that the mirrorvibrations of the VLTI mirror train, including effects of the MDL and responses of mirrors driven byIRIS, are negligible.

Page 63: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 59

0.0001

0.001

0.01

0.1

1

10

1 10

PD

(rad

2 /Hz)

ν (Hz)

r00-05-11-17r00-05-11-19r00-05-11-20r00-05-11-22r00-05-11-24r00-05-11-34r00-05-12-05r00-05-15-07r00-05-17-14

Figure 43: Contribution of some VLT mirror vibrations up to M6 to the PDF of the 10 µm phase.Values from [8] measured with UT3 under various conditions of activities of motors and pumps havebeen halved to account for an undocumented, presumably 1-sided definition of the spectra, thendoubled to account for an (again undocumented) overlay of 2 telescope mirror trains, and scaledwith k2 = 4π2/λ2 ≈ 4× 1011 m2 to transform lengths to phases.

Page 64: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

60 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

0.0001

0.001

0.01

0.1

1

10

1 10

PD

(rad

2 /Hz)

Hz

Mfile0wet

wet+dry

0.0001

0.001

0.01

0.1

1

10

1 10

PD

(rad

2 /Hz)

Hz

Mfile1wet

wet+dry

0.0001

0.001

0.01

0.1

1

10

1 10

PD

(rad

2 /Hz)

Hz

Mfile2wet

wet+dry

0.0001

0.001

0.01

0.1

1

10

1 10

PD

(rad

2 /Hz)

Hz

Mfile3wet

wet+dry

0.0001

0.001

0.01

0.1

1

10

1 10

PD

(rad

2 /Hz)

Hz

Mfile4wet

wet+dry

0.0001

0.001

0.01

0.1

1

10

1 10

PD

(rad

2 /Hz)

Hz

Mfile5wet

wet+dry

0.0001

0.001

0.01

0.1

1

10

1 10

PD

(rad

2 /Hz)

Hz

Mfile6wet

wet+dry

0.0001

0.001

0.01

0.1

1

10

1 10

PD

(rad

2 /Hz)

Hz

Mfile7wet

wet+dry

0.0001

0.001

0.01

0.1

1

10

1 10

PD

(rad

2 /Hz)

Hz

Mfile8wet

wet+dry

Figure 44: Comparison of the Clifford model (14) with the measured PDFs of the 10 µm phases ofthe first night. The numbers of (14) have been halved to account for the fact that the Clifford model(presumably) uses 1-sided PDFs.

Page 65: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 61

0.0001

0.001

0.01

0.1

1

10

1 10

PD

(rad

2 /Hz)

Hz

Mfile9wet

wet+dry

0.0001

0.001

0.01

0.1

1

10

1 10

PD

(rad

2 /Hz)

Hz

Mfile10wet

wet+dry

0.0001

0.001

0.01

0.1

1

10

1 10

PD

(rad

2 /Hz)

Hz

Mfile11wet

wet+dry

0.0001

0.001

0.01

0.1

1

10

1 10

PD

(rad

2 /Hz)

Hz

Mfile12wet

wet+dry

0.0001

0.001

0.01

0.1

1

10

1 10

PD

(rad

2 /Hz)

Hz

Mfile13wet

wet+dry

0.0001

0.001

0.01

0.1

1

10

1 10

PD

(rad

2 /Hz)

Hz

Mfile14wet

wet+dry

0.0001

0.001

0.01

0.1

1

10

1 10

PD

(rad

2 /Hz)

Hz

Mfile15wet

wet+dry

Figure 45: Continued from figure 44 into the second night of MIDI observations.

Page 66: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

62 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

0.0001

0.001

0.01

0.1

1

10

1 10

PD

(rad

2 /Hz)

Hz

Mfile22wet

wet+dry

0.0001

0.001

0.01

0.1

1

10

1 10

PD

(rad

2 /Hz)

Hz

Mfile23wet

wet+dry

0.0001

0.001

0.01

0.1

1

10

1 10

PD

(rad

2 /Hz)

Hz

Mfile24wet

wet+dry

0.0001

0.001

0.01

0.1

1

10

1 10

PD

(rad

2 /Hz)

Hz

Mfile25wet

wet+dry

0.0001

0.001

0.01

0.1

1

10

1 10

PD

(rad

2 /Hz)

Hz

Mfile26wet

wet+dry

0.0001

0.001

0.01

0.1

1

10

1 10

PD

(rad

2 /Hz)

Hz

Mfile27wet

wet+dry

0.0001

0.001

0.01

0.1

1

10

1 10

PD

(rad

2 /Hz)

Hz

Mfile28wet

wet+dry

0.0001

0.001

0.01

0.1

1

10

1 10

PD

(rad

2 /Hz)

Hz

Mfile29wet

wet+dry

Figure 46: Continued from figure 45 covering the fourth night of MIDI observations. Mfile23 isessentially to be ignored because it is contaminated by the bi-stable sudden 100 µm jump of ϕ′ inFig. 27.

Page 67: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 63

3.4 Phases Extrapolated to Zero Wavenumber

If one decomposes the intrinsic air refractive index

n = 1 + ρdryχdry + ρwetχwet (16)

as in Section 3.1,kχdry = adry + bdryk; kχwet = awet + bwetk, (17)

equations (1)–(2) are the associations

ϕ0 = ρdryadryDt + ρwetawetDt (18)

andϕ′ = Dt + ρdrybdryDt + ρwetbwetDt −De (19)

between observed and theoretical parameters. The full meaning of terms like ρdryDt is∫1 ρdrydl −∫

2 ρdrydl, the difference between two path integrals for telescopes 1 and 2 over atmosphere and tunnelup to the detector. None of these two variables is actually correlated with the De of Table 1: ϕ0

contains arbitrary offsets in units of 2π, and ϕ′ is kept close to zero by group delay tracking.

ρwetawet and ρdryadry are typically −0.42 1/m and −0.036 1/m (Figs. 37, 38). The benefit of ex-trapolation of the phases to zero wavenumber, represented by ϕ0, is that statistical variations of DL

mirrors or AO optics up to some δDi ≈ 1 mm could at most change this wave-number independentcomponent of the phase on sub-milli-radian scales. One has essentially found a parameter that isvery insensitive to incoherent vibrations and motions of the two beam’s optical subsystems and DL

carriages, but still sensitive to the differential water-column over which the two beams integrate whiletraveling through the atmosphere.

The 2D phase structure function Dϕ is related to the 3D structure function Dn of the refractive indexas [5, 7]

Dϕ(ξ) = KC(0)(α)k2Dnξ, (20)

where ξ = vt is the projected lateral distance across the pupil, C(0)(α) a numerical factor dependingon the exponent α that describes the growth of the 3D structure function, K the distance over whichthe phase is integrated along the line of sight, and k = 2πσ the momentum number of the radiation.Splitting the refractive index into the zero-extrapolated awet,dry and slopes bwet,dry decomposes theprevious equation into

Dϕ(ξ) = Dϕ0(ξ) + k2Dϕ′(ξ)︸ ︷︷ ︸∝k2

+Dab︸︷︷︸∝k

. (21)

So we look only at the component of

k2Dn = k2(χ2dryDρ,dry + χ2

wetDρ,wet) = k2(χ2dryDρ,dry + χ2

wetDρ,wet) (22)

of (20) which is independent of k

Dϕ0(ξ) = KC(0)(α)(a2wetDH2O + a2

dryDdry)ξ. (23)

Here K ≈ 1660 m (Figure 59 in [13]), C(2/3) ≈ 2.9 and a2wet ≈ (2.53 × 10−2)2m6/(mol2cm2) ≈

6.4m4/mol2 (eq (7)), therefore KC(2/3)a2wet ≈ 3.1× 104 m5/mol2.

Page 68: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

64 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

Figs. 47–50 show the correlation between the ϕ′ and ϕ0 values, one figure per night, one panel perexposure. The first 2000 frames of each exposure are shown with red plusses, the 2nd 2000 frameswith green crosses, the 3rd 2000 frames with blue boxes, and the final set of frames (none left overin this category for Mfile19 and Mfile29 which were shorter) magenta squares. This are painted ontop of each other; so the read portions tend to be hidden by the latter data if all of them stay close.

The model of air dominated phase fluctuations predicts a correlation between ϕ0 and ϕ′ with anegative slope, which means a change of the overall air density modifies the (positive) slope of thebottom of Figures 37 and 38 by the same factor as their (negative) intersection. This explains whythe point spread functions in Figs. 47–50 are tilted: For water-dominated fluctuations the slope ispredicted as

ϕ0

ϕ′=

awet

bwet=−4.21× 10−1m−1

1.3224× 10−6≈ −31.8/(100µm), (24)

and for dry-air dominated fluctuations it is

ϕ0

ϕ′=

adry

bdry=−3.608× 10−2m−1

2.0485× 10−4≈ −0.0176/(100µm), (25)

the latter too small to be distinguishable from the zero of mirror surface fluctuations.

This could be used to separate the components [4]: The actual slopes are smaller than −5/(100µm)during the very dry first night, Fig. 47, around −10/(100µm) during the second and fourth nightof average humidity, Figs. 48+50, and largest, around −12/(100µm) for the slightly wetter thirdnight, Fig. 49. These estimates confirm that the slope of ϕ0/ϕ′ is sensitive to the water content inthe air—the VLTI is indeed an (expensive) hygrometer, the negative aspect is that either the jittersin the reflecting mirror surfaces or the contribution of the dry air fluctuations do contribute to thefringe motion substantially, as the value of ϕ0/ϕ′ near −32/(100µm) of (24) is not reached.

Page 69: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 65

15

20

25

30

-200 -100

ϕ 0 (

rad)

Mfile0

10

15

20

25

-100 0

ϕ 0 (

rad)

Mfile1

-10

-5

0

5

0 100

ϕ 0 (

rad)

Mfile2

0

5

10

15

20

-200 -100

ϕ 0 (

rad)

Mfile3

10

15

20

25

-200 -100

ϕ 0 (

rad)

Mfile4

10

15

20

25

100 200

ϕ 0 (

rad)

Mfile5

-5

0

5

10

100 200

ϕ 0 (

rad)

Mfile6

-10

-5

0

5

100 200

ϕ 0 (

rad)

ϕ’ (µm)

Mfile7

-15

-10

-5

0

-300 -200

ϕ 0 (

rad)

ϕ’ (µm)

Mfile8

Figure 47: Correlation between ϕ′ and ϕ0 for the fringe fits of the first night. ϕ0/ϕ′ is in the rangeof 0 to −5/(100µm).

Page 70: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

66 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

-20-15-10-5 0 5

10 15 20

1200 1300

ϕ 0 (

rad)

Mfile9

0 5

10 15 20 25 30 35

1300 1400

ϕ 0 (

rad)

Mfile10

-20-15-10-5 0 5

10 15

1500 1600

ϕ 0 (

rad)

Mfile11

10 15 20 25 30 35 40 45

-200 -100

ϕ 0 (

rad)

Mfile12

-10-5 0 5

10 15 20 25

0 100

ϕ 0 (

rad)

Mfile13

-5 0 5

10 15 20 25 30

1200 1300

ϕ 0 (

rad)

ϕ’ (µm)

Mfile14

-10-5 0 5

10 15 20 25 30

1300 1400

ϕ 0 (

rad)

ϕ’ (µm)

Mfile15

Figure 48: Correlation ϕ′ and ϕ0 for the fringe fits of the second night. ϕ0/ϕ′ is of the order−10/(100µm). Formation of separated streaks is probably an indicator of 2π errors in the phaseunwrapping algorithm—the optimistic interpretation is that a clustering algorithm on this type ofdisplay may detect this condition in imaging modes. The colorization of the exposures in blocks of2000 frames (chunks of ≈ 42 s per color) is meant to bolster this interpretation.

Page 71: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 67

-5

0

5

10

-500 -400

ϕ 0 (

rad)

Mfile16

-25

-20

-15

-10

-800 -700 -600

ϕ 0 (

rad)

Mfile17

-20

-15

-10

-5

-800 -700

ϕ 0 (

rad)

Mfile18

0

5

10

15

-700 -600

ϕ 0 (

rad)

Mfile19

-5

0

5

10

-1000 -900

ϕ 0 (

rad)

ϕ’ (µm)

Mfile20

5

10

15

20

-400 -300

ϕ 0 (

rad)

ϕ’ (µm)

Mfile21

Figure 49: ϕ′ and ϕ0 for the MIDI fringe fits of the third night. ϕ0/ϕ′ is of the order −12/(100µm).

Page 72: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

68 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

-35

-30

-25

-20

1500 1600

ϕ 0 (

rad)

Mfile22

-15

-10

-5

0

1500 1600

ϕ 0 (

rad)

Mfile23

-10

-5

0

5

2300 2400

ϕ 0 (

rad)

Mfile24

0

5

10

15

2100 2200

ϕ 0 (

rad)

Mfile25

5

10

15

20

1900 2000

ϕ 0 (

rad)

Mfile26

0

5

10

15

2400 2500

ϕ 0 (

rad)

Mfile27

-15

-10

-5

0

2600 2700

ϕ 0 (

rad)

ϕ’ (µm)

Mfile28

-10

-5

0

5

2400 2500

ϕ 0 (

rad)

ϕ’ (µm)

Mfile29

Figure 50: ϕ′ and ϕ0 for the MIDI fringe fits of the fourth night. ϕ0/ϕ′ is of the order −10/(100µm).

Page 73: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 69

The influence of the dry air fluctuations are in comparison: a2dry/a2

wet ≈ 2× 10−7 (Eq. 7). The scaleheight ratio contributes with a factor Kdry/Kwet ≈ 9.5/1.6 ≈ 6. From Figure 47 in [16] we estimateDdry/DH2O ≈ 3× 103. So the relative magnitude of the dry air structure function is the product ofthese factors, 2× 10−7× 6× 3× 103 ≈ 3.6× 10−3, negligible for our purposes. As we show the powerdensity functions of ϕ0 in Figures 51–53, the predictions (in red) are essentially the same, whetherthe dry air components are included or not.

The fluctuations of the zero-extrapolated component of the MIDI fringe fits are roughly two ordersof magnitude higher than derived from the measured water structure functions: Figs. 51–53. Theyare of the 1/f -noise shape at frequencies below 1 Hz, flat in the region up to 5 Hz, with a crossoverto the predicted ν−8/3 Kolmogorov shape above 5 Hz.

The transition at 5 Hz is a result of a smoothing operation in the IDL software: a 5 Hz Nyquistfrequency is equivalent to a filter of 0.1 s width in the time domain, or equivalent to averaging over5 frames (see Section 2.1).

The model of constant group delay has re-written (1) and (16) as

ϕ(k) = k(Di −De) + ρdryDi(adry + bdryk) + ρwetDi(awet + bwetk). (26)

The difference between this Section 3.4 here and Section 3.3 is that we are now looking at the limitk → 0; instead of addressing inclinations of the straight lines in the lower plots of Figures 37 and38 we are now looking at the interception with the ordinate axes. The difference between the MIDI

fringe tracker fits and projected estimates from air turbulence profiles (LI-COR etc) is measured bysome missing factor between the PDF, typically 100 in Figures 51–53, or in units of amplitudes thesquare root of this, typically 10, but anyway a relative measure. The failure to converge the two datasets is a result of a very unfortunate error propagation in the lower plot of Figure 38: since the MIDI

phase estimates in the range of 700 to 1400 cm−1 are inherently noisy in all ≈ 30 dispersed channelsof the prism, a measure of the slope of the curve with acceptable relative error is still possible sincethe value on the curve drops by ≈ 30 % over the full range of the spectrum—which could not bedone if the curve would be much flatter. A measure of the interception with the ordinate axis, onthe other hand, with a relative error of same quality is almost impossible because the value of kχ(k)at the interception is only 3× 10−4 of its magnitude within the N-band.

In summary, the green curves of the ϕ0 parameter in Figures 51–53 are only a measure of infraredbackground and detector-readout noise; this shadows entirely the fluctuations we would expect inaddition from the turbulence in the atmosphere above the two telescopes, represented by the redcurves. A detailed look into these curves is of no value within the scope of this report.

Page 74: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

70 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

1e-05

0.0001

0.001

0.01

0.1

1

1 10

PD

Fϕ 0

(ra

d2 /Hz)

Hz

Mfile0

1e-05

0.0001

0.001

0.01

0.1

1

1 10

PD

Fϕ 0

(ra

d2 /Hz)

Hz

Mfile1

1e-05

0.0001

0.001

0.01

0.1

1

1 10

PD

Fϕ 0

(ra

d2 /Hz)

Hz

Mfile2

1e-05

0.0001

0.001

0.01

0.1

1

1 10

PD

Fϕ 0

(ra

d2 /Hz)

Hz

Mfile3

1e-05

0.0001

0.001

0.01

0.1

1

1 10

PD

Fϕ 0

(ra

d2 /Hz)

Hz

Mfile4

1e-05

0.0001

0.001

0.01

0.1

1

1 10

PD

Fϕ 0

(ra

d2 /Hz)

Hz

Mfile5

1e-05

0.0001

0.001

0.01

0.1

1

1 10

PD

Fϕ 0

(ra

d2 /Hz)

Hz

Mfile6

1e-05

0.0001

0.001

0.01

0.1

1

1 10

PD

Fϕ 0

(ra

d2 /Hz)

Hz

Mfile7

1e-05

0.0001

0.001

0.01

0.1

1

1 10

PD

Fϕ 0

(ra

d2 /Hz)

Hz

Mfile8

Figure 51: Comparison of the Clifford model (14) with the measured PDFs of the phases extrapolatedto k = 0 in the range 0.2–15 Hz. Red the values derived from gas density fluctuations (both with orwithout water vapor), green the MIDI phases extrapolated from the N band to infinite wavelength.

Page 75: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 71

1e-05

0.0001

0.001

0.01

0.1

1

1 10

PD

Fϕ 0

(ra

d2 /Hz)

Hz

Mfile9

1e-05

0.0001

0.001

0.01

0.1

1

1 10

PD

Fϕ 0

(ra

d2 /Hz)

Hz

Mfile10

1e-05

0.0001

0.001

0.01

0.1

1

1 10

PD

Fϕ 0

(ra

d2 /Hz)

Hz

Mfile11

1e-05

0.0001

0.001

0.01

0.1

1

1 10

PD

Fϕ 0

(ra

d2 /Hz)

Hz

Mfile12

1e-05

0.0001

0.001

0.01

0.1

1

1 10

PD

Fϕ 0

(ra

d2 /Hz)

Hz

Mfile13

1e-05

0.0001

0.001

0.01

0.1

1

1 10

PD

Fϕ 0

(ra

d2 /Hz)

Hz

Mfile14

1e-05

0.0001

0.001

0.01

0.1

1

1 10

PD

Fϕ 0

(ra

d2 /Hz)

Hz

Mfile15

Figure 52: Continued from figure 51 covering the second night of MIDI observations.

Page 76: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

72 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

1e-05

0.0001

0.001

0.01

0.1

1

1 10

PD

Fϕ 0

(ra

d2 /Hz)

Hz

Mfile22

1e-05

0.0001

0.001

0.01

0.1

1

1 10

PD

Fϕ 0

(ra

d2 /Hz)

Hz

Mfile23

1e-05

0.0001

0.001

0.01

0.1

1

1 10

PD

Fϕ 0

(ra

d2 /Hz)

Hz

Mfile24

1e-05

0.0001

0.001

0.01

0.1

1

1 10

PD

Fϕ 0

(ra

d2 /Hz)

Hz

Mfile25

1e-05

0.0001

0.001

0.01

0.1

1

1 10

PD

Fϕ 0

(ra

d2 /Hz)

Hz

Mfile26

1e-05

0.0001

0.001

0.01

0.1

1

1 10

PD

Fϕ 0

(ra

d2 /Hz)

Hz

Mfile27

1e-05

0.0001

0.001

0.01

0.1

1

1 10

PD

Fϕ 0

(ra

d2 /Hz)

Hz

Mfile28

1e-05

0.0001

0.001

0.01

0.1

1

1 10

PD

Fϕ 0

(ra

d2 /Hz)

Hz

Mfile29

Figure 53: Continued from figure 52 covering the fourth night of MIDI observations.

Page 77: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

MIDI Interferom. and Water Vapor Fluct. Issue 1 UL-TRE-MID-15829-0113 73

4 SUMMARY

We summarize 30 exposures of prism-dispersed MIDI N-band interferometric fringe phase data—atotal exposure time of roughly an hour spred over four nights in June 2007—in terms of powerdensity spectra.

1. Prediction of the 10 µm phase fluctuation from the UT AO system’s Fried parameter (at awavelength of 500 nm) is robust in the frequency range up to 3 Hz. Deviations in the powerspectral density are typical less than a factor of two. The stability of this analysis is due to thefact that (i) the integration over the scale height of the Troposphere is already done implicitlyin the AO system which receives the path integrated phases anyway, and (ii) the other majorparameters (wind speed/direction and air mass) are either well known or well represented byground measurements.

In the plots of the power spectral density of this phase ϕ evaluated at λ = 10µm, there is nonoticable difference between either using or neglecting the water vapor content measured atthe ground in the composition of the C2

n.

2. The LICOR IR gas analyzer’s carbon dioxide data cannot be used to estimate the local airdensity fluctuations at medium and high frequencies because the digitization noise is roughlya factor 10 higher than the (estimated) actual equivalent value of C2

n. This is the reason whythe strength of the turbulence is computed from the AO data as described above.

3. Since the N-band refractive index dispersion is large compared to the dispersion at smallerwavelengths, there is a promise that dispersed phase measurement across the N-band may sep-arate the wet and dry air delays by 2-parametric fits of slope and interception. Unfortunately,the actual shape of the gas dispersion means that the sensitivity in the determination of theinterception (extrapolation of phases to zero wavenumber in the plot of phase versus wavenum-ber) cannot be reached by MIDI; the noise sources besides the fluctuations in the optical pathdifferences (that is, detector readout and background noise) dominate the noise in the fittedinterception, and the extracted spectral density of that parameter is non-Kolmogorov, spotnoise reshaped by software filters.

For this reason, qualitatively quite different from abandoning the carbon dioxide information,the high frequency water vapor density measurements with the LICOR analyzer have notcontributed to the current analysis.

4. Another general aspect of the 2-parametric fit of dispersed phase data with slope and intercep-tion is that the interception is insensitive to the OPD induced by mirror motions/vibrations.Here, the analysis of low-frequent co-motions of slope and interception monitored over typi-cally 30 seconds reveals that the sensitivity of the interception to the slope parameter is cor-related with the average ambient humidity. (The methodological difference to the point madeabove is just that a scan over 30 seconds extracts information that remains hidden by othernoises/fluctuations if restricted to 1 Hz information.)

As noticed under the first item, this information does matter if the phase fluctuations are tobe modeled; this does not preempt evaluation in other contexts, such as (i) determinationof the precipitable water vapor integrated over some 2 kilometers above the telescopes, (ii)detection of fringe jumps in unwrapping algorithms, potentially related to imaging modes, (iii)separation of phase jitters contributed from reflecting mirror surfaces or contributed from gasdensity flucuations, and others.

Page 78: MIDI - MPIA.de · MIDI Correlation of MIDI Phase Fluctuations with Fluctuations of Water and Carbon Dioxide, Paranal June 2007 Doc. No. UL-TRE-MID-15829-0113 Issue 1 Date March 14,

74 Mathar–Jaffe, NEVEC, Leiden Observatory Issue 1 UL-TRE-MID-15829-0113

oOo