Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

129
GLOBAL AIR NAVIGATION PLAN Doc 9750‐AN/963 Fourth Edition – 2013 2013–2028 Global Air Navigation Plan © 2013, International Civil Aviation Organization Published in Montréal, Canada International Civil Aviation Organization 999 University Street Montréal, Quebec, Canada H3C 5H7 www.icao.int Disclaimer This report makes use of information, including air transport and safety related data and statistics, which is furnished to the International Civil Aviation Organization (ICAO) by third parties. All third party content was obtained from sources believed to be reliable and was accurately reproduced in the report at the time of printing. However, ICAO specifically does not make any warranties or representations as to the accuracy, completeness, or timeliness of such information and accepts no liability or responsibility arising from reliance upon or use of the same. The views expressed in this report do not necessarily reflect individual or collective opinions or official positions of ICAO Member States. Note: The United Nations’ definitions of regions are used in the report. This document focuses primarily on scheduled commercial flights as this type of traffic accounts for more than 60 per cent of total fatalities. The scheduled commercial flights data was obtained from the Official Airline Guide (OAG).

Transcript of Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

Page 1: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

GLOBAL AIR NAVIGATION PLAN Doc9750‐AN/963FourthEdition–2013

2013–2028GlobalAirNavigationPlan

©2013,InternationalCivilAviationOrganization

PublishedinMontréal,Canada

InternationalCivilAviationOrganization

999UniversityStreet

Montréal,Quebec,Canada

H3C5H7

www.icao.int

Disclaimer

Thisreportmakesuseofinformation,includingairtransportandsafetyrelateddataandstatistics,whichisfurnishedtotheInternationalCivilAviationOrganization(ICAO)bythirdparties.Allthirdpartycontentwasobtainedfromsourcesbelievedtobereliableandwasaccuratelyreproducedinthereportatthetimeofprinting.However,ICAOspecificallydoesnotmakeanywarrantiesorrepresentationsastotheaccuracy,completeness,ortimelinessofsuchinformationandacceptsnoliabilityorresponsibilityarisingfromrelianceuponoruseofthesame.TheviewsexpressedinthisreportdonotnecessarilyreflectindividualorcollectiveopinionsorofficialpositionsofICAOMemberStates.

Note:

TheUnitedNations’definitionsofregionsareusedinthereport.

Thisdocumentfocusesprimarilyonscheduledcommercialflightsasthistypeoftrafficaccountsformorethan60percentoftotalfatalities.

ThescheduledcommercialflightsdatawasobtainedfromtheOfficialAirlineGuide(OAG).

Page 2: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-2- ICAO’sVision

Achievesustainablegrowthoftheglobalcivilaviationsystem.

OurMission

TheInternationalCivilAviationOrganizationistheglobalforumofStatesforinternationalcivilaviation.ICAOdevelopspolicies,standards,undertakescomplianceaudits,performsstudiesandanalyses,providesassistanceandbuildsaviationcapacitythroughthecooperationofMemberStatesandstakeholders.

2014–2016StrategicObjectives

A. Safety:Enhanceglobalcivilaviationsafety.

B. AirNavigationCapacityandEfficiency:Increasecapacityandimproveefficiencyoftheglobalcivilaviationsystem.

C. SecurityandFacilitation:Enhanceglobalcivilaviationsecurityandfacilitation.

D. EconomicDevelopmentofAirTransport:Fosterthedevelopmentofasoundandeconomically‐viablecivilaviationsystem.

E. EnvironmentalProtection:Minimizetheadverseenvironmentaleffectsofcivilaviationactivities.

ICAO’s15‐yearPlanAddressingGlobalAirNavigation

Page 3: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-3-

TheICAOGlobalAirNavigationPlan(GANP)representsthefourtheditionoftheGANP.Itisdesignedtoguidecomplementaryandsector‐wideairtransportprogressover2013–2028andisapprovedtrienniallybytheICAOCouncil.

TheGANPrepresentsarolling,15‐yearstrategicmethodologywhichleveragesexistingtechnologiesandanticipatesfuturedevelopmentsbasedonState/industryagreedoperationalobjectives.TheBlockUpgradesareorganizedinfive‐yeartimeincrementsstartingin2013andcontinuingthrough2028andbeyond.ThisstructuredapproachprovidesabasisforsoundinvestmentstrategiesandwillgeneratecommitmentfromStates,equipmentmanufacturers,operatorsandserviceproviders.

AlthoughtheICAOworkprogrammeisendorsedbytheICAOAssemblyonatriennialbasis,theGlobalPlanoffersalong‐termvisionthatwillassistICAO,Statesandindustrytoensurecontinuityandharmonizationamongtheirmodernizationprogrammes.

ThisneweditionoftheGANPbeginsbyoutliningtheexecutive‐levelcontextfortheairnavigationchallengesahead,aswellastheneedforastrategic,consensus‐basedandtransparentapproachtoaddressthem.

TheGANPexplorestheneedformoreintegratedaviationplanningatboththeregionalandStatelevelandaddressesrequiredsolutionsbyintroducingtheconsensus‐drivenAviationSystemBlockUpgrade(ASBU)systemsengineeringmodernizationstrategy.

Inaddition,itidentifiesissuestobeaddressedinthenearfuturealongsidefinancialaspectsofaviationsystemmodernization.Theincreasingimportanceofcollaborationandpartnershipasaviationrecognizesandaddressesitsmultidisciplinarychallengesaheadisalsostressed.

TheGANPalsooutlinesimplementationissuesinvolvingthenear‐termPBNandBlock0ModulesandthePlanningandImplementationRegionalGroups(PIRGs)thatwillbemanagingregionalprojects.

DescriptionsofimplementationprogrammesbeingpursuedbyICAOcompletechapter2,whilethefinalchapterexplorestheroleofthenewICAOAirNavigationReportinconjunctionwiththeIFSETenvironmentalperformancemonitoringtool.

SevenappendicesprovidesupplementaryinformationrelatingtotheevolutionoftheGANP,onlinesupportdocumentation,detaileddescriptionofASBUmodules,andthetechnologyroadmapssupportingtheBlockUpgrades.

Page 4: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

‐4‐

Contents

ExecutiveSummary AddressingGrowthandRealisingthePromiseofTwenty‐firstCenturyAirTrafficManagement5NewCapabilitiestoServetheATMCommunity 7 WhatdoestheGlobalAirNavigationPlan’sStrategicApproachmeanforMyState?11

Introduction PresentationoftheGlobalAirNavigationPlan 12

Chapter1 ICAO’s10KeyAirNavigationPolicyPrinciples 13

Chapter2 Implementation:TurningIdeasintoAction 15 OurPriorities 15 •PBN:OurHighestPriority 15 •ModulePriorities 19 ICAOe‐ToolssupportingBlock0Roll‐Out 20 FlexibilityofGANPImplementation 21ATMLogicalArchitecture 21GuidanceonBusinessCaseDevelopment 21

Chapter3 AviationSystemPerformance 22

GlobalAirNavigationReport 22 MeasuringEnvironmentalPerformance:ICAOFuelSavingEstimationTool(IFSET) 22

Appendix1 GlobalAirNavigationPlanEvolutionandGovernance 25

Appendix2 AviationSystemBlockUpgrades 32

Appendix3 HyperlinkedOnlineSupportDocumentation 83

Appendix4 FrequencySpectrumConsiderations 87

Appendix5 TechnologyRoadmaps 88

Appendix6 ModuleDependencies 117

Appendix7 AcronymGlossary 119

Page 5: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-5-

ExecutiveSummary

AddressingGrowthandRealizingthePromiseofTwenty‐firstCenturyAirTrafficManagement(ATM)TheOperationalandEconomicContextfortheGlobalAirNavigationPlan

Airtransporttodayplaysamajorroleindrivingsustainableeconomicandsocialdevelopment.Itdirectlyandindirectlysupportstheemploymentof56.6millionpeople,contributesover$2.2trilliontoglobalGrossDomesticProduct(GDP),andcarriesover2.9billionpassengersand$5.3trillionworthofcargoannually.

Aviationachievesitsimpressivelevelofmacro‐economicperformancebyservingcommunitiesandregionsthroughclearcyclesofinvestmentandopportunity.Infrastructuredevelopmentgeneratesinitialemploymentandtheensuingairportandairlineoperationsgeneratenewsuppliernetworks,tourisminfluxesandaccessforlocalproducerstodistantmarkets.Theseburgeoningtradeandtourismeconomiesthencontinuetoexpand,fosteringwiderandmoresustainableregionalgrowth.

It’snomysterythenwhyairtrafficgrowthhassoconsistentlydefiedrecessionarycyclessincethemid‐1970s,expandingtwo‐foldonceevery15years.Itresistedtheserecessionspreciselybecauseitservedasoneofourmosteffectivetoolsforendingthem–animportantconsiderationforgovernmentsateverylevelinachallengingeconomicenvironment.

Butevenasairtransport’sspeedandefficiencysignificantlyfacilitateeconomicprogress,itsgrowthundercertaincircumstancescanbeadouble‐edgedsword.Thoughasuresignofincreasedlivingstandards,socialmobilityandgeneralizedprosperityontheonehand,unmanagedairtrafficgrowthcanalsoleadtoincreasedsafetyrisksinthosecircumstanceswhenitoutpacestheregulatoryandinfrastructuredevelopmentsneededtosupportit.

Toensurethatcontinuoussafetyimprovementandairnavigationmodernizationcontinuetoadvancehand‐in‐hand,ICAOhasdevelopedastrategicapproachlinkingprogressinbothareas.ThiswillnowallowStatesandstakeholderstorealizethesafe,sustainedgrowth,increasedefficiencyandresponsibleenvironmentalstewardshipthatsocietiesandeconomiesgloballynowrequire.

Thisisaviation’scorechallengeasweprogressintotheensuingdecades.

Fortunately,manyoftheproceduresandtechnologiesbeingproposedtoaddresstoday’sneedforincreasedcapacityandefficiencyinourskiesalsoenhancemanypositivefactorsfromasafetystandpoint.

Additionally,themoreefficientroutesfacilitatedbyperformance‐basedproceduresandadvancedavionicsservetosignificantlyreduceaviationemissions–akeyfactorsupportingmorefuel‐efficientmodernaircraftasaviationpursuesitscommitmenttocomprehensivelyreduceitsenvironmentalimpacts.

Page 6: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-6-

Driving Economic RecoveryAviation’s Global Impacts Source: ATAG; ICAO $2.2 trillionContributed to global GDP annually 2.9 billionPassengers annually $5.3 trillionCargo by value annually

The Pace and Resilience of Modern Air Traffic Growth Global air traffic has doubled in size once every 15 years since 1977 and will continue to do so. This growth occurs despite broader recessionary cycles and helps illustrate how aviation investment can be a key factor supporting economic recovery. Source: Airbus

Page 7: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-7-

NewCapabilitiestoServetheAviationCommunityProvidingFlexibilityforMemberStatesthroughtheConsultativeandCooperativeAviationSystemBlockUpgradeMethodologyAirNavigationhaswitnessedsomeimportantimprovementsinrecentdecades,withanumberofStatesandoperatorshavingpioneeredtheadoptionofadvancedavionicsandsatellite‐basedprocedures.

Andyetdespitetheseimportant,localizedadvancesinimplementingwhatisknownasPerformance‐basedNavigation(PBN),aconsiderableremainderoftheglobalAirNavigationsystemisstilllimitedbyconceptualapproachesthataroseinthetwentiethcentury.TheselegacyAirNavigationcapabilitieslimitairtrafficcapacityandgrowthandareresponsibleforunnecessarygasemissionsbeingdepositedinouratmosphere.

Afully‐harmonizedglobalairnavigationsystembuiltonmodernperformance‐basedproceduresandtechnologiesisasolutiontotheseconcerns.ThisgoalhasbeenonthemindsofCommunications,NavigationandSurveillance/AirTrafficManagement(CNS/ATM)plannersformanyyears.Becausetechnologyneverstandsstill,therealizationofastrategicpathtosuchagloballyharmonizedsystemhasprovenelusive.

ThesolutiontothisimpasseliesattheheartofICAO’scoremissionandvalues.OnlybybringingtogethertheStatesandstakeholdersfromeverycorneroftheaviationcommunitycanaviablesolutiontotwenty‐firstcenturyAirNavigationbedetermined.

ICAOthereforebegananintenseroundofcollaborationincludingtheGlobalAirNavigationIndustrySymposium(GANIS),thefirsteventofitskind.TheGANIS,inadditiontotheseriesofoutreacheventsprecedingitwhichICAOheldineveryworldregion,allowedICAOtotakefeedbackonwhathasnowbecomeknownastheAviationSystemBlockUpgrademethodology.

TheBlockUpgradesandtheirModulesdefineaprogrammaticandflexibleglobalsystemsengineeringapproachallowingallStatestoadvancetheirAirNavigationcapacitiesbasedontheirspecificoperationalrequirements.

ThiswillpermitallStatesandstakeholderstorealizetheglobal‐harmonization,increasedcapacity,andenvironmentalefficiencythatmodernairtrafficgrowthnowdemandsineveryregionaroundtheworld.

Importantly,theBlockUpgradestrategyrepresentsthelogicaloutcomeoftheCNS/ATMplanningandconceptsfoundintheGANP’spreviousthreeeditions.ItadditionallyensurescontinuitywiththeperformanceandoperationalconceptspreviouslydefinedbyICAOinearlierAirNavigationmanualsanddocuments.

Iftheairtransportsystemistocontinuetodriveglobaleconomicprosperityandsocialdevelopmenttotheextentthattheaviationcommunityandtheworldhavegrownaccustomed,especiallyinthefaceofexpectedregionaltrafficgrowthprojectionsandthepressingneedformoredeterminedandeffectiveclimate‐relatedstewardship,StatesmustfullyembracethenewBlockUpgradeprocessandfollowaunifiedpathtothefutureglobalAirNavigationsystem.

TheGlobalAirNavigationPlan’sAviationSystemBlockUpgrademethodologyisaprogrammaticandflexibleglobalsystemsengineeringapproachthatallowsallMemberStatestoadvancetheirAirNavigationcapacitiesbasedontheirspecificoperationalrequirements.TheBlockUpgradeswillenableaviationtorealizetheglobalharmonization,increasedcapacity,andimprovedenvironmentalefficiencythatmodernairtrafficgrowthnowdemandsineveryregionaroundtheworld.

Page 8: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-8-

GANPFourthEditionAviationSystemBlockUpgradeMethodology

PerformanceImprovementAreas

Block0(2013)Block1(2018)Block2(2023)Block3(2028onward)

AirportOperations

GloballyInteroperableSystemsandData

OptimumCapacityandFlexibleFlights

EfficientFlightPaths

Modules(actualnumberofmodulesperBlock/PerformanceAreamayvary)

Page 9: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-9-

The ICAO Block Upgrades (blue columns) refer to the target availability timelines for a group of operational improvements (technologies and procedures) that will eventually realize a fully-harmonized global Air Navigation System. The technologies and procedures for each Block have been organized into unique ‘Modules’ (smaller white squares) which have been determined and cross-referenced based on the specific Performance Improvement Area they relate to. ICAO has produced the systems engineering for its Member States so that they need only consider and adopt the Modules appropriate to their operational need.

Bywayofexample,Block‘0’(2013)featuresModulescharacterizedbyoperationalimprovementswhichhavealreadybeendevelopedandimplementedinmanypartsoftheworldtoday.Itthereforehasanear‐termimplementationperiodof2013–2018,whereby2013referstotheavailabilityofallcomponentsofitsparticularperformanceModulesand2018thetargetimplementationdeadline.ItisnotthecasethatallStateswillneedtoimplementeveryModule,andICAOwillbeworkingwithitsMemberstohelpeachdetermineexactlywhichcapabilitiestheyshouldhaveinplacebasedontheiruniqueoperationalrequirements.

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

PerformanceImprovementAreas

Block0(2013)Block1(2018)Block2(2023)Block3(2028onward)

Page 10: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-10-

GloballyInteroperableSystemsandData

ModuleB0–FICE

B0=BlockNumber

FICE=ThreadAcronym

Performancecapability:

Increasedinteroperability,efficiencyandcapacitythroughground‐groundintegration.

ModuleB1–FICE

Performancecapability:

Increasedinteroperability,efficiencyandcapacitythroughFF‐ICE/1applicationbeforedeparture.

ModuleB2–FICE

Performancecapability:

Improvedcoordinationthroughmulti‐centreground‐groundintegration:(FF‐ICE/1&FlightObject,SWIM).

ModuleB3–FICE

Performancecapability:

ImprovedoperationalperformancethroughtheintroductionofFullFF‐ICE.

AModule‘Thread’isassociatedwithaspecificperformanceimprovementarea.SomeoftheModulesineachconsecutiveBlockfeaturethesameThreadAcronym,indicatingthattheyareelementsofthesameperformanceimprovementareaasitprogressestoward(inthiscase)itstargetof‘globallyinteroperablesystemsanddata’.EveryModuleundertheBlockUpgradeapproachwillsimilarlyservetoprogresstowardsoneofthefourtargetPerformanceImprovementAreas.

Page 11: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-11-

WhatdoestheGlobalAirNavigationPlan’sStrategicApproachmeanformyState?

UnderstandingNear‐termImplementationandReportingRequirements

The2013–2028ICAOGlobalAirNavigationPlanpresentsallStateswithacomprehensiveplanningtoolsupportingaharmonizedglobalAirNavigationsystem.Itidentifiesallpotentialperformanceimprovementsavailabletoday,detailsthenextgenerationofgroundandavionicstechnologiesthatwillbedeployedworldwide,andprovidestheinvestmentcertaintyneededforStatestomakestrategicdecisionsfortheirindividualplanningpurposes.

OngoingAirNavigationimprovementprogrammesbeingundertakenbyanumberofICAOMemberStates(SESARinEurope;NextGenintheUnitedStates;CARATSinJapan;SIRIUSinBrazil,andothersinCanada,China,IndiaandTheRussianFederation)areconsistentwiththeASBUMethodology.TheseStatesarenowmappingtheirplanningtorespectiveBlockUpgradeModulesinordertoensurethenear‐andlonger‐termglobalinteroperabilityoftheirAirNavigationsolutions.

TheGANP’sBlockUpgradeplanningapproachalsoaddressesuserneeds,regulatoryrequirementsandtheneedsofAirNavigationServiceProvidersandAirports.Thisensuresone‐stop,comprehensiveplanning.

BasicmodulestoimplementasaminimumtosupportglobalinteroperabilitywerediscussedattheAN‐Conf/12.TheywillbedefinedinthenexttrienniumandbetakeninaccountintheRegionalPrioritiesagreedtobythePIRGS.AstheGANPprogresses,Moduleimplementationwillbefine‐tunedthroughregionalagreementsintheICAOPlanningandImplementationRegionalGroup(PIRG)process.

ThePIRGprocesswillfurtherensurethatallrequiredsupportingprocedures,regulatoryapprovalsandtrainingcapabilitiesaresetinplace.ThesesupportingrequirementswillbereflectedinregionalonlineAirNavigationPlans(eANPs)developedbythePIRGs,ensuringstrategictransparency,coordinatedprogressandcertaintyofinvestment.

WithrespecttoalloftheseregionalandStateplanningefforts,thedetailedinformationavailableintheGANP’stechnologyroadmaps(Appendix5)andModuledescriptions(Appendix2)willsignificantlyfacilitatethedevelopmentofbusinesscasesforanyoperationalbenefitbeingconsidered.

The2013–2028GlobalAirNavigationPlan:

•ObligesStatestomaptheirindividualorregionalprogrammesagainsttheharmonizedGANP,butprovidesthemwithfargreatercertaintyofinvestment.

•RequiresactivecollaborationamongStatesthroughthePIRGsinordertoco‐ordinateinitiativeswithinapplicableregionalAirNavigationPlans.

•ProvidesrequiredtoolsforStatesandregionstodevelopcomprehensivebusinesscaseanalysesastheyseektorealizetheirspecificoperationalimprovements.

Page 12: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-12-

Introduction

PresentationoftheGlobalAirNavigationPlan

ICAOisanorganizationofMemberStateswiththeobjectivetodeveloptheprinciplesandtechniquesofinternationalairnavigation,tofostertheplanninganddevelopmentofinternationaltransportpromotingthedevelopmentofallaspectsofinternationalcivilaeronautics.

TheICAOGlobalAirNavigationPlan(GANP)isanoverarchingframeworkthatincludeskeycivilaviationpolicyprinciplestoassistICAORegions,sub‐regionsandStateswiththepreparationoftheirRegionalandStateairnavigationplans.

TheobjectiveoftheGANPistoincreasecapacityandimproveefficiencyoftheglobalcivilaviationsystemwhilstimprovingoratleastmaintainingsafety.TheGANPalsoincludesstrategiesforaddressingtheotherICAOStrategicObjectives.

TheGANPincludestheAviationSystemBlockUpgrade(ASBU)framework,itsmodulesanditsassociatedtechnologyroadmapscoveringinteraliacommunications,surveillance,navigation,informationmanagementandavionics.

TheASBUsaredesignedtobeusedbytheRegions,sub‐regionsandStateswhentheywishtoadopttherelevantBlocksorindividualModulestohelpachieveharmonizationandinteroperabilitybytheirconsistentapplicationacrosstheRegionsandtheworld.

TheGANP,alongwithotherhigh‐levelICAOplans,willhelpICAORegions,sub‐regionsandStatesestablishtheirairnavigationprioritiesforthenext15years.

TheGANPoutlinesICAO’s10keycivilaviationpolicyprinciplesguidingglobal,regionalandStateairnavigationplanning.

Page 13: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-13-

Chapter1 ICAO’s10KeyAirNavigationPolicyPrinciples

01

CommitmenttotheImplementationofICAO’sStrategicObjectivesandKeyPerformanceAreas

ICAORegionalandStateAirNavigationPlanningwillcovereachofICAO’sStrategicObjectivesandall11ICAOKeyPerformanceAreas.

02

AviationSafetyisthehighestpriority

InAirNavigationplanningandinestablishingandupdatingtheirindividualAirNavigationPlans,ICAORegionsandStateswillgivedueconsiderationtothesafetyprioritiessetoutintheGlobalAviationSafetyPlan(GASP).

03

TieredApproachtoAirNavigationPlanning

ICAO’sGlobalAviationSafetyPlanandGlobalAirNavigationPlanwillguideandharmonizethedevelopmentofICAORegionalandindividualStateAirNavigationPlans.

ICAORegionalAirNavigationPlans,developedbytheRegionalPlanningandImplementationGroups(PIRGs),willalsoguideandharmonizethedevelopmentofindividualStateAirNavigationPlans.

WhendevelopingtheirRegionalAirNavigationPlans,PIRGSshouldaddresstheirintraandinter‐regionalissues.

04

GlobalAirTrafficManagementOperationalConcept(GATMOC)

TheICAOendorsedGATMOC(Doc9854)andcompanionmanuals,whichincludeinter‐alia,theManualonAirTrafficManagementSystemRequirements(Doc9882)andtheManualonGlobalPerformanceoftheAirNavigationSystem(Doc9883),willcontinuethroughtheirevolution,toprovideasoundglobalconceptualbasisforglobalairnavigationandairtrafficmanagementsystems.

05

GlobalAirNavigationPriorities

TheGlobalAirNavigationPrioritiesaredescribedintheGANP.ICAOshoulddevelopprovisions,supportingmaterialandprovidetraininginlinewiththeglobalprioritiesforairnavigation.

Page 14: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-14-

06

RegionalandStateAirNavigationPriorities

ICAOregions,sub‐regionsandindividualStatesthroughthePIRGsshouldestablishtheirownAirNavigationprioritiestomeettheirindividualneedsandcircumstancesinlinewiththeGlobalAirNavigationPriorities.

07

AviationSystemBlockUpgrades(ASBUs),ModulesandRoadmaps

TheASBUs,ModulesandRoadmapsformakeyAttachmenttotheGANP,notingthattheywillcontinuetoevolveasmoreworkisdoneonrefiningandupdatingtheircontentandinsubsequentdevelopmentofrelatedprovisions,supportmaterialandtraining.

08

UseofASBUBlocksandModules

AlthoughtheGANPhasaglobalperspective,itisnotintendedthatallASBUmodulesaretobeappliedaroundtheglobe.

WhentheASBUBlocksandModulesareadoptedbyregions,sub‐regionsorStatestheyshouldbefollowedincloseaccordancewiththespecificASBUrequirementstoensureglobalinteroperabilityandharmonizationofairtrafficmanagement.

ItisexpectedthatsomeASBUModuleswillbeessentialatthegloballevelandthereforemayeventuallybethesubjectofICAOmandatedimplementationdates.

09

CostBenefitandFinancialIssues

Theimplementationofairnavigationmeasures,includingthoseidentifiedintheASBUs,canrequiresignificantinvestmentoffiniteresourcesbyICAOregions,sub‐regions,Statesandtheaviationcommunity.

WhenconsideringtheadoptionofdifferentBlocksandModules,ICAOregions,sub‐regionsandStatesshouldundertakecost‐benefitanalysestodeterminethebusinesscaseforimplementationintheirparticularregionorState.

ThedevelopmentofguidancematerialoncostbenefitanalysiswillassistStatesinimplementingtheGANP.

10

ReviewandEvaluationofAirNavigationPlanning

ICAOshouldreviewtheGANPeverythreeyearsand,ifnecessary,allrelevantAirNavigationPlanningdocumentsthroughtheestablishedandtransparentprocess.

TheappendicestotheGANPshouldbeanalysedannuallybytheAirNavigationCommissiontoensuretheyremainaccurateandup‐to‐date.

Page 15: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-15-

TheprogressandeffectivenessofICAOregionsandStatesagainsttheprioritiessetoutintheirrespectiveregionalandStateairnavigationplansshouldbeannuallyreported,usingaconsistentreportingformat,toICAO.ThiswillassistregionsandStatesadjusttheirprioritiestoreflectactualperformanceandaddressanyemergingairnavigationissues.

Chapter2Implementation:TurningIdeasintoAction

OurPriorities

PBN:OurHighestPriority

PriortothedevelopmentoftheASBUModules,ICAOfocuseditseffortsonthedevelopmentandimplementationofPerformance‐basedNavigation(PBN),ContinuousDescentOperations(CDO),ContinuousClimbOperations(CCO)andRunwaySequencingcapabilities(AMAN/DMAN).

TheintroductionofPBNhasmettheexpectationsoftheentireaviationcommunity.Currentimplementationplansshouldhelpdeliveradditionalbenefitsbutremaincontingentuponadequatetraining,expertsupporttoStates,continuedmaintenanceanddevelopmentofinternationalSARPs,andclosercoordinationbetweenStatesandaviationstakeholders.

ConsideringtheflexibilitythatICAOhasintentionallybuiltintoitsBlockUpgradeapproach,thereareneverthelesssomeelementsoftheGANPthatwillneedtobeconsideredforworldwideapplicability.

ICAOAssemblyResolutionA37‐11,forexample,urgesallStatestoimplementairtrafficservices(ATS)routesandapproachproceduresinaccordancewiththeICAOPBNconcept.ThereforetheBlockModuleon‘Optimizationofapproachproceduresincludingverticalguidance’(B0‐APTA)shouldbeconsideredforimplementationbyallICAOMemberStatesinthenear‐term.

Additionally,fromtimetotimeitisessentialtoagreeonanextgenerationreplacementofexistingelementsthatnolongermeetglobalsystemrequirements.Themostrecentexampleistheadoptionofthe2012ICAOflightplan.Afutureexamplecouldbethereplacementfortheaeronauticalfixedtelecommunicationnetwork(AFTN),theglobalsystemthathasbeendistributingtheICAOflightplanforoverhalfacentury.

ThecharacterizationoftheparticularBlockModulesthatareconsiderednecessaryforthefuturesafetyorregularityofinternationalAirNavigation,andmayeventuallybecomeanICAOStandard,isessentialtothesuccessoftheGANP.Inthiscontext,awidesynchronizationofglobalorregionaldeploymenttimelineswillsometimesbenecessaryaswellasconsiderationwithrespecttopossibleimplementationagreementsormandates.

Approach‐relatedPBNProgress

ICAOA37‐11calledforimplementationofPBNRNPapproacheswithverticalguidance(APV)withsatellite‐basedaugmentationsystem(SBAS)orbarometricverticalnavigation(Baro‐VNAV).Whereverticalguidanceisnotavailable,lateralguidance,onlytomostinstrumentflightrules(IFR)runwayends,wasprescribedby2016.

AsaconsequenceofA37‐11,requirednavigationperformance(RNP)approaches(manyincorporatingverticalguidance)arebeingpublishedatagrowingratethroughouttheworld.MoreexactingRNPARapproacheshavealsobeendevelopedinanumberoflocationswhereterrainissuesmaylimitaccesstotheaerodrome.

WhilesomeStateswillbeabletoaddressA37‐11by2016,theobservedrateofimplementationofPBNRNPapproachesaroundtheworldcurrentlyindicatesthatthistargetisunlikelytobeachievedglobally.

Page 16: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-16-

EnvironmentalGainsthroughPBNTerminalProcedures.CDOandCCO

ManymajorairportsnowemployPBNproceduresand,inalargenumberofcases,judiciousdesignhasresultedinsignificantreductionsinenvironmentalimpacts.Thisisparticularlythecasewheretheairspacedesignhassupportedcontinuousdescentoperations(CDO)andcontinuousclimboperations(CCO).

CDOsfeatureoptimizedprofiledescentsthatallowaircrafttodescendfromthecruisetothefinalapproachtotheairportatminimumthrustsettings.Besidesthesignificantfuelsavingsthisachieves,CDOhastheadditionalenvironmentalbenefitofdecreasingairport/aircraftnoiselevels,significantlybenefitinglocalcommunities.Inadditiontothegeneralbenefitsinthisregard,derivedfromlessthrustbeingemployed,thePBNfunctionalityensuresthatthelateralpathcanalsoberoutedtoavoidmorenoise‐sensitiveareas.

ICAOhasestablishedguidancematerialontheimplementationofCDOsandisintheprocessofdevelopingtrainingmaterialandworkshopstofacilitateStateimplementations.BlockUpgradeModulesB0‐CDO,B1‐CDOandB2‐CDOwillservetoassistintheeffectiveoptimizationofperformancebenefitsachievableviaCDOimplementation.TheseModulesintegratewithotherairspaceandprocedurecapabilitiestoincreaseefficiency,safety,accessandpredictability.

AswithitsworkintheCDOarea,ICAOisalsointheprocessofdevelopingguidancematerialforCCOthatcanhavesimilarbenefitsfordepartures.BlockUpgradeModuleB0‐CCO,describedinAppendix2,hasbeendesignedtosupportandencourageCCOimplementation.

CCOdoesnotrequireaspecificairorgroundtechnology,butratherisanaircraftoperatingtechniqueaidedbyappropriateairspaceandproceduredesign.Operatingatoptimumflightlevelsisakeydrivertoimprovefuelefficiencyandminimizecarbonemissionsasalargeproportionoffuelburnoccursduringtheclimbphase.

Enablinganaircrafttoreachandmaintainitsoptimumflightlevelwithoutinterruptionwillthereforehelptooptimizeflightfuelefficiencyandreduceemissions.CCOcanprovideforareductioninnoise,fuelburnandemissions,whileincreasingflightstabilityandthepredictabilityofflightpathsforbothcontrollersandpilots.

Inbusyairspace,itisunlikelythatCCOcanbeimplementedwithoutthesupportofPBNtoensurestrategicseparationbetweenarrivinganddepartingtraffic.

ICAOhasrecentlypublishedManualsonCDOandCCO.Bothdocumentsprovideguidanceinthedesign,implementationandoperationofenvironmentallyfriendlyarrivalsanddepartures.

CDOsincombinationwithCCOscanensurethattheefficiencyofterminaloperationsissafelymaximizedwhiledeliveringsignificantlyreducedenvironmentalemissions.Inorderforthistobefullyimplemented,ATMtoolsandtechniques,especiallyArrivalandDepartureManagementtools,havetobeimplementedand/orupdatedtoensurethatarrivalanddepartureflowsaresmoothandappropriatelysequenced.

Page 17: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-17-

Fig.6:ContinuousDescentOperation(CDO).CDOsfeatureoptimizedprofilesthatallowaircrafttocomeinfromhighaltitudestotheairportatminimumthrustsettings,decreasingnoiseinlocalcommunitiesandusingupto30%lessfuelthanstandard‘stepped’approaches.

FAP

CDO

Steppedarrival/approach

AreaofMaximumNoiseBenefit

Page 18: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-18- NextSteps

PBNisacomplexandfundamentalchangeaffectingmultipledisciplinesandspecializationswithintheaviationworkforce.ItisalsoaStandards‐intensivearearequiringboththedevelopmentofnewStandardsandthefine‐tuningofexistingprovisions.

FutureimplementationofPBNinterminalairspaceisseenasakeyenablerfortheadvancedterminaloperationsenvisagedbyamatureATMmodernizationprogramme.

Inlightoftheseongoingareasofpriority,thefollowinghavebeenhighlightedasthekeyoutstandingareasofconcernforStatesandindustrytohelpensureeffectiveongoingimplementationofPBN:

Theneedforguidancematerial,workshopsandsymposia. Computer‐basedlearningpackages. FormaltrainingcoursestoensurethatPBNrequirementsandStandardsarefullyunderstoodand

properlyimplemented. Active,coordinatedsupportforcontinuingStandardsdevelopmentandamendment. Supportinordertoensureharmonizedandintegratedimplementationofrelatedtechnologiesand

supporttoolstooptimizeperformancecapabilityobjectives.

Fig.7:PBNasanenablerforoptimizationofcloselyspacedparallelrunwayoperations.

ThefirststageofPBNimplementationhasdrivenwidespreadconsolidationofexistingregionalrequirements.ICAOisnowfocusingonexpandingtheserequirementsinordertoachieveevengreaterefficienciesoverthenear‐andlonger‐term.

ThePBNconceptisbeingexpandedatpresenttoaccommodatenewapplications,twoofwhichaffectterminaloperations:

a)Advanced‐RNP(A‐RNP)willprovideasingleaircraftqualificationrequirementforallterminalanden‐routeapplications.Thissimplificationofapprovalsshould,intime,reducecoststooperatorsandimproveunderstandingamongpilotsandcontrollers.ThecorefunctionsofA‐RNPincludeRNP0.3onfinalapproach,RNP1inallotherterminalphasesandcontinentalen‐route,RNAVholdingandconstantradiusarctoafix(RF)functionalityoutsidefinalapproachinterminalairspace.Thiswillresultinimprovedtrackpredictabilityandshouldleadtocloserroutespacing.

b)A‐RNPoptionsinclude‘scalability’,TimeofArrivalControl,Baro‐VNAVandimprovedcontinuityrequirementsforoceanicandremoteoperations.

c)RNP0.3willenablehelicopteroperationswithreducedimpactonairspaceuseandimprovedaccessforbotharrivalsanddepartures.

Thefocusforen‐routeoperationswillbeonRNP2foroceanicandremoteapplicationsaswellasRNP1forcontinentalapplications.Essentialactivitywillbetheproductionofallnecessaryrequirementstosupportthenewapplications.

ItisanticipatedthatfuturePBNdevelopmentswillincludeRNPAR(authorizationrequired)departuresandnewoptionstoA‐RNP,includingtimeofarrivalcontrolinterminalairspace,improvedverticalnavigationoperationsandimprovedholdingperformance.

Tosupporthigh‐levelrequirementsonPBN,ICAOwillcontinuetocoordinatewithaviationstakeholderstodevelopmorein‐depthguidancematerialandassociatedtrainingdeliverables(on‐lineandclassroom).

Page 19: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-19-

PBNElectronicInformationKits

TocomplementthegrowingPBNrequirementsinairspace,ATM,flightcrew,andproceduredesigndomains,theOrganizationwillalsobefocusingonfacilitatingimplementationbyprovidinginstructionstoaviationprofessionalstailoredtotheirparticularresponsibilityanddomain.

Theseelectronicinformationpackageswillbemadeavailabletopilots,ANSPs,controllers,airspaceandproceduredesignersandanyotheraviationactorswithaspecificneedformoredetailedPBNreferencematerial.

ModulePriorities

TheneedtoprioritizePBNisclear.HowevertheinternationalcivilaviationcommunityhasalsomadeitclearthatICAOmustprovideguidancetoStatesonhowtoprioritizetheModules.TheTwelfthAirNavigationConferenceaffirmedthisbyrequestingICAOto“continuetoworkonguidancematerialforthecategorizationofBlockupgrademodulesforimplementationandprovideguidanceasnecessarytoPlanningandImplementationRegionalGroups(PIRGS)andStates”,(Recommendation6/12(c)).

Inadditiontothis,theConferencerequestedICAOtoidentifymodulesinBlock1consideredtobeessentialforimplementationatagloballevelintermsoftheminimumpathtoglobalinteroperabilityandsafetywithdueregardtoregionaldiversityforfurtherconsiderationbyStates”(Recommendation6.12(e)).

RespondingtotheaboveICAOhasdevelopedanewplanningflowchart(giveninAppendix1)fortheRegionswhichtakesintoaccounttheModulesaswellasRegionalPriorities.ThisinformationistobeusedbythePIRGstosettheprioritiesformoduleimplementationintheirRegion.

WhenestablishingRegionalPrioritiesforimplementation,theitemswhichareessentialforinter‐RegionalinteroperabilityandsafetyshallbetakeninaccountasstatedinConferenceRecommendation6.12(e).ItisexpectedthattheseitemsthereforemayeventuallybecomethesubjectofICAOStandardswithmandatedimplementationdates.

Electronic Information Package: PBN

Performance-based Navigation Executives Regulators ANSP A/C Operator Manufacturer

Page 20: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-20-

ICAOe‐ToolsSupportingBlock0Roll‐out

ICAOandglobalaviationstakeholdershavedevelopedaseriesofvideo‐basedandonlinetoolstoassistMemberStatesintheirunderstandingofwhattheBlock0Moduleswillconsistofandhowtheycanbeimplemented.

ICAO’swebsiteservesastheportalforcentralizedaccesstothesetools,inadditiontotheModule‐by‐ModuledescriptionsforMemberStatesandindustryreference.

TheOrganizationwillbeadvisingStatesandstakeholdersasadditionalreferenceandeducationalmaterialsbecomeaccessibleoverthenexttriennium.

ElectronicImplementationKits

ICAOhasdevelopedinformationkitsdescribingthecapabilitiesnowbeingimplementedforPerformance‐basedNavigation(PBN)andBlock0.

ThesekitswillserveasportablereferencesourcesprovidinganimationsillustratingthebenefitsoftheASBUModuleanddetailsonthedocumentedinformationneededtoimplementeach.

TrainingandHumanPerformanceConsiderations

Aviationprofessionalshaveanessentialroleinthetransitionto,andsuccessfulimplementationof,theGANP.Thesystemchangeswillaffecttheworkofmanyskilledpersonnelintheairandontheground,potentiallychangingtheirrolesandinteractionsandevenrequiringnewproficienciestobedeveloped.

ItiscriticalthereforethattheconceptsbeingdevelopedwithintheGANPtakeaccountofthestrengthsandweaknessesofexistingskilledpersonnelateveryjuncture.Allactorswithastakeinasafeairtransportationsystemwillneedtointensifyeffortstomanagerisksassociatedwithhumanperformanceandthesectorwillneedtoproactivelyanticipateinterfaceandworkstationdesign,trainingneedsandoperationalprocedureswhilepromulgatingbestpractices.

ICAOhaslongrecognizedthesefactorsandtheconsiderationofhumanperformanceinthecontextoftheBlockUpgraderequirementswillcontinuetoevolvethroughStateSafetyProgramme(SSP)andIndustrySafetyManagementSystems(SMS)approaches.

Amongstotherpriorities,themanagementofchangepertinenttotheBlockUpgradeevolutionshouldincludehumanperformance‐relatedconsiderationsinthefollowingareas:

a) Initialtraining,competenceand/oradaptationofnew/activeoperationalstaff.

b) Newrolesandresponsibilitiesandtaskstobedefinedandimplemented.

c) Socialfactorsandmanagementoftheculturalchangeslinkedtoincreasedautomation.

Humanperformanceneedstobeembeddedbothintheplanninganddesignphasesofnewsystemsandtechnologiesaswellasduringimplementation.Earlyinvolvementofoperationalpersonnelisalsoessential.

Sharingofinformationregardingthevariousaspectsofhumanperformanceandtheidentificationofhumanperformanceriskmanagementapproacheswillbeaprerequisiteforimprovingsafetyoutcomes.Thisisparticularlytrueintoday’saviationoperationalcontextandthesuccessfulimplementationoftheBlockUpgradesandothernewsystemsintothefuture.

Page 21: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-21-

Widespreadandeffectivemanagementofhumanperformanceriskswithinanoperationalcontextcannotbeachievedwithoutacoordinatedeffortfromregulators,industryserviceproviders,andoperationalpersonnelrepresentingalldisciplines.

FlexibilityofGANPImplementation

ICAO’sGANPestablishesarollingfifteenyearglobalplanninghorizon.

Theresultantframeworkisintendedprimarilytoensurethattheaviationsystemwillbemaintainedandenhanced,thatairtrafficmanagement(ATM)improvementprogrammesareeffectivelyharmonized,andthatbarrierstofutureaviationefficiencyandenvironmentalgainscanberemovedatareasonablecost.InthissensetheadoptionoftheASBUmethodologywillsignificantlyclarifyhowtheANSPandairspaceusersshouldplanforfutureequipage.

AlthoughtheGANPhasaworldwideperspective,itisnotintendedthatallBlockModulesarerequiredtobeappliedineveryStateandregion.ManyoftheBlockUpgradeModulescontainedintheGANParespecializedpackagesthatshouldbeappliedonlywherethespecificoperationalrequirementexistsorcorrespondingbenefitscanberealisticallyprojected.

TheinherentflexibilityintheASBUmethodologyallowsStatestoimplementModulesbasedontheirspecificoperationalrequirements.UsingtheGANP,RegionalandStateplannersshouldidentifythoseModuleswhichprovideanyneededoperationalimprovements.AlthoughtheBlockupgradesdonotdictatewhenorwhereaparticularModuleistobeimplemented,thismaychangeinthefutureshouldunevenprogresshinderthepassageofaircraftfromoneregionofairspacetoanother.

Theregularreviewofimplementationprogressandtheanalysisofpotentialimpedimentswillultimatelyensuretheharmonioustransitionfromoneregiontoanotherfollowingmajortrafficflows,aswellaseasethecontinuousevolutiontowardstheGANP’sperformancetargets.

ATMLogicalArchitecture

TheTwelfthAirNavigationConferencerequestedICAOtodevelopaGlobalATMlogicalarchitecturetosupporttheGANPandplanningworkbyRegionsandStates.Thisworkwillbecarriedoutduringthenexttriennium.ThislogicalarchitecturewillcomplementtheBlockUpgradeswhilealsoprovidingagraphicallinkagebetween:

a) TheASBUModulesandtheelementsoftheGlobalOperationalConcept.

b) TheASBUModulesandtheintendedoperationalenvironmentandtheexpectedperformancebenefits.

GuidanceonBusinessCaseDevelopment

Duringthetriennium,ICAOwilldevelopguidancematerialonbusinesscaseanalysisanddevelopment.OncecompletethismanualwillbeavailabletoallStatestoassistinthedevelopmentofbusinesscasestodeterminethefinancialviabilityoftheBlockModulesselectedforimplementation.

Page 22: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-22-

Chapter3AviationSystemPerformanceGlobalAirNavigationReport

Followingtheendorsementofaperformance‐basedapproachtoAirNavigationplanningandimplementationbytheEleventhAirNavigationConferencein2003,aswellasthe35thSessionoftheICAOAssemblyin2004,ICAOcompletedthedevelopmentofrelevantguidancematerialinearly2008Doc9883‐ManualonGlobalPerformanceoftheAirNavigationSystem.

By2009,allPIRGs,whileadoptingaregionalperformanceframework,invitedStatestoimplementanationalperformanceframeworkforAirNavigationsystemsonthebasisofICAOguidancematerialandalignedwiththeregionalperformanceobjectives,existingRegionalAirNavigationPlans,andtheGlobalATMOperationalConcept.

Thenextstepcalledforperformancemonitoringthroughanestablishedmeasurementstrategy.WhilePIRGsareprogressivelyidentifyingasetofregionalperformancemetrics,Statesinthemeantimehaverecognizedthatdatacollection,processing,storageandreportingactivitiessupportingtheregionalperformancemetricsarefundamentaltothesuccessofperformance‐basedstrategies.

TheAirNavigationplanningandimplementationperformanceframeworkprescribesreporting,monitoring,analysisandreviewactivitiesbeingconductedonacyclical,annualbasis.TheAirNavigationreportingformwillbethebasisforperformancemonitoringrelatingtoBlockUpgradeimplementationattheregionalandnationallevels.

ReportingandmonitoringresultswillbeanalyzedbyICAOandaviationstakeholdersandthenutilizedindevelopingtheannualGlobalAirNavigationReport.

ThereportresultswillprovideanopportunityfortheworldcivilaviationcommunitytocompareprogressacrossdifferentICAOregionsintheestablishmentofAirNavigationinfrastructureandperformance‐basedprocedures.

TheywillalsoprovidetheICAOCouncilwithdetailedannualresultsonthebasisofwhichtacticaladjustmentswillbemadetotheworkprogramme,aswellastriennialpolicyadjustmentstotheGANP.

MeasuringEnvironmentalPerformance:ICAOFuelSavingsEstimationTool(IFSET)

RecognizingthedifficultyfacedbymanyStatesinassessingtheenvironmentalbenefitsoftheirinvestmentsinoperationalmeasurestoimprovefuelefficiency,ICAO,incollaborationwithsubjectmatterexpertsandotherinternationalorganizations,hasdevelopedtheICAOFuelSavingsEstimationTool(IFSET).

IFSEThelpstoharmonizeStatefuel‐savingsassessmentsconsistentwithmoreadvancedmodelsalreadyapprovedbytheCommitteeonAviationEnvironmentalProtection(CAEP).Itwillestimatethedifferenceinfuelmassconsumedbycomparingapre‐implementation(i.e.baseline)caseagainstapost‐implementationcase(i.e.afteroperationalimprovements),asillustratedbelow.

Page 23: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-23-

Fig.8:IFSETnotionalfluxogram.

Fig.9:Notionalillustrationoffuelsavings.

Theselectionofthebaselinecaseisanimportantstepoftheprocess.Itwillbedefinedbytheuserandcouldcorrespondto:

a) Thepublishedorplannedprocedure(AIP,flightplan)scenarios;

b) Dailypractices;

c) Acombinationofa)andb);

d) Othercriteriaasappropriate.

Current Operational Scenario Operational Improvement Improved Operational Scenario Aircraft Performance Database IFSET INTERFACE Aircraft Movements Information Estimated Fuel Consumption & Savings

Baseline Fuel Consumption Level segments Post-Operational Improvement Fuel Consumption Optimized descent Baseline minus Post-operational Consumption = Fuel Saved

Page 24: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-24- Inordertocomputethefuelconsumedintwodifferentscenarios,thenumberofoperationsbyaircraftcategorywillbenecessary,inadditiontoacombinationofthefollowingelementsthatdescribesbothscenarios:

a) Averagetaxitime;

b) Timespentordistanceflownataspecificaltitude;

c) Topofdescentandbottomofdescent;

d) Baseofclimbandtopofclimb;

e) Distanceflowninaclimbordescentprocedure.

IFSETwasrolled‐outtoICAOMemberStatesthroughaseriesofworkshopsduring2012.Itwasdevelopednottoreplacetheuseofdetailedmeasurementormodellingtoolsregardingfuelsavings,butrathertoassistthoseStateswithoutthefacilitytoestimatethebenefitsfromoperationalimprovementsinastraightforwardandharmonizedmanner.

Page 25: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-25-

Appendix1:GlobalAirNavigationPlanEvolution&Governance

ContinuedevolutionoftheGANP

ThenewGANPhasitsrootsinanappendixtoa1993reportonwhatwasthentermedtheFutureAirNavigationSystem(FANS).TheserecommendationswerefirstpresentedastheFANSConceptandlaterbecamereferredtomoregenerallyasCNS/ATM.

TheFANSinitiativehadansweredarequestfromICAO’sMemberStatesforplanningrecommendationsonhowtoaddressairtransport’ssteadyglobalgrowththroughthecoordinationofemergingtechnologies.Asresearchanddevelopmentintothesetechnologiesacceleratedrapidlyduringthe1990s,thePlananditsconceptsadvancedwiththem.

AstandaloneversionwaspublishedastheICAOGlobalAirNavigationPlanforCNS/ATMSystems(Doc9750)in1998,thesecondeditionofwhichwasreleasedin2001.DuringthisperiodthePlanservedtosupportStateandregionalplanningandprocurementneedssurroundingCNS/ATMsystems.

By2004,ICAO’sMemberStatesandtheairtransportindustryatlargehadbeguntoencouragethetransitioningofthePlan’sconceptsintomorepractical,real‐worldsolutions.TwoATMimplementationroadmaps,madeupofspecificoperationalinitiatives,wereconsequentlydevelopedonacollaborativebasisbydedicatedICAO/industryprojectteams.

TheoperationalinitiativescontainedintheroadmapswerelaterrenamedGlobalPlanInitiatives(GPIs)andincorporatedintotheThirdEditionoftheGANP.ThefollowingillustrationdepictsthePlan’sevolutionuptothe2013–2028GANP:

GlobalAirNavigationPlanApproval

TheGANPhasundergonesignificantchange,drivenmainlybyitsnewroleasahigh‐levelpolicydocumentguidingcomplementaryandsector‐wideairtransportprogressinconjunctionwiththeICAOGlobalAviationSafetyPlan.

TheGANPdefinesthemeansandtargetsbywhichICAO,StatesandaviationstakeholderscananticipateandefficientlymanageairtrafficgrowthwhileproactivelymaintainingorincreasingSafetyoutcomes.Theseobjectiveshavebeendevelopedthroughextensiveconsultationwithstakeholdersandconstitutethebasisforharmonizedactionattheglobal,regionalandnationallevel.

TheneedtoensureconsistencybetweentheGANPandtheStrategicObjectivesofICAOnecessitatesplacingthishigh‐levelpolicydocumentundertheauthorityoftheICAOCouncil.TheGANPanditsamendmentsarethereforeapprovedbytheCouncilpriortoeventualbudget‐relateddevelopmentsandendorsementbyanAssembly.

InlinewiththetenthICAOAirNavigationPolicyPrinciple,ICAOwillreviewtheGANPeverythreeyearsandifnecessary,allrelevantAirNavigationPlanningdocumentsthroughtheestablishedandtransparentprocess.

TheAppendicestotheGANPshouldbeanalysedannuallybytheAirNavigationCommissiontoensurethattheyremainaccurateandup‐to‐date.

Page 26: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-26-

Fig.10: Documentandoperationalconceptevolutionleadingtothe2013–2028GANP.

Appendix to FANS Report 1993 GANP Doc9750 Edition 1 1998 GANP Doc9750 Edition 2 2001 GANP Doc9750 Edition 3 2006 GANP Doc9750 Edition 4 2013 Global ATM Operational Concept Doc9854 2005 ATM System Requirements Doc9882 2008 Global Performance Manual Doc9883 2008

Includes ASBU Methodology Addresses ANSP, Regulator AND User requirements Encompasses Performance Framework

Page 27: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-27-

FromtheGANPtoRegionalPlanning

AlthoughtheGANPhasaglobalperspective,itisnotintendedthatallASBUmodulesareimplementedatallfacilitiesandinallaircraft.Nevertheless,coordinationofdeploymentactionsbythedifferentstakeholders,withinaState,andwithinoracrossregionsareexpectedtodelivermorebenefitsthanimplementationsconductedonanadhocorisolatedbasis.Furthermore,anoverallintegrateddeploymentofasetofmodulesfromseveralthreadsatanearlystagecouldgenerateadditionalbenefitsdownstream.

GuidedbytheGANP,theRegionalplanningprocessaswellasNationalplanningshouldbealignedandusedtoidentifythosemoduleswhichbestprovidesolutionstotheoperationalneedsidentified.Dependingonimplementationparameterssuchasthecomplexityoftheoperatingenvironment,theconstraintsandtheresourcesavailable,regionalandnationalimplementationplanswillbedevelopedinalignmentwiththeGANP.Thisplanningrequiresinteractionbetweenstakeholdersincludingregulators,usersoftheaviationsystem,theAirNavigationServiceProviders(ANSP’s)andAerodromeoperatorsinordertoobtaincommitmentstoimplementation.

Accordingly,deploymentsonaglobal,regionalandsub‐regionalbasisandultimatelyatStatelevelshouldbeconsideredasanintegralpartoftheglobalandregionalplanningprocessthroughtheplanningandimplementationregionalgroups(PIRGs).Inthisway,deploymentarrangementsincludingapplicabilitydatescanbeagreedandcollectivelyappliedbyallstakeholdersinvolved.

Forsomemodulesworldwideapplicabilitywillbeessential;theymay,therefore,eventuallybecomethesubjectofICAOStandardswithmandatedimplementationdates.

Inthesameway,somemodulesarewellsuitedforregionalorsub‐regionaldeploymentandtheregionalplanningprocessesunderthePIRGaredesignedtoconsiderwhichmodulestoimplementregionally,underwhichcircumstancesandaccordingtoagreedtimeframes.

Forothermodules,implementationshouldfollowcommonmethodologiesdefinedeitherasRecommendedPracticesorStandardsinordertoleaveflexibilityinthedeploymentprocessbutensureglobalinteroperabilityatahighlevel.

Page 28: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-28-

Regional situation Analysis GANP PIRG Human Resources Training Full life-Cycle Costs Stakeholder Commitments Monitoring Assessment Prioritization Identify & Mitigate Gaps Select Relevant Modules Elaborate/Refine Scenarios Options Perform initial CBA/Sensitivity Analysis Assess Impact on Priorities Set Strategies and Objectives Update Regional Implementation Plans Update National Plans Implementation

Page 29: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-29-

GANPUpdateProcess

TheGlobalAirNavigationPlanhasundergonesignificantchange,drivenmainlybyitsnewroleasahigh‐levelpolicydocumentguidingcomplementaryandsector‐wideairtransportprogress.

TheGlobalAirNavigationandSafetyPlansdefinethemeansandtargetsbywhichICAO,StatesandaviationstakeholderscananticipateandefficientlymanageairtrafficgrowthwhileproactivelymaintainingorincreasingSafetyoutcomes.Theseobjectiveshavebeendevelopedthroughextensiveconsultationwithstakeholdersandconstitutethebasisforharmonizedactionattheglobal,regionalandnationallevel.

TheneedtoensureconsistencybetweentheGANPandtheStrategicObjectivesofICAOnecessitatesplacingthishigh‐levelpolicydocumentundertheauthorityoftheICAOCouncil.TheGANPanditsamendmentsarethereforeapprovedbytheCouncilpriortoeventualbudgetrelateddevelopmentsandendorsementbyanAssembly.

InlinewiththetenthICAOAirNavigationPolicyPrinciple,ICAOshouldreviewtheGANPeverythreeyearsandifnecessary,allrelevantAirNavigationPlanningdocumentsthroughtheestablishedandtransparentprocess.

TheICAOAirNavigationCommissionwillreviewtheGANPaspartoftheannualworkprogramme,reportingtotheCounciloneyearinadvanceofeachICAOAssembly.TheANCreportwillperformthefollowingbasedonoperationalconsiderations:

1.ReviewglobalprogressmadeintheimplementationoftheASBUModulesandTechnologyRoadmapsandtheachievementofsatisfactoryairnavigationperformancelevels;

2.ConsiderlessonslearnedbyStatesandindustry;

3.Considerpossiblechangesinfutureaviationneeds,theregulatorycontextandotherinfluencingfactors;

4.Considerresultsofresearch,developmentandvalidationonoperationalandtechnologicalmatterswhichmayaffecttheASBUModulesandTechnologyRoadmapsand;

5.ProposeadjustmentstothecomponentsoftheGANP.

FollowingapprovalbytheCouncil,theupdatedGANPanditsspecifiedsupportingdocumentswillthenbesubmittedforendorsementbyICAOMemberStatesatthefollowingICAOAssembly.

FollowingRecommendation1/1b)ofthe12thAirNavigationConference,theGANPwillbesubmittedtoStatesbeforeapproval.

Page 30: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-30-

Regional Implementation, Monitoring and New Requirements GANP n ANC Review Proposals for change to the GANP

Review of the global progress Technological and regulatory developments Lessons learned by States and Industry

Consultation with States ANC Report to Council Council Approval Assembly Endorsement GANP n+1

Page 31: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-31-

ICAOCompanionPublicationssupportingthe2013–2028GANP

Asdetailedonpage89,theGlobalPlanningInitiatives(GPIs)andappendicesoftheThirdEditionoftheGANPcomprisepartofthesupportingdocumentationfortheGANP.ThreeICAOcompaniondocuments,reflectedinthefigure10onpage32anddescribedinmoredetailbelow,arealsoinstrumentalinpermittingICAOandtheaviationcommunitytodefinetheconceptsandtechnologiesthateventuallymadetheGANP’ssystemsengineeringapproachpossible:

GlobalAirTrafficManagementOperationalConcept(Doc9854)

TheGlobalATMOperationalConcept(GATMOC)waspublishedin2005.Itsetouttheparametersforanintegrated,harmonizedandgloballyinteroperableATMsystemplannedupto2025andbeyond.Doc9854canservetoguidetheimplementationofCNS/ATMtechnologybyprovidingadescriptionofhowtheemergingandfutureATMsystemshouldoperate.TheGATMOCalsointroducedsomenewconcepts:

a) PlanningbasedonATMsystemperformance.

b) Safetymanagementthroughthesystemsafetyapproach.

c) AsetofcommonperformanceexpectationsoftheATMcommunity.

ManualonAirTrafficManagementSystemRequirements(Doc9882)

Doc9882,publishedin2008,isusedbyPIRGsaswellasbyStatesastheydeveloptransitionstrategiesandplans.Itdefinesthehigh‐levelrequirements(i.e.ATMsystemrequirements)tobeappliedwhendevelopingStandardsandRecommendedPractices(SARPs)tosupporttheGATMOC.Thisdocumentprovideshigh‐levelsystemrequirementsrelatedto:

a) Systemperformance‐basedonATMcommunityexpectations.

b) Informationmanagementandservices.

c) Systemdesignandengineering.

d) ATMconceptelements(fromtheGATMOC).

ManualonGlobalPerformanceoftheAirNavigationSystem(Doc9883)

Thisdocument,publishedin2008,isaimedatpersonnelresponsiblefordesigning,implementingandmanagingperformanceactivities.Itachievestwokeyobjectives:

a) Itoutlinesperformanceframeworkandperformance‐basedstrategyfromtheperformanceconceptsprovidedintheGATMOC.

b) ItanalyzesATMcommunityexpectationsandcategorizestheseintokeyperformanceareas(KPAs)fromwhichpracticalmetricsandindicatorscanbedeveloped.

Doc9883alsoprovidesorganizationswiththetoolstodevelopanapproachtoperformancemanagementsuitedtotheirlocalconditions.

Page 32: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-32-

Appendix2:AviationSystemBlockUpgrades

Introduction:AviationSystemBlockUpgrades

TheGlobalAirNavigationPlanintroducesasystemsengineeringplanningandimplementationapproachwhichhasbeentheresultofextensivecollaborationandconsultationbetweenICAO,itsMemberStatesandindustrystakeholders.

ICAOdevelopedtheBlockUpgradeglobalframeworkprimarilytoensurethataviationSafetywillbemaintainedandenhanced,thatATMimprovementprogrammesareeffectivelyharmonized,andthatbarrierstofutureaviationefficiencyandenvironmentalgainscanberemovedatreasonablecost.

TheBlockUpgradesincorporatealong‐termperspectivematchingthatofthethreecompanionICAOAirNavigationplanningdocuments.Theycoordinateclearaircraft‐andground‐basedoperationalobjectivestogetherwiththeavionics,datalinkandATMsystemrequirementsneededtoachievethem.Theoverallstrategyservestoprovideindustry‐widetransparencyandessentialinvestmentcertaintyforoperators,equipmentmanufacturersandANSPs.

Thecoreoftheconceptislinkedtofourspecificandinterrelatedaviationperformanceimprovementareas,namely:

a) Airportoperations.

b) Globally‐interoperablesystemsanddata.

c) Optimumcapacityandflexibleflights.

d) Efficientflightpaths.

TheperformanceimprovementareasandtheASBUModulesassociatedwitheachhavebeenorganizedintoaseriesoffourBlocks(Blocks0,1,2and3)basedontimelinesforthevariouscapabilitiestheycontain,asillustratedbelow.

Page 33: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-33-

Fig.3:DepictingBlock0–3availabilitymilestones,PerformanceImprovementAreas,andtechnology/procedure/capabilityModules.

PerformanceImprovementAreas

Block0(2013)Block1(2018)Block2(2023)Block3(2028onward)

AirportOperations

GloballyInteroperableSystemsandData

OptimumCapacityandFlexibleFlights

EfficientFlightPaths

Modules(actualnumberofmodulesperBlock/PerformanceAreamayvary)

Page 34: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-34-

Block0featuresModulescharacterizedbytechnologiesandcapabilitieswhichhavealreadybeendevelopedandimplementedinmanypartsoftheworldtoday.Itthereforefeaturesanear‐termavailabilitymilestone,orInitialOperatingCapability(IOC),of2013basedonregionalandStateoperationalneed.Blocks1through3arecharacterizedbybothexistingandprojectedperformanceareasolutions,withavailabilitymilestonesbeginningin2018,2023and2028respectively.

Associatedtimescalesareintendedtodepicttheinitialdeploymenttargetsalongwiththereadinessofallcomponentsneededfordeployment.ItmustbestressedthataBlock’savailabilitymilestoneisnotthesameasadeadline.ThoughBlock0’smilestoneissetat2013,forexample,itisexpectedthatthegloballyharmonizedimplementationofitscapabilities(aswellastherelatedStandardssupportingthem)willbeachievedoverthe2013to2018timeframe.ThesameprincipleappliesfortheotherBlocksandthereforeprovidesforsignificantflexibilitywithrespecttooperationalneed,budgetingandrelatedplanningrequirements.

WhilethetraditionalAirNavigationplanningapproachaddressesonlyANSPneeds,theASBUmethodologycallsforaddressingregulatoryaswellasuserrequirements.TheultimategoalistoachieveaninteroperableglobalsystemwherebyeachStatehasadoptedonlythosetechnologiesandprocedurescorrespondingtoitsoperationalrequirements.

UnderstandingModulesandThreads

EachblockismadeupofdistinctModules,asshowninthepreviousillustrationsandthosebelow.ModulesonlyneedtobeimplementedifandwhentheysatisfyanoperationalneedinagivenState,andtheyaresupportedbyprocedures,technologies,regulationsorStandardsasnecessary,aswellasabusinesscase.

AModuleisgenerallymadeupofagroupingofelementswhichdefinerequiredCNSUpgradecomponentsintendedforaircraft,communicationsystems,airtrafficcontrol(ATC)groundcomponents,decisionsupporttoolsforcontrollers,etc.ThecombinationofelementsselectedensuresthateachModuleservesasacomprehensiveandcohesivedeployableperformancecapability.

AseriesofdependentModulesacrossconsecutiveBlocksisthereforeconsideredtorepresentacoherenttransition‘Thread’intime,frombasictomoreadvancedcapabilityandassociatedperformance.ModulesarethereforeidentifiedbybothaBlocknumberandaThreadacronym,asillustratedbelow.

EachThreaddescribestheevolutionofagivencapabilitythroughthesuccessiveBlocktimelinesaseachModuleisimplementedrealizingaperformancecapabilityaspartoftheGlobalAirTrafficManagementOperationalConcept(Doc9854).

Page 35: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-35-

Fig.4: AModuleThreadisassociatedwithaspecificperformanceimprovementarea.NotethattheModulesineachconsecutiveBlockfeaturethesameThreadAcronym(FICE),indicatingthattheyareelementsofthesameOperationalImprovementprocess.

PerformanceImprovementAreas

Block0(2013)Block1(2018)Block2(2023)Block3(2028onward)

GloballyInteroperableSystemsandData

ModuleB0–FICE

B0=BlockNumber

FICE=ThreadAcronym

Performancecapability:

Increasedinteroperability,efficiencyandcapacitythroughground‐groundintegration.

ModuleB1–FICE

Performancecapability:

Increasedinteroperability,efficiencyandcapacitythroughFF‐ICE/1applicationbeforedeparture.

Page 36: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-36- ModuleB2–FICE

Performancecapability:

Improvedcoordinationthroughmulti‐centreground‐groundintegration:(FF‐ICE/1&FlightObject,SWIM).

ModuleB3–FICE

Performancecapability:

ImprovedoperationalperformancethroughtheintroductionofFullFF‐ICE.

Page 37: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-37-

StandardsandRecommendedPracticesDevelopmentPlan

Duringthetriennium,ICAOwilldevelopacomprehensiveplanforthedevelopmentofSARPsandGuidancematerialtosupporttheASBUs.OncecompletethiswillbecomeanappendixtotheFifthEditionoftheGlobalAirNavigationPlantobepresentedtothe39thAssemblyofICAO.

Aspartofthedevelopmentofthisplan,ICAOwill:

a) Establishprioritiesforstandardsdevelopment

b) CoordinatedevelopmentofICAOstandardsinrelationtoIndustry‐developedTechnicalSpecifications.

BlockUpgradeTechnologyRoadmaps

TechnologyroadmapscomplementtheASBUmodulesbyprovidingtimelinesforthetechnologythatwillsupporttheCommunications,NavigationandSurveillance(CNS),InformationManagement(IM)andavionicsrequirementsoftheglobalAirNavigationsystem.

Theseroadmapsprovideguidanceforinfrastructureplanning(andstatus)byindicatingonaper‐technologybasistheneedforandreadinessof:

a) Existinginfrastructure.

b) ICAOStandardsandguidancematerial.

c) Demonstrationsandvalidations.

d) InitialOperationalCapability(IOC)ofemergingtechnologies.

e) Globalimplementation.

WhilethevariousBlockUpgradeModulesdefinetheexpectedoperationalimprovementsanddrivethedevelopmentofallthatisrequiredforimplementation,thetechnologyroadmapsdefinethelifespanofthespecifictechnologiesneededtoachievethoseimprovements.Mostimportantly,theyalsodriveglobalinteroperability.

Investmentdecisionsareneededwellinadvanceoftheprocurementanddeploymentoftechnologyinfrastructure.Thetechnologyroadmapsprovidecertaintyfortheseinvestmentdecisionsastheyidentifythepre‐requisitetechnologiesthatwillprovidetheoperationalimprovementsandrelatedbenefits.Thisiscriticallyimportantasinvestmentsinaviationinfrastructurearehardlyreversibleandanygapintechnologicalinteroperabilitygeneratesconsequencesinthemedium‐andlong‐term.

Theyarealsousefulindeterminingequipmentlifecycleplanning,i.e.maintenance,replacementandeventualdecommissioning.TheCNSinvestmentsrepresentthenecessarybaselineuponwhichtheoperationalimprovementsandtheirassociatedbenefitscanbeachieved.

Itmustbenotedthataccordingtotheachievementsoverthepastthirtyyears,thetypicalCNSdeploymentcycleforlargescaleobjectiveshasbeenoftheorderof20to25years(includinggrounddeploymentandaircraftforwardandretrofits).

Page 38: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-38- Sincenostrategycantakeintoaccountalldevelopmentsthatoccurinaviationovertime,thetechnologyroadmapswillbesystematicallyreviewedandupdatedonatrienniumcycle.AninteractiveonlineversionoftheroadmapswillalsoallowuserstoretrievedetailedinformationonspecificBlockModulesandadditionalcross‐references.

TheroadmapsarepresentedinAppendix5asdiagramswhichidentifytherelationshipsbetweenthespecificModulesandassociatedenablingtechnologiesandcapabilities.Theyareaccompaniedbybriefexplanationstosupporttheirunderstandingandthatofthechallengesfaced.

Page 39: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-39-

SchematicDiagramofBlockUpgrades

PerformanceImprovementArea1:AirportOperations

Block0

B0‐APTA

OptimizationofApproachProceduresincludingverticalguidance

ThisisthefirststeptowarduniversalimplementationofGNSS‐basedapproaches.

B0‐WAKE

IncreasedRunwayThroughputthroughOptimizedWakeTurbulenceSeparation

ImprovedthroughputondepartureandarrivalrunwaysthroughtherevisionofcurrentICAOwakevortexseparationminimaandprocedures.

B0‐RSEQ

ImprovedTrafficFlowthroughSequencing(AMAN/DMAN)

Time‐basedmeteringtosequencedepartingandarrivingflights.

B0‐SURF

SafetyandEfficiencyofSurfaceOperations(A‐SMGCSLevel1‐2)

AirportsurfacesurveillanceforANSP.

B0‐ACDM

ImprovedAirportOperationsthroughAirport‐CDM

Airportoperationalimprovementsthroughthewayoperationalpartnersatairportsworktogether.

Block1

Page 40: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-40-

B1‐APTA

OptimisedAirportAccessibility

ThisisthenextstepintheuniversalimplementationofGNSS‐basedapproaches.

B1‐WAKE

IncreasedRunwayThroughputthroughDynamicWakeTurbulenceSeparation

Improvedthroughputondepartureandarrivalrunwaysthroughthedynamicmanagementofwakevortexseparationminimabasedonthereal‐timeidentificationofwakevortexhazards.

B1‐RSEQ

ImprovedAirportoperationsthroughDeparture,SurfaceandArrivalManagement

Extendedarrivalmetering,Integrationofsurfacemanagementwithdeparturesequencingbringrobustnesstorunwaysmanagementandincreaseairportperformancesandflightefficiency.

B1‐SURF

EnhancedSafetyandEfficiencyofSurfaceOperations‐SURF,SURFIAandEnhancedVisionSystems(EVS)

AirportsurfacesurveillanceforANSPandflightcrewswithsafetylogic,cockpitmovingmapdisplaysandvisualsystemsfortaxioperations.

B1‐ACDM

OptimizedAirportOperationsthroughAirport‐CDM

Airportoperationalimprovementsthroughthewayoperationalpartnersatairportsworktogether.

B1‐RATS

RemotelyOperatedAerodromeControl

RemotelyoperatedAerodromeControlTowercontingencyandremoteprovisionofATStoaerodromesthroughvisualisationsystemsandtools.

Page 41: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-41-

Block2

B2‐WAKE(*)

AdvancedWakeTurbulenceSeparation

(Time‐based)

Theapplicationoftime‐basedaircraft‐to‐aircraftwakeseparationminimaandchangestotheprocedurestheANSPusestoapplythewakeseparationminima.

B2‐RSEQ

LinkedAMAN/DMAN

SynchronisedAMAN/DMANwillpromotemoreagileandefficienten‐routeandterminaloperations.

B2‐SURF

OptimizedSurfaceRoutingandSafetyBenefits(A‐SMGCSLevel3‐4andSVS)

Taxiroutingandguidanceevolvingtotrajectorybasedwithground/cockpitmonitoringanddatalinkdeliveryofclearancesandinformation.Cockpitsyntheticvisualizationsystems.

Block3

B3‐RSEQ

IntegratedAMAN/DMAN/SMAN

Fullysynchronizednetworkmanagementbetweendepartureairportandarrivalairportsforallaircraftintheairtrafficsystematanygivenpointintime.

Page 42: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-42- PerformanceImprovementArea2:

GloballyInteroperableSystemsandData–ThroughGloballyInteroperableSystemWideInformationManagement

Block0

B0‐FICE

IncreasedInteroperability,EfficiencyandCapacitythroughGround‐GroundIntegration

Supportsthecoordinationofground‐grounddatacommunicationbetweenATSUbasedonATSInter‐facilityDataCommunication(AIDC)definedbyICAODocument9694.

B0‐DATM

ServiceImprovementthroughDigitalAeronauticalInformationManagement

Initialintroductionofdigitalprocessingandmanagementofinformation,bytheimplementationofAIS/AIMmakinguseofAIXM,movingtoelectronicAIPandbetterqualityandavailabilityofdata.

B0‐AMET

Meteorologicalinformationsupportingenhancedoperationalefficiencyandsafety

Global,regionalandlocalmeteorologicalinformationprovidedbyworldareaforecastcentres,volcanicashadvisorycentres,tropicalcycloneadvisorycentres,aerodromemeteorologicalofficesandmeteorologicalwatchofficesinsupportofflexibleairspacemanagement,improvedsituationalawarenessandcollaborativedecisionmaking,anddynamically‐optimizedflighttrajectoryplanning.

Block1

B1‐FICE

IncreasedInteroperability,EfficiencyandCapacitythoughFF‐ICE,Step1applicationbeforeDeparture

IntroductionofFF‐ICEstep1,toimplementground‐groundexchangesusingcommonflightinformationreferencemodel,FIXM,XMLandtheflightobjectusedbeforedeparture.

Page 43: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-43-

B1‐DATM

ServiceImprovementthroughIntegrationofallDigitalATMInformation

ImplementationoftheATMinformationreferencemodelintegratingallATMinformationusingUMLandenablingXMLdatarepresentationsanddataexchangebasedoninternetprotocolswithWXXMformeteorologicalinformation.

B1‐SWIM

PerformanceImprovementthroughtheapplicationofSystem‐WideInformationManagement(SWIM)

ImplementationofSWIMservices(applicationsandinfrastructure)creatingtheaviationintranetbasedonstandarddatamodels,andinternet‐basedprotocolstomaximizeinteroperability.

B1‐AMET

EnhancedOperationalDecisionsthroughIntegratedMeteorologicalInformation(PlanningandNear‐termService)

Meteorologicalinformationsupportingautomateddecisionprocessoraidsinvolving:meteorologicalinformation,meteorologicaltranslation,ATMimpactconversionandATMdecisionsupport.

Block2

B2‐FICE

ImprovedCoordinationthroughmulti‐centreGround‐GroundIntegration:(FF‐ICE/1andFlightObject,SWIM)

FF‐ICEsupportingtrajectory‐basedoperationsthroughexchangeanddistributionofinformationformulticentreoperationsusingflightobjectimplementationandIOPstandards.

B2‐SWIM

EnablingAirborneParticipationincollaborativeATMthroughSWIM

ConnectionoftheaircraftaninformationnodeinSWIMenablingparticipationincollaborativeATMprocesseswithaccesstorichvoluminousdynamicdataincludingmeteorology.

Page 44: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-44- Block3

B3‐FICE

ImprovedOperationalPerformancethroughtheintroductionofFullFF‐ICE

AlldataforallrelevantflightssystematicallysharedbetweenairandgroundsystemsusingSWIMinsupportofcollaborativeATMandtrajectory‐basedoperations.

B3‐AMET

EnhancedOperationalDecisionsthroughIntegratedMeteorologicalInformation(Near‐termandImmediateService)

Metoeroligicalinformationsupportingbothairandgroundautomateddecisionsupportaidsforimplementingweathermitigationstrategies.

PerformanceImprovementArea3:

OptimumCapacityandFlexibleFlights–ThroughGlobalCollaborativeATM

Block0

B0‐FRTO

ImprovedOperationsthroughEnhancedEn‐RouteTrajectories

Toallowtheuseofairspacewhichwouldotherwisebesegregated(i.e.militaryairspace)alongwithflexibleroutingadjustedforspecifictrafficpatterns.Thiswillallowgreaterroutingpossibilities,reducingpotentialcongestionontrunkroutesandbusycrossingpoints,resultinginreducedflightlengthandfuelburn.

Page 45: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-45-

B0‐NOPS

ImprovedFlowPerformancethroughPlanningbasedonaNetwork‐Wideview

CollaborativeATFMmeasuretoregulatepeakflowsinvolvingdepartureslots,managedrateofentryintoagivenpieceofairspacefortrafficalongacertainaxis,requestedtimeataway‐pointoranFIR/sectorboundaryalongtheflight,useofmiles‐in‐trailtosmoothflowsalongacertaintrafficaxisandre‐routingoftraffictoavoidsaturatedareas.

B0‐ASUR

InitialCapabilityforGroundSurveillance

GroundsurveillancesupportedbyADS‐BOUTand/orwideareamultilaterationsystemswillimprovesafety,especiallysearchandrescueandcapacitythroughseparationreductions.ThiscapabilitywillbeexpressedinvariousATMservices,e.g.trafficinformation,searchandrescueandseparationprovision.

B0‐ASEP

AirTrafficSituationalAwareness(ATSA)

TwoATSA(AirTrafficSituationalAwareness)applicationswhichwillenhancesafetyandefficiencybyprovidingpilotswiththemeanstoachievequickervisualacquisitionoftargets:

• AIRB(EnhancedTrafficSituationalAwarenessduringFlightOperations).

• VSA(EnhancedVisualSeparationonApproach).

B0‐OPFL

ImprovedaccesstoOptimumFlightLevelsthroughClimb/DescentProceduresusingADS‐B

Thispreventsanaircraftbeingtrappedatanunsatisfactoryaltitudeandthusincurringnon‐optimalfuelburnforprolongedperiods.ThemainbenefitofITPissignificantfuelsavingsandtheupliftofgreaterpayloads.

B0‐ACAS

ACASImprovements

Toprovideshorttermimprovementstoexistingairbornecollisionavoidancesystems(ACAS)toreducenuisancealertswhilemaintainingexistinglevelsofsafety.Thiswillreducetrajectoryperturbationandincreasesafetyincaseswherethereisabreakdownofseparation.

Page 46: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-46- B0‐SNET

IncreasedEffectivenessofGround‐basedSafetyNets

Thismoduleprovidesimprovementstotheeffectivenessoftheground‐basedsafetynetsassistingtheAirTrafficControllerandgenerating,inatimelymanner,alertsofanincreasedrisktoflightsafety(suchasshorttermsconflictalert,areaproximitywarningandminimumsafealtitudewarning).

Block1

B1‐FRTO

ImprovedOperationsthroughOptimizedATSRouting

Introductionoffreeroutingindefinedairspace,wheretheflightplanisnotdefinedassegmentsofapublishedroutenetworkortracksystemtofacilitateadherencetotheuser‐preferredprofile.

B1‐NOPS

EnhancedFlowPerformancethroughNetworkOperationalPlanning

ATFMtechniquesthatintegratethemanagementofairspace,trafficflowsincludinginitialuserdrivenprioritizationprocessesforcollaborativelydefiningATFMsolutionsbasedoncommercial/operationalpriorities.

B1‐ASEP

IncreasedCapacityandEfficiencythroughIntervalManagement

IntervalManagement(IM)improvesthemanagementoftrafficflowsandaircraftspacing.PrecisemanagementofintervalsbetweenaircraftwithcommonormergingtrajectoriesmaximizesairspacethroughputwhilereducingATCworkloadalongwithmoreefficientaircraftfuelburn.

B1‐SNET

Ground‐basedSafetyNetsonApproach

ThismoduleenhancesthesafetyprovidebythepreviousmodulebyreducingtheriskofcontrolledflightintoterrainaccidentsonfinalapproachthroughtheuseofApproachPathMonitor(APM).

Page 47: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-47-

Block2

B2‐NOPS

Increaseduserinvolvementinthedynamicutilizationofthenetwork

IntroductionofCDMapplicationssupportedbySWIMthatpermitairspaceusersmanagecompetitionandprioritizationofcomplexATFMsolutionswhenthenetworkoritsnodes(airports,sector)nolongerprovidecapacitycommensuratewithuserdemands.

B2‐ASEP

AirborneSeparation(ASEP)

Creationofoperationalbenefitsthroughtemporarydelegationofresponsibilitytotheflightdeckforseparationprovisionwithsuitablyequippeddesignatedaircraft,thusreducingtheneedforconflictresolutionclearanceswhilereducingATCworkloadandenablingmoreefficientflightprofiles.

B2‐ACAS

NewCollisionAvoidanceSystem

ImplementationofAirborneCollisionAvoidanceSystem(ACAS)adaptedtotrajectory‐basedoperationswithimprovedsurveillancefunctionsupportedbyADS‐Baimedatreducingnuisancealertsanddeviations.Thenewsystemwillenablemoreefficientoperationsandprocedureswhilecomplyingwithsafetyregulations.

Block3

B3‐FRTO

TrafficComplexityManagement

Introductionofcomplexitymanagementtoaddresseventsandphenomenathataffecttrafficflowsduetophysicallimitations,economicreasonsorparticulareventsandconditionsbyexploitingthemoreaccurateandrichinformationenvironmentofa

SWIM‐basedATM.

Page 48: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-48- PerformanceImprovementArea4:

EfficientFlightPath–ThroughTrajectory‐basedOperations

Block0

B0‐CDO

ImprovedFlexibilityandEfficiencyinDescentProfiles(CDO)

Deploymentofperformance‐basedairspaceandarrivalproceduresthatallowtheaircrafttoflytheiroptimumaircraftprofiletakingaccountofairspaceandtrafficcomplexitywithcontinuousdescentoperations(CDOs)

B0‐TBO

ImprovedSafetyandEfficiencythroughtheinitialapplicationofDataLinkEn‐Route

ImplementationofaninitialsetofdatalinkapplicationsforsurveillanceandcommunicationsinATC.

B0‐CCO

ImprovedFlexibilityandEfficiencyinDepartureProfiles‐ContinuousClimbOperations(CCO)

Deploymentofdepartureproceduresthatallowtheaircrafttoflytheiroptimumaircraftprofiletakingaccountofairspaceandtrafficcomplexitywithcontinuousclimboperations(CCOs).

Block1

B1‐CDO

ImprovedFlexibilityandEfficiencyinDescentProfiles(CDOs)usingVNAV

Deploymentofperformance‐basedairspaceandarrivalproceduresthatallowtheaircrafttoflytheiroptimumaircraftprofiletakingaccountofairspaceandtrafficcomplexitywithOptimisedProfileDescents(OPDs).

Page 49: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-49-

B1‐TBO

ImprovedTrafficSynchronizationandInitialTrajectory‐BasedOperation

Improvethesynchronizationoftrafficflowsaten‐routemergingpointsandtooptimizetheapproachsequencethroughtheuseof4DTRADcapabilityandairportapplications,e.g.;D‐TAXI,viatheairgroundexchangeofaircraftderiveddatarelatedtoasinglecontrolledtimeofarrival(CTA).

B1‐RPAS

InitialIntegrationofRemotelyPilotedAircraft(RPA)Systemsintonon‐segregatedairspace

ImplementationofbasicproceduresforoperatingRPAinnon‐segregatedairspaceincludingdetectandavoid.

Block2

B2‐CDO

ImprovedFlexibilityandEfficiencyinDescentProfiles(CDOs)usingVNAV,requiredspeedandtimeatarrival

DeploymentofperformancebasedairspaceandarrivalproceduresthatoptimizetheaircraftprofiletakingaccountofairspaceandtrafficcomplexityincludingOptimizedProfileDescents(OPDs),supportedbyTrajectory‐BasedOperationsandself‐separation.

B2‐RPAS

RPAIntegrationinTraffic

Implementsrefinedoperationalproceduresthatcoverlostlink(includingauniquesquawkcodeforlostlink)aswellasenhanceddetectandavoidtechnology.

Page 50: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-50- Block3

B3‐TBO

Full4DTrajectory‐basedOperations

Trajectory‐basedoperationsdeploysanaccuratefour‐dimensionaltrajectorythatissharedamongalloftheaviationsystemusersatthecoresofthesystem.Thisprovidesconsistentandup‐to‐dateinformationsystem‐widewhichisintegratedintodecisionsupporttoolsfacilitatingglobalATMdecision‐making.

B3‐RPAS

RPATransparentManagement

RPAoperateontheaerodromesurfaceandinnon‐segregatedairspacejustlikeanyotheraircraft.

Page 51: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-51-

Fig.5:GraphicdepictingtheASBUModulesconvergingovertimeontheirtargetoperationalconceptsandperformanceimprovements.

MODULE CAPABILITY

REALIZED OPERATIONAL CONCEPT

TARGET PERFORMANCE BENEFIT

Airport AccessibilityRunway SequencingAirport Collaborative Decision-MakingSurface OperationsWake Turbulence SeparationRemote ATS

FULL AMAN/DMAN/SMAN

AIRPORT OPERATIONS

Advanced MET Information

Digital Aeronautical Information Management

FF/ICE

System-Wide InformationManagement

FULL FF/ICE

INTEROPERABLE SYSTEMS & DATA

Free Route Operations

Airborne Separation

Alternative Surveillance

Optimum Flight Levels

Network Operations

Airborne Collision Avoidance Systems

Safety Nets

COMPLEXITY MANAGEMENT

GLOBALLY COLLABORATIVE ATM

Trajectory-Based Operations

Continuous Descent Operations

Continuous Climb Operations

Remotely Piloted Aircraft Systems

FULL TRAJECTORY-BASEDOPERATIONS

EFFICIENT FLIGHT PATHS

Page 52: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-52-

Block0

Block0iscomposedofModulescontainingtechnologiesandcapabilitieswhichhavealreadybeendevelopedandcanbeimplementedfrom2013.BasedonthemilestoneframeworkestablishedundertheoverallBlockUpgradestrategy,ICAOMemberStatesareencouragedtoimplementthoseBlock0Modulesapplicabletotheirspecificoperationalneeds.

PerformanceImprovementArea1:AirportOperations

B0‐APTA OptimizationofApproachProceduresincludingVerticalGuidance

Theuseofperformance‐basednavigation(PBN)andground‐basedaugmentationsystem(GBAS)landingsystem(GLS)procedurestoenhancethereliabilityandpredictabilityofapproachestorunways,thusincreasingsafety,accessibilityandefficiency.Thisispossiblethroughtheapplicationofbasicglobalnavigationsatellitesystem(GNSS),Baro‐verticalnavigation(VNAV),satellite‐basedaugmentationsystem(SBAS)andGLS.TheflexibilityinherentinPBNapproachdesigncanbeexploitedtoincreaserunwaycapacity.

Applicability

ThisModuleisapplicabletoallinstrument,andprecisioninstrumentrunwayends,andtoalimitedextent,non‐instrumentrunwayends.

Benefits

AccessandEquity: Increasedaerodromeaccessibility.

Capacity: Incontrastwithinstrumentlandingsystems(ILS),theGNSS‐basedapproaches(PBNandGLS)donotrequirethedefinitionandmanagementofsensitiveandcriticalareas.Thisresultsinincreasedrunwaycapacitywhereapplicable.

Efficiency: Costsavingsrelatedtothebenefitsoflowerapproachminima:fewerdiversions,overflights,cancellationsanddelays.Costsavingsrelatedtohigherairportcapacityincertaincircumstances(e.g.closelyspacedparallels)bytakingadvantageoftheflexibilitytooffsetapproachesanddefinedisplacedthresholds.

Environment: Environmentalbenefitsthroughreducedfuelburn.

Safety: Stabilizedapproachpaths.

Cost: AircraftoperatorsandAirNavigationServiceProviders(ANSPs)canquantifythebenefitsoflowerminimabyusinghistoricalaerodromeweatherobservationsandmodellingairportaccessibilitywithexistingandnewminima.Eachaircraftoperatorcanthenassessbenefitsagainstthecostofanyrequiredavionicsupgrade.UntilthereareGBAS(CATII/III)Standards,GLScannotbeconsideredasacandidatetogloballyreplaceILS.TheGLSbusinesscaseneedstoconsiderthecostofretainingILSorMLStoallowcontinuedoperationsduringaninterferenceevent.

B0‐WAKE IncreasedRunwayThroughputthroughOptimizedWakeTurbulenceSeparation

Improvesthroughputondepartureandarrivalrunwaysthroughoptimizedwaketurbulenceseparationminima,revisedaircraftwaketurbulencecategoriesandprocedures.

Page 53: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-53-

Applicability

Leastcomplex–Implementationofrevisedwaketurbulencecategoriesismainlyprocedural.Nochangestoautomationsystemsareneeded.

Benefits

AccessandEquity: Increasedaerodromeaccessibility.

Capacity:

a) Capacityanddeparture/arrivalrateswillincreaseatcapacityconstrainedaerodromesaswakecategorizationchangesfromthreetosixcategories.

b) Capacityandarrivalrateswillincreaseatcapacityconstrainedaerodromesasspecializedandtailoredproceduresforlandingoperationsforon‐parallelrunways,withcentrelinesspacedlessthan760m(2500ft)apart,aredevelopedandimplemented.

c) Capacityanddeparture/arrivalrateswillincreaseasaresultofnewprocedureswhichwillreducethecurrenttwo‐threeminutesdelaytimes.Inaddition,runwayoccupancytimewilldecreaseasaresultofthesenewprocedures.

Flexibility Aerodromescanbereadilyconfiguredtooperateonthree(i.e.existingH/M/L)orsixwaketurbulencecategories,dependingondemand.

Cost: MinimalcostsareassociatedwiththeimplementationinthisModule.Thebenefitsaretotheusersoftheaerodromerunwaysandsurroundingairspace,ANSPsandoperators.Conservativewaketurbulenceseparationstandardsandassociatedproceduresdonottakefulladvantageofthemaximumutilityofrunwaysandairspace.U.S.aircarrierdatashowsthat,whenoperatingfromacapacity‐constrainedaerodrome,againoftwoextradeparturesperhourhasamajorbeneficialeffectinreducingdelays.

TheANSPmayneedtodeveloptoolstoassistcontrollerswiththeadditionalwaketurbulencecategoriesanddecisionsupporttools.Thetoolsnecessarywilldependontheoperationateachairportandthenumberofwaketurbulencecategoriesimplemented.

B0‐SURF SafetyandEfficiencyofSurfaceOperations(A‐SMGCSLevel1‐2)

Basicadvanced‐surfacemovementguidanceandcontrolsystems(A‐SMGCS)providessurveillanceandalertingofmovementsofbothaircraftandvehiclesattheaerodrome,thusimprovingrunway/aerodromesafety.Automaticdependentsurveillance‐broadcast(ADS‐B)informationisusedwhenavailable(ADS‐BAPT).

Applicability

A‐SMGCSisapplicabletoanyaerodromeandallclassesofaircraft/vehicles.Implementationistobebasedonrequirementsstemmingfromindividualaerodromeoperationalandcost‐benefitassessments.ADS‐BAPT,whenappliedisanelementofA‐SMGCS,isdesignedtobeappliedataerodromeswithmediumtrafficcomplexity,havinguptotwoactiverunwaysatatimeandtherunwaywidthofminimum45m.

Benefits

AccessandEquity: A‐SMGCSimprovesaccesstoportionsofthemanoeuvringareaobscuredfromviewofthecontroltowerforvehiclesandaircraft.Sustainsanimprovedaerodromecapacityduringperiodsofreducedvisibility.EnsuresequityinATChandlingofsurfacetrafficregardlessofthetraffic’spositionontheaerodrome.

ADS‐BAPT,asanelementofanA‐SMGCSsystem,providestrafficsituationalawarenesstothecontrollerintheformofsurveillanceinformation.Theavailabilityofthedataisdependentontheaircraftandvehiclelevelofequipage.

Page 54: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-54- Capacity: A‐SMGCS:sustainedlevelsofaerodromecapacityforvisualconditionsreducedtominimalowerthanwouldotherwisebethecase.

ADS‐BAPT:asanelementofanA‐SMGCSsystem,potentiallyimprovescapacityformediumcomplexityaerodromes.

Efficiency: A‐SMGCS:reducedtaxitimesthroughdiminishedrequirementsforintermediateholdingsbasedonrelianceonvisualsurveillanceonly.

ADS‐BAPT:asanelementofanA‐SMGCS,potentiallyreducesoccurrenceofrunwaycollisionsbyassistinginthedetectionoftheincursions.

Environment: Reducedaircraftemissionsstemmingfromimprovedefficiencies.

Safety: A‐SMGCS:reducedrunwayincursions.Improvedresponsetounsafesituations.ImprovedsituationalawarenessleadingtoreducedATCworkload.

ADS‐BAPT:asanelementofanA‐SMGCSsystem,potentiallyreducestheoccurrenceofoccurrenceofrunwaycollisionsbyassistinginthedetectionoftheincursions.

Cost: A‐SMGCS:apositiveCBAcanbemadefromimprovedlevelsofsafetyandimprovedefficienciesinsurfaceoperationsleadingtosignificantsavingsinaircraftfuelusage.Aswell,aerodromeoperatorvehicleswillbenefitfromimprovedaccesstoallareasoftheaerodrome,improvingtheefficiencyofaerodromeoperations,maintenanceandservicing.

ADS‐BAPT:asanelementofanA‐SMGCSsystemlesscostlysurveillancesolutionformediumcomplexityaerodromes.

B0‐ACDM ImprovedAirportOperationsthroughAirport‐CDM

Implementscollaborativeapplicationsthatwillallowthesharingofsurfaceoperationsdataamongthedifferentstakeholdersontheairport.Thiswillimprovesurfacetrafficmanagementreducingdelaysonmovementandmanoeuvringareasandenhancesafety,efficiencyandsituationalawareness.

Applicability

Localforequipped/capablefleetsandalreadyestablishedairportsurfaceinfrastructure.

Benefits

Capacity: Enhanceduseofexistinginfrastructureofgateandstands(unlocklatentcapacity).Reducedworkload,betterorganizationoftheactivitiestomanageflights.

Efficiency: IncreasedefficiencyoftheATMsystemforallstakeholders.Inparticularforaircraftoperators:improvedsituationalawareness(aircraftstatusbothhomeandaway);enhancedfleetpredictabilityandpunctuality;improvedoperationalefficiency(fleetmanagement);andreduceddelay.

Environment: Reducedtaxitime;reducedfuelandcarbonemission;andloweraircraftengineruntime.

Cost: Thebusinesscasehasproventobepositiveduetothebenefitsthatflightsandtheotherairportoperationalstakeholderscanobtain.However,thismaybeinfluenceddependingupontheindividualsituation(environment,trafficlevelsinvestmentcost,etc.).

AdetailedbusinesscasehasbeenproducedinsupportoftheEUregulationwhichwassolidlypositive.

Page 55: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-55-

B0‐RSEQ ImproveTrafficFlowthroughSequencing(AMAN/DMAN)

Managearrivalsanddepartures(includingtime‐basedmetering)toandfromamulti‐runwayaerodromeorlocationswithmultipledependentrunwaysatcloselyproximateaerodromes,toefficientlyutilizetheinherentrunwaycapacity.

Applicability

Runwaysandterminalmanoeuvringareainmajorhubsandmetropolitanareaswillbemostinneedoftheseimprovements.

Theimprovementisleastcomplex–runwaysequencingproceduresarewidelyusedinaerodromesglobally.HoweversomelocationsmighthavetoconfrontenvironmentalandoperationalchallengesthatwillincreasethecomplexityofdevelopmentandimplementationoftechnologyandprocedurestorealizethisModule.

Benefits

Capacity: Time‐basedmeteringwilloptimizeusageofterminalairspaceandrunwaycapacity.Optimizedutilizationofterminalandrunwayresources.

Efficiency: Efficiencyispositivelyimpactedasreflectedbyincreasedrunwaythroughputandarrivalrates.Thisisachievedthrough:

a) Harmonizedarrivingtrafficflowfromen‐routetoterminalandaerodrome.Harmonizationisachievedviathesequencingofarrivalflightsbasedonavailableterminalandrunwayresources.

b) Streamlineddeparturetrafficflowandsmoothtransitionintoen‐routeairspace.Decreasedleadtimefordeparturerequestandtimebetweencallforreleaseanddeparturetime.Automateddisseminationofdepartureinformationandclearances.

Predictability: Decreaseduncertaintiesinaerodrome/terminaldemandprediction.

Flexibility Byenablingdynamicscheduling.

Cost: Adetailedpositivebusinesscasehasbeenbuiltforthetime‐basedflowmanagementprogrammeintheUnitedStates.Thebusinesscasehasproventhebenefit/costratiotobepositive.Implementationoftime‐basedmeteringcanreduceairbornedelay.Thiscapabilitywasestimatedtoprovideover320,000minutesindelayreductionand$28.37millioninbenefitstoairspaceusersandpassengersovertheevaluationperiod.

ResultsfromfieldtrialsofDFM,adepartureschedulingtoolintheUnitedStates,havebeenpositive.Compliancerate,ametricusedtogaugetheconformancetoassigneddeparturetime,hasincreasedatfieldtrialsitesfromsixty‐eighttoseventy‐fivepercent.Likewise,theEUROCONTROLDMANhasdemonstratedpositiveresults.Departureschedulingwillstreamlineflowofaircraftfeedingtheadjacentcenterairspacebasedonthatcenter’sconstraints.Thiscapabilitywillfacilitatemoreaccurateestimatedtimeofarrivals(ETAs).Thisallowsforthecontinuationofmeteringduringheavytraffic,enhancedefficiencyintheNASandfuelefficiencies.Thiscapabilityisalsocrucialforextendedmetering.

Page 56: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-56-

PerformanceImprovementArea2:GloballyInteroperableSystemsandData

B0‐FICEIncreasedInteroperability,EfficiencyandCapacitythoughGround‐GroundIntegration

Improvescoordinationbetweenairtrafficserviceunits(ATSUs)byusingATSinterfacilitydatacommunication(AIDC)definedbyICAO’sManualofAirTrafficServicesDataLinkApplications(Doc9694).Thetransferofcommunicationinadatalinkenvironmentimprovestheefficiencyofthisprocess,particularlyforoceanicATSUs.

Applicability

Applicabletoatleasttwoareacontrolcentres(ACCs)dealingwithen‐routeand/orterminalcontrolarea(TMA)airspace.AgreaternumberofconsecutiveparticipatingACCswillincreasethebenefits.

Benefits

Capacity: Reducedcontrollerworkloadandincreaseddataintegritysupportingreducedseparationstranslatingdirectlytocrosssectororboundarycapacityflowincreases.

Efficiency: Thereducedseparationcanalsobeusedtomorefrequentlyofferaircraftflightlevelsclosertotheflightoptimum;incertaincases,thisalsotranslatesintoreduceden‐routeholding.

Interoperability: Seamlessness:theuseofstandardizedinterfacesreducesthecostofdevelopment,allowsairtrafficcontrollerstoapplythesameproceduresattheboundariesofallparticipatingcentresandbordercrossingbecomesmoretransparenttoflights.

Safety: Betterknowledgeofmoreaccurateflightplaninformation.

Cost: IncreaseofthroughputatATSunitboundaryandreducedATCOworkloadwilloutweighthecostofFDPSsoftwarechanges.Thebusinesscaseisdependentontheenvironment.

B0‐DATM ServiceImprovementthroughDigitalAeronauticalInformationManagement

Theinitialintroductionofdigitalprocessingandmanagementofinformationthrough,aeronauticalinformationservice(AIS)/aeronauticalinformationmanagement(AIM)implementation,useofaeronauticalexchangemodel(AIXM),migrationtoelectronicaeronauticalinformationpublication(AIP0andbetterqualityandavailabilityofdata.

Applicability

ApplicableatStatelevelwithincreasedbenefitsasmoreStatesparticipate.

Benefits

Environment: Reducingthetimenecessarytopromulgateinformationconcerningairspacestatuswillallowformoreeffectiveairspaceutilizationandallowimprovementsintrajectorymanagement.

Safety: Reductioninthenumberofpossibleinconsistencies.Moduleallowsreducingthenumberofmanualentriesandensuresconsistencyamongdatathroughautomaticdatacheckingbasedoncommonlyagreedbusinessrules.

Interoperability: Essentialcontributiontointeroperability.

Page 57: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-57-

Cost: Reducedcostsintermsofdatainputsandchecks,paperandpost,especiallywhenconsideringtheoveralldatachain,fromoriginators,throughAIStotheendusers.Thebusinesscasefortheaeronauticalinformationconceptualmodel(AIXM)hasbeenconductedinEuropeandintheUnitedStatesandhasshowntobepositive.TheinitialinvestmentnecessaryfortheprovisionofdigitalAISdatamaybereducedthroughregionalcooperationanditremainslowcomparedwiththecostofotherATMsystems.Thetransitionfrompaperproductstodigitaldataisacriticalpre‐requisitefortheimplementationofanycurrentorfutureATMorAirNavigationconceptthatreliesontheaccuracy,integrityandtimelinessofdata.

B0‐AMET MeteorologicalInformationSupportingEnhancedOperationalEfficiencyandSafety

Global,regionalandlocalmeteorologicalinformation:

a) Forecastsprovidedbyworldareaforecastcentres(WAFCs),volcanicashadvisorycentres(VAACs)andtropicalcycloneadvisorycentres(TCAC).

b) Aerodromewarningstogiveconciseinformationofmeteorologicalconditionsthatcouldadverselyaffectallaircraftatanaerodrome,includingwindshear.

c) SIGMETstoprovideinformationonoccurrenceorexpectedoccurrenceofspecificen‐routeweatherphenomenawhichmayaffectthesafetyofaircraftoperationsandotheroperationalmeteorological(OPMET)information,includingMETAR/SPECIandTAF,toprovideroutineandspecialobservationsandforecastsofmeteorologicalconditionsoccurringorexpectedtooccurattheaerodrome.

Thisinformationsupportsflexibleairspacemanagement,improvedsituationalawarenessandcollaborativedecision‐making,anddynamically‐optimizedflighttrajectoryplanning.ThisModuleincludeselementswhichshouldbeviewedasasubsetofallavailablemeteorologicalinformationthatcanbeusedtosupportenhancedoperationalefficiencyandsafety

Applicability

Applicabletotrafficflowplanning,andtoallaircraftoperationsinalldomainsandflightphases,regardlessoflevelofaircraftequipage.

Benefits

Capacity: Optimizeduseofairspacecapacity.Metric:ACCandaerodromethroughput.

Efficiency: Harmonizedarrivingairtraffic(en‐routetoterminalareatoaerodrome)andharmonizeddepartingairtraffic(aerodrometoterminalareatoen‐route)willtranslatetoreducedarrivalanddepartureholdingtimesandthusreducedfuelburn.Metric:Fuelconsumptionandflighttimepunctuality.

Environment: Reducedfuelburnthroughoptimizeddepartureandarrivalprofiling/scheduling.Metric:Fuelburnandemissions.

Safety: Increasedsituationalawarenessandimprovedconsistentandcollaborativedecisionmaking.Metric:Incidentoccurrences.

Interoperability: Gate‐to‐gateseamlessoperationsthroughcommonaccessto,anduseof,theavailableWAFS,IAVWandtropicalcyclonewatchforecastinformation.Metric:ACCthroughput.

Predictability: Decreasedvariancebetweenthepredictedandactualairtrafficschedule.Metric:Blocktimevariability,flight‐timeerror/bufferbuiltintoschedules.

Participation: Commonunderstandingofoperationalconstraints,capabilitiesandneeds,basedonexpected(forecast)meteorologicalconditions.Metric:Collaborativedecision‐makingattheaerodromeandduringallphasesofflight.

Page 58: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-58- Flexibility: Supportspre‐tacticalandtacticalarrivalanddeparturesequencingandthusdynamicairtrafficscheduling.Metric:ACCandaerodromethroughput.

Cost: Reductionincoststhroughreducedarrivalanddeparturedelays(viz.reducedfuelburn).Metric:Fuelconsumptionandassociatedcosts.

PerformanceImprovementArea3:OptimumCapacityandFlexibleFlights

B0‐FRTO ImprovedOperationsthroughEnhancedEn‐routeTrajectories

Allowtheuseofairspacewhichwouldotherwisebesegregated(i.e.SpecialUseAirspace)alongwithflexibleroutingadjustedforspecifictrafficpatterns.Thiswillallowgreaterroutingpossibilities,reducingpotentialcongestionontrunkroutesandbusycrossingpoints,resultinginreducedflightlengthsandfuelburn.

Applicability

Applicabletoen‐routeairspace.Benefitscanstartlocally.Thelargerthesizeoftheconcernedairspacethegreaterthebenefits,inparticularforflextrackaspects.Benefitsaccruetoindividualflightsandflows.Applicationwillnaturallyspanoveralongperiodastrafficdevelops.Itsfeaturescanbeintroducedstartingwiththesimplestones.

Benefits

AccessandEquity: Betteraccesstoairspacebyareductionofthepermanentlysegregatedvolumes.

Capacity: Theavailabilityofagreatersetofroutingpossibilitiesallowsreducingpotentialcongestionontrunkroutesandatbusycrossingpoints.Theflexibleuseofairspacegivesgreaterpossibilitiestoseparateflightshorizontally.PBNhelpstoreduceroutespacingandaircraftseparations.Thisinturnallowsreducingcontrollerworkloadbyflight.

Efficiency: Thedifferentelementsconcurtotrajectoriesclosertotheindividualoptimumbyreducingconstraintsimposedbypermanentdesign.InparticulartheModulewillreduceflightlengthandrelatedfuelburnandemissions.ThepotentialsavingsareasignificantproportionoftheATMrelatedinefficiencies.TheModulewillreducethenumberofflightdiversionsandcancellations.Itwillalsobetterallowavoidanceofnoisesensitiveareas.

Environment: Fuelburnandemissionswillbereduced;however,theareawhereemissionsandcontrailswillbeformedmaybelarger.

Predictability: Improvedplanningallowsstakeholderstoanticipateonexpectedsituationsandbebetterprepared.

Flexibility: Thevarioustacticalfunctionsallowrapidreactiontochangingconditions.

Cost: FUA:IntheUnitedArabEmirates(UAE)overhalfoftheairspaceismilitary.Openingupthisairspacecouldpotentiallyenableyearlysavingsintheorderof4.9millionlitresoffueland581flighthours.IntheUnitedStatesastudyforNASAbyDattaandBaringtonshowedmaximumsavingsofdynamicuseofFUAof$7.8M(1995$).

Flexiblerouting:Earlymodellingofflexibleroutingsuggeststhatairlinesoperatinga10‐hourintercontinentalflightcancutflighttimebysixminutes,reducefuelburnbyasmuchas2%andsave3,000kilogramsofCO2emissions.IntheUnitedStatesRTCANextGenTaskForceReport,itwasfoundthatbenefitswouldbeabout20%reductioninoperationalerrors;5‐8%productivityincrease(nearterm;growingto8‐14%later);capacity

Page 59: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-59-

increases(butnotquantified).Annualoperatorbenefitin2018of$39,000perequippedaircraft(2008dollars)growingto$68,000peraircraftin2025basedontheFAAInitialinvestmentDecision.Forthehighthroughput,highcapacitybenefitcase(in2008dollars):totaloperatorbenefitis$5.7Bacrossprogrammelifecycle(2014‐2032,basedontheFAAinitialinvestmentdecision).

B0‐NOPS ImprovedFlowPerformancethroughPlanningbasedonaNetwork‐wideview

Airtrafficflowmanagement(ATFM)isusedtomanagetheflowoftrafficinawaythatminimizesdelaysandmaximizestheuseoftheentireairspace.ATFMcanregulatetrafficflowsinvolvingdepartureslots,smoothflowsandmanageratesofentryintoairspacealongtrafficaxes,managearrivaltimeatwaypointsorflightinformationregion(FIR)/sectorboundariesandreroutetraffictoavoidsaturatedareas.ATFMmayalsobeusedtoaddresssystemdisruptionsincludingcrisiscausedbyhumanornaturalphenomena.

Applicability

Regionorsubregion.

Benefits

AccessandEquity: Improvedaccessbyavoidingdisruptionofairtrafficinperiodsofdemandhigherthancapacity.ATFMprocessestakecareofequitabledistributionofdelays.

Capacity: Betterutilizationofavailablecapacity,network‐wide;inparticularthetrustofATCnotbeingfacedbysurprisetosaturationtendstoletitdeclare/useincreasedcapacitylevels;abilitytoanticipatedifficultsituationsandmitigatetheminadvance.

Efficiency: Reducedfuelburnduetobetteranticipationofflowissues;apositiveeffecttoreducetheimpactofinefficienciesintheATMsystemortodimensionitatasizethatwouldnotalwaysjustifyitscosts(balancebetweencostofdelaysandcostofunusedcapacity).Reducedblocktimesandtimeswithengineson.

Environment: Reducedfuelburnasdelaysareabsorbedontheground,withshutengines;reroutinghowevergenerallyputflightonalongerdistance,butthisisgenerallycompensatedbyotherairlineoperationalbenefits.

Safety: Reducedoccurrencesofundesiredsectoroverloads.

Predictability: IncreasedpredictabilityofschedulesastheATFMalgorithmstendtolimitthenumberoflargedelays.

Participation: Commonunderstandingofoperationalconstraints,capabilitiesandneeds.

Cost: Thebusinesscasehasproventobepositiveduetothebenefitsthatflightscanobtainintermsofdelayreduction.

B0‐ASUR InitialCapabilityforGroundSurveillance

ProvidesinitialcapabilityforlowercostgroundsurveillancesupportedbynewtechnologiessuchasADS‐BOUTandwideareamultilateration(MLAT)systems.ThiscapabilitywillbeexpressedinvariousATMservices,e.g.trafficinformation,searchandrescueandseparationprovision.

Applicability

Thiscapabilityischaracterizedbybeingdependent/cooperative(ADS‐BOUT)andindependent/cooperative(MLAT).TheoverallperformanceofADS‐Bisaffectedbyavionicsperformanceandcompliantequipagerate.

Page 60: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-60- Benefits

Capacity: Typicalseparationminimaare3NMor5NMenablingasignificantincreaseintrafficdensitycomparedtoproceduralminima.Improvedcoverage,capacity,velocityvectorperformanceandaccuracycanimproveATCperformanceinbothradarandnon‐radarenvironments.Terminalareasurveillanceperformanceimprovementsareachievedthroughhighaccuracy,bettervelocityvectorandimprovedcoverage.

Efficiency: Availabilityofoptimumflightlevelsandprioritytotheequippedaircraftandoperators.ReductionofflightdelaysandmoreefficienthandlingofairtrafficatFIRboundaries.Reducesworkloadofairtrafficcontrollers.

Safety: Reductionofthenumberofmajorincidents.Supporttosearchandrescue.

Cost: Eithercomparisonbetweenproceduralminimaand5NMseparationminimawouldallowanincreaseoftrafficdensityinagivenairspace;orcomparisonbetweeninstalling/renewingSSRModeSstationsusingModeStranspondersandinstallingADS‐BOUT(and/orMLATsystems).

B0‐ASEP AirTrafficSituationalAwareness(ATSA)

Twoairtrafficsituationalawareness(ATSA)applicationswhichwillenhancesafetyandefficiencybyprovidingpilotswiththemeanstoenhancetrafficsituationalawarenessandachievequickervisualacquisitionoftargets:

a) AIRB(basicairbornesituationalawarenessduringflightoperations).

b) VSA(visualseparationonapproach).

Applicability

Thesearecockpit‐basedapplicationswhichdonotrequireanysupportfromthegroundhencetheycanbeusedbyanysuitablyequippedaircraft.ThisisdependentuponaircraftbeingequippedwithADS‐BOUT.AvionicsavailabilityatlowenoughcostsforGAisnotyetavailable.

Benefits

Efficiency: Improvesituationalawarenesstoidentifylevelchangeopportunitieswithcurrentseparationminima(AIRB)andimprovevisualacquisitionandreductionofmissedapproaches(VSA).

Safety: Improvesituationalawareness(AIRB)andreducethelikelihoodofwaketurbulenceencounters(VSA).

Cost: Thecostbenefitislargelydrivenbyhigherflightefficiencyandconsequentsavingsincontingencyfuel.

ThebenefitanalysisoftheEUROCONTROLCRISTALITPprojectoftheCASCADEProgrammeandsubsequentupdatehadshownthatATSAWAIRBandITPtogetherarecapableofprovidingthefollowingbenefitsoverN.Atlantic:

a) Saving36millionEuro(50KEuroperaircraft)annually.

b) Reducingcarbondioxideemissionsby160,000tonnesannually.

ThemajorityofthesebenefitsareattributedtoAIRB.FindingswillberefinedafterthecompletionofthepioneeroperationsstartinginDecember2011.

Page 61: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-61-

B0‐OPFL ImprovedAccesstoOptimumFlightLevelsthroughClimb/DescentProceduresusingADSB)

Enablesaircrafttoreachamoresatisfactoryflightlevelforflightefficiencyortoavoidturbulenceforsafety.ThemainbenefitofITPissignificantfuelsavingsandtheupliftofgreaterpayloads.

Applicability

Thiscanbeappliedtoroutesinproceduralairspaces.

Benefits

Capacity: Improvementincapacityonagivenairroute.

Efficiency: Increasedefficiencyonoceanicandpotentiallycontinentalen‐route.

Environment: Reducedemissions.

Safety: Areductionofpossibleinjuriesforcabincrewandpassengers.

B0‐ACAS AirborneCollisionAvoidanceSystems(ACAS)Improvements

Providesshort‐termimprovementstoexistingairbornecollisionavoidancesystems(ACAS)toreducenuisancealertswhilemaintainingexistinglevelsofsafety.Thiswillreducetrajectorydeviationsandincreasesafetyincaseswherethereisabreakdownofseparation.

Applicability

Safetyandoperationalbenefitsincreasewiththeproportionofequippedaircraft.

Benefits

Efficiency: ACASimprovementwillreduceunnecessaryresolutionadvisory(RA)andthenreducetrajectorydeviations.

Safety: ACASincreasessafetyinthecaseofbreakdownofseparation.

B0‐SNET IncreasedEffectivenessofGround‐BasedSafetyNets

Monitorstheoperationalenvironmentduringairbornephasesofflighttoprovidetimelyalertsonthegroundofanincreasedrisktoflightsafety.Inthiscase,short‐termconflictalert,areaproximitywarningsandminimumsafealtitudewarningsareproposed.Ground‐basedsafetynetsmakeanessentialcontributiontosafetyandremainrequiredaslongastheoperationalconceptremainshumancentred.

Applicability

Benefitsincreaseastrafficdensityandcomplexityincrease.Notallground‐basedsafetynetsarerelevantforeachenvironment.DeploymentofthisModuleshouldbeaccelerated.

Benefits

Safety: Significantreductionofthenumberofmajorincidents.

Cost: ThebusinesscaseforthiselementisentirelymadearoundsafetyandtheapplicationofALARP(aslowasreasonablypracticable)inriskmanagement.

Page 62: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-62-

PerformanceImprovementArea4:EfficientFlightPaths

B0‐CDOImprovedFlexibilityandEfficiencyinDescentProfilesusingContinuousDescentOperations(CDOs)

Performance‐basedairspaceandarrivalproceduresallowingaircrafttoflytheiroptimumprofileusingcontinuousdescentoperations(CDOs).Thiswilloptimizethroughput,allowfuelefficientdescentprofiles,andincreasecapacityinterminalareas.

Applicability

Regions,Statesorindividuallocationsmostinneedoftheseimprovements.Forsimplicityandimplementationsuccess,complexitycanbedividedintothreetiers:

a) Leastcomplex–regional/States/locationswithsomefoundationalPBNoperationalexperiencethatcouldcapitalizeonnear‐termenhancements,whichincludeintegratingproceduresandoptimizingperformance.

b) Morecomplex–regional/State/locationsthatmayormaynotpossessPBNexperience,butwouldbenefitfromintroducingneworenhancedprocedures.However,manyoftheselocationsmayhaveenvironmentalandoperationalchallengesthatwilladdtothecomplexitiesofproceduredevelopmentandimplementation.

c) Mostcomplex–regional/State/locationsinthistierwillbethemostchallengingandcomplextointroduceintegratedandoptimizedPBNoperations.Trafficvolumeandairspaceconstraintsareaddedcomplexitiesthatmustbeconfronted.OperationalchangestotheseareascanhaveaprofoundeffectontheentireState,regionorlocation.

Benefits

Efficiency: Costsavingsandenvironmentalbenefitsthroughreducedfuelburn.Authorizationofoperationswherenoiselimitationswouldotherwiseresultinoperationsbeingcurtailedorrestricted.Reductioninthenumberofrequiredradiotransmissions.Optimalmanagementofthetop‐of‐descentintheen‐routeairspace.

Safety: Moreconsistentflightpathsandstabilizedapproachpaths.Reductionintheincidenceofcontrolledflightintoterrain(CFIT).Separationwiththesurroundingtraffic(especiallyfree‐routing).Reductioninthenumberofconflicts.

Predictability: Moreconsistentflightpathsandstabilizedapproachpaths.Lessneedforvectors.

Cost: ItisimportanttoconsiderthatCDObenefitsareheavilydependentoneachspecificATMenvironment.Nevertheless,ifimplementedwithintheICAOCDOmanualframework,itisenvisagedthatthebenefit/costratio(BCR)willbepositive.AfterCDOimplementationinLosAngelesTMA(KLAX)therewasa50%reductioninradiotransmissionsandfuelsavingsaveraging125poundsperflight(13.7millionpounds/year;41millionpoundsofCO2emission).

TheadvantageofPBNtotheANSPisthatPBNavoidstheneedtopurchaseanddeploynavigationaidsforeachnewrouteorinstrumentprocedure.

B0‐TBOImprovedSafetyandEfficiencythroughtheInitialApplicationofDataLinkEn‐route

Implementsaninitialsetofdatalinkapplicationsforsurveillanceandcommunicationsinairtrafficcontrol(ATC),supportingflexiblerouting,reducedseparationandimprovedsafety.

Page 63: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-63-

Applicability

Requiresgoodsynchronizationofairborneandgrounddeploymenttogeneratesignificantbenefits,inparticulartothoseequipped.Benefitsincreasewiththeproportionofequippedaircraft.

Benefits

Capacity: Element1:Abetterlocalizationoftrafficandreducedseparationsallowincreasingtheofferedcapacity.

Element2:Reducedcommunicationworkloadandbetterorganizationofcontrollertasksallowingincreasedsectorcapacity.

Efficiency: Element1:Routes/tracksandflightscanbeseparatedbyreducedminima,allowingflexibleroutingsandverticalprofilesclosertotheuser‐preferredones.

Safety: Element1:Increasedsituationalawareness;ADS‐Cbasedsafetynetslikeclearedleveladherencemonitoring,routeadherencemonitoring,dangerareainfringementwarning;andbettersupporttosearchandrescue.

Element2:Increasedsituationalawareness;reducedoccurrencesofmisunder‐standings;solutiontostuckmicrophonesituations.

Flexibility: Element1:ADS‐Cpermitseasierroutechange.

Cost: Element1:Thebusinesscasehasproventobepositiveduetothebenefitsthatflightscanobtainintermsofbetterflightefficiency(betterroutesandverticalprofiles;betterandtacticalresolutionofconflicts).

Tobenoted,theneedtosynchronizegroundandairbornedeploymentstoensurethatservicesareprovidedbythegroundwhenaircraftareequipped,andthataminimumproportionofflightsintheairspaceunderconsiderationaresuitablyequipped.

Element2:TheEuropeanbusinesscasehasprovedtobepositivedueto:

a) thebenefitsthatflightsobtainintermsofbetterflightefficiency(betterroutesandverticalprofiles;betterandtacticalresolutionofconflicts);and

b) reducedcontrollerworkloadandincreasedcapacity.

AdetailedbusinesscasehasbeenproducedinsupportoftheEUregulationwhichwassolidlypositive.Tobenoted,thereisaneedtosynchronizegroundandairbornedeploymentstoensurethatservicesareprovidedbythegroundwhenaircraftareequipped,andthataminimumproportionofflightsintheairspaceunderconsiderationaresuitablyequipped.

Page 64: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-64- B0‐CCO ImprovedFlexibilityandEfficiencyDepartureProfiles–ContinuousClimbOperations(CCO)

Implementscontinuousclimboperations(CCO)inconjunctionwithperformance‐basednavigation(PBN)toprovideopportunitiestooptimizethroughput,improveflexibility,enablefuel‐efficientclimbprofiles,andincreasecapacityatcongestedterminalareas.

Applicability

Regions,Statesorindividuallocationsmostinneedoftheseimprovements.Forsimplicityandimplementationsuccess,complexitycanbedividedintothreetiers:

a) Leastcomplex–regional/States/locationswithsomefoundationalPBNoperationalexperiencethatcouldcapitalizeonnear‐termenhancements,whichincludeintegratingproceduresandoptimizingperformance.

b) Morecomplex–regional/State/locationsthatmayormaynotpossessPBNexperience,butwouldbenefitfromintroducingneworenhancedprocedures.However,manyoftheselocationsmayhaveenvironmentalandoperationalchallengesthatwilladdtothecomplexitiesofproceduredevelopmentandimplementation.

c) Mostcomplex–regional/State/locationsinthistierwillbethemostchallengingandcomplextointroduceintegratedandoptimizedPBNoperations.Trafficvolumeandairspaceconstraintsareaddedcomplexitiesthatmustbeconfronted.OperationalchangestotheseareascanhaveaprofoundeffectontheentireState,regionorlocation.

Benefits

Efficiency: Costsavingsthroughreducedfuelburnandefficientaircraftoperatingprofiles.Reductioninthenumberofrequiredradiotransmissions.

Environment: Authorizationofoperationswherenoiselimitationswouldotherwiseresultinoperationsbeingcurtailedorrestricted.Environmentalbenefitsthroughreducedemissions.

Safety: Moreconsistentflightpaths.Reductioninthenumberofrequiredradiotransmissions.Lowerpilotandairtrafficcontrolworkload.

Cost: ItisimportanttoconsiderthatCCObenefitsareheavilydependentonthespecificATMenvironment.Nevertheless,ifimplementedwithintheICAOCCOmanualframework,itisenvisagedthatthebenefit/costratio(BCR)willbepositive.

Block1

TheBlock1ModuleswillintroducenewconceptsandcapabilitiessupportingthefutureATMSystem,namely:FlightandFlowInformationforaCollaborativeEnvironment(FF‐ICE);Trajectory‐BasedOperations(TBO);System‐WideInformationManagement(SWIM)andtheintegrationofRemotelyPilotedAircraft(RPAs)intonon‐segregatedairspace.

Theseconceptsareatvariousstagesofdevelopment.Somehavebeensubjecttoflighttrialsinacontrolledenvironmentwhileothers,suchasFF‐ICE,existasaseriesofstepsleadingtotheimplementationofwellunderstoodconcepts.Assuch,confidenceishighthattheywillbesuccessfullyimplementedbutthenear‐termstandardizationisexpectedtobechallenging,asoutlinedbelow.

HumanPerformancefactorswillhaveastrongimpactonthefinalimplementationofconceptssuchasFF‐ICEandTBO.Closerintegrationofairborneandground‐basedsystemswillcallforathoroughend‐to‐endconsiderationofHumanPerformanceimpacts.

Similarly,technologicalenablerswillalsoaffectthefinalimplementationoftheseconcepts.Typicaltechnologicalenablersincludeair‐grounddatalinkandtheexchangemodelsforSWIM.Everytechnologyhaslimitsonits

Page 65: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-65-

performanceandthiscould,inturn,impacttheachievableoperationalbenefits—eitherdirectlyorthroughtheireffectonHumanPerformance.

Thestandardizationeffortwillthereforeneedtofollowthreeparallelcourses:

a) Thedevelopmentandrefinementofthefinalconcept.

b) Considerationofend‐to‐endHumanPerformanceimpactsandtheireffectontheultimateconceptandthenecessarytechnologicalenablers.

c) Furtherconsiderationofthetechnologicalenablerstoensurethattheirperformancecansupportoperationsbasedonthenewconceptsand,ifnot,whatproceduralorotherchangeswillbeneeded.

d) HarmonizationoftherelevantStandardsonagloballevel.

Forexample,RPAswillrequirea‘detectandavoid’capabilityaswellasaCommandandControllinkwhichismorerobustthanthepilot‐ATClinkavailabletoday.Ineachcase,thesearemeanttoreplicatethecockpitexperiencefortheremotepilot.Therewillclearlybesomelimitstowhattechnologycanprovideinthisregard,henceconsiderationwillneedtobegiventolimitsonoperations,specialprocedures,etc.

Thisistheessenceofthestandardizationchallengeahead.StakeholdersneedtobesensitizedandbroughttogethertodevelopunifiedsolutionsandICAOwilladdressthisthroughaseriesofevents:

• In2014,ICAOwillsupport,incollaborationwithindustryandStates,end‐to‐enddemonstrationsofnewconceptssuchasTBOandFF‐ICE,includingtheHumanPerformanceaspects.

• In2014,ICAOwillhostasymposiumonAviationDatalink.Thiseventwillhelpusidentifythenextstepsfordatalink—bothintermsoftechnology,servicesandimplementation.

• In2015,ICAOwillholdanAirNavigationInformationManagementDivisionalMeetingfocusedonSWIM.

Block1thereforerepresentstheprimaryICAOtechnicalworkprogrammeonairnavigationandefficiencyforthenexttriennium.Itwillrequirecollaborationwithindustryandregulators,inordertoprovideacoherentgloballyharmonisedsetofoperationalimprovementsintheproposedtimeframe.

Block1

TheModulescomprisingBlock1,whichareintendedtobeavailablebeginningin2018,satisfyoneofthefollowingcriteria:

a) Theoperationalimprovementrepresentsawellunderstoodconceptthathasyettobetrialed.

b) Theoperationalimprovementhasbeentrialedsuccessfullyinasimulatedenvironment.

c) Theoperationalimprovementhasbeentrialedsuccessfullyinacontrolledoperationalenvironment.

d) Theoperationalimprovementisapprovedandreadyforroll‐out.

Page 66: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-66-

PerformanceImprovementArea1:AirportOperations

B1‐APTA OptimizedAirportAccessibility

Progressesfurtherwiththeuniversalimplementationofperformance‐basednavigation(PBN)approaches.PBNandGLS(CATII/III)procedurestoenhancethereliabilityandpredictabilityofapproachestorunwaysincreasingsafety,accessibilityandefficiency.

Applicability

ThisModuleisapplicabletoallrunwayends.

Benefits

Efficiency: Costsavingsrelatedtothebenefitsoflowerapproachminima:fewerdiversions,overflights,cancellationsanddelays.Costsavingsrelatedtohigherairportcapacitybytakingadvantageoftheflexibilitytooffsetapproachesanddefinedisplacedthresholds.

Environment: Environmentalbenefitsthroughreducedfuelburn.

Safety: Stabilizedapproachpaths.

Cost: AircraftoperatorsandANSPscanquantifythebenefitsoflowerminimabymodellingairportaccessibilitywithexistingandnewminima.Operatorscanthenassessbenefitsagainstavionicsandothercosts.TheGLSCATII/IIIbusinesscaseneedstoconsiderthecostofretainingILSorMLStoallowcontinuedoperationsduringaninterferenceevent.ThepotentialforincreasedrunwaycapacitybenefitswithGLSiscomplicatedatairportswhereasignificantproportionofaircraftarenotequippedwithGLSavionics.

B1‐WAKE IncreasedRunwayThroughputthroughDynamicWakeTurbulenceSeparation

Improvedthroughputondepartureandarrivalrunwaysthroughthedynamicmanagementofwaketurbulenceseparationminimabasedonthereal‐timeidentificationofwaketurbulencehazards.

Applicability

Leastcomplex–implementationofre‐categorizedwaketurbulenceismainlyprocedural.Nochangestoautomationsystemsareneeded.

Benefits

Capacity: Element1:Betterwindinformationaroundtheaerodrometoenactreducedwakemitigationmeasuresinatimelymanner.Aerodromecapacityandarrivalrateswillincreaseastheresultofreducedwakemitigationmeasures.

Environment: Element3:Changesbroughtaboutbythiselementwillenablemoreaccuratecrosswindprediction.

Flexibility: Element2:Dynamicscheduling.ANSPshavethechoiceofoptimizingthearrival/departurescheduleviapairingnumberofunstableapproaches.

Page 67: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-67-

Cost: Element1’schangetotheICAOwaketurbulenceseparationminimawillyieldanaveragenominalfourpercentadditionalcapacityincreaseforairportrunways.Thefourpercentincreasetranslatestoonemorelandingperhourforasinglerunwaythatnormallycouldhandlethirtylandingsperhour.Oneextraslotperhourcreatesrevenuefortheaircarrierthatfillsthemandfortheairportthathandlestheextraaircraftoperationsandpassengers.

TheimpactoftheElement2Upgradeisthereducedtimethatanairport,duetoweatherconditions,mustoperateitsparallelrunways,withcentrelinesspacedlessthan760m(2,500feet)apart,asasinglerunway.Element2Upgradeallowsmoreairportstobetterutilizesuchparallelrunwayswhentheyareconductinginstrumentflightrulesoperations–resultinginanominaleighttotenmoreairportarrivalsperhourwhencrosswindsarefavourableforWTMAreducedwakeseparations.FortheElement2Upgrade,theadditionofacrosswindpredictionandmonitoringcapabilitytotheANSPautomationisrequired.FortheElement2and3Upgrades,additionaldownlinkandreal‐timeprocessingofaircraftobservedwindinformationwillberequired.TherearenoaircraftequipagecostsbesidescostsincurredforotherModuleUpgrades.

ImpactoftheElement3Upgradeisreducedtimethatanairportmustspacedeparturesonitsparallelrunways,withcentrelinesspacedlessthan760m(2,500feet)apart,bytwotothreeminutes,dependingonrunwayconfiguration.Element3UpgradewillprovidemoretimeperiodsthatanairportANSPcansafelyuseWTMDreducedwakeseparationsontheirparallelrunways.TheairportdeparturecapacityincreasesfourtoeightmoredepartureoperationsperhourwhenWTMDreducedseparationscanbeused.Downlinkandrealtimeprocessingofaircraftobservedwindinformationwillberequired.TherearenoaircraftequipagecostsbesidescostsincurredforotherModuleUpgrades.

B1‐SURF EnhancedSafetyandEfficiencyofSurfaceOperations–SURF,SURF‐IAandEnhancedVisionSystems(EVS)

Providesenhancementsforsurfacesituationalawareness,includingbothcockpitandgroundelements,intheinterestofrunwayandtaxiwaysafety,andsurfacemovementefficiency.Cockpitimprovementsincludingtheuseofsurfacemovingmapswithtrafficinformation(SURF),runwaysafetyalertinglogic(SURF‐IA),andenhancedvisionsystems(EVS)forlowvisibilitytaxioperations.

Applicability

ForSURFandSURF‐IA,applicabletolargeaerodromes(ICAOcodes3and4)andallclassesofaircraft;cockpitcapabilitiesworkindependentlyofgroundinfrastructure,butotheraircraftequipageand/orgroundsurveillancebroadcastwillimprove.

Benefits

Efficiency: Element1:Reducedtaxitimes.

Element2:FewernavigationerrorsrequiringcorrectionbyANSP.

Safety: Element1:Reducedriskofcollisions.

Element2:Improvedresponsetimestocorrectionofunsafesurfacesituations(SURF‐IAonly).

Element3:Fewernavigationerrors.

Page 68: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-68- Cost: Thebusinesscaseforthiselementcanbelargelymadearoundsafety.Currently,theaerodromesurfaceisoftentheregimeofflightwhichhasthemostriskforaircraftsafety,duetothelackofgoodsurveillanceonthegroundactinginredundancywithcockpitcapabilities.Visualscanningaugmentationinthecockpitactinginconjunctionwithserviceprovidercapabilitiesenhancesoperationsonthesurface.Efficiencygainsareexpectedtobemarginalandmodestinnature.

Improvingflightcrewsituationalawarenessofaircraftpositionduringperiodsofreducedvisibilitywillreduceerrorsintheconductoftaxioperations,whichleadtobothsafetyandefficiencygains.

B1‐ACDM OptimizedAirportOperationsthroughA‐CDMTotalAirportManagement

Enhancestheplanningandmanagementofairportoperationsandallowstheirfullintegrationforairtrafficmanagementusingperformancetargetscompliantwiththoseofthesurroundingairspace.Thisentailsimplementingcollaborativeairportoperationsplanning(AOP)andwhereneeded,anairportoperationscentre(APOC).

Applicability

AOP:foruseatalltheairports(sophisticationwilldependonthecomplexityoftheoperationsandtheirimpactonthenetwork).

APOC:willbeimplementedatmajor/complexairports(sophisticationwilldependonthecomplexityoftheoperationsandtheirimpactonthenetwork).

Notapplicabletoaircraft.

Benefits

Efficiency: Throughcollaborativeprocedures,comprehensiveplanningandpro‐activeactiontoforeseeableproblemsamajorreductioninon‐groundandin‐airholdingisexpectedtherebyreducingfuelconsumption.Theplanningandpro‐activeactionswillalsosupportefficientuseofresources;however,someminorincreaseinresourcesmaybeexpectedtosupportthesolution(s).

Environment: Throughcollaborativeprocedures,comprehensiveplanningandpro‐activeactiontoforeseeableproblemsamajorreductioninon‐groundandin‐airholdingisexpectedtherebyreducingnoiseandairpollutioninthevicinityoftheairport.

Predictability: Throughtheoperationalmanagementofperformance,reliabilityandaccuracyofthescheduleanddemandforecastwillincrease(inassociationwithinitiativesbeingdevelopedinotherModules).

Cost: Throughcollaborativeprocedures,comprehensiveplanningandpro‐activeactiontoforeseeableproblems,amajorreductioninon‐groundandin‐airholdingisexpectedtherebyreducingfuelconsumption.Theplanningandpro‐activeactionswillalsosupportefficientuseofresources;however,someminorincreaseinresourcesmaybeexpectedtosupportthesolution(s).

B1‐RATS RemotelyOperatedAerodromeControl

Providesasafeandcost‐effectiveairtrafficservices(ATS)fromaremotefacilitytooneormoreaerodromeswherededicated,localATSarenolongersustainableorcost‐effective,butthereisalocaleconomicandsocialbenefitfromaviation.Thiscanalsobeappliedtocontingencysituationsanddependsonenhancedsituationalawarenessoftheaerodromeunderremotecontrol.

Page 69: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-69-

Applicability

Themaintargetforthesingleandmultipleremotetowerservicesaresmallruralairports,whichtodayarestrugglingwithlowbusinessmargins.BothATCandAFISaerodromesareexpectedtobenefit.

Themaintargetsforthecontingencytowersolutionaremediumtolargeairports–thosethatarelargeenoughtorequireacontingencysolution,butwhorequireanalternativetoA‐SMGCSbased“headsdown”solutionsorwheremaintainingavisualviewisrequired.

AlthoughsomecostbenefitsarepossiblewithremoteprovisionofATStoasingleaerodrome,maximumbenefitisexpectedwiththeremoteofATStomultipleaerodromes.

Benefits

Capacity: Capacitymaybeincreasedthroughtheuseofdigitalenhancementsinlowvisibility.

Efficiency: Efficiencybenefitsthroughtheabilitytoexploittheuseoftechnologyintheprovisionoftheservices.Digitalenhancementscanbeusedtomaintainthroughputinlowvisibilityconditions.

Safety: Sameorgreaterlevelsofsafetyasiftheserviceswereprovidedlocally.TheuseofthedigitalvisualtechnologiesusedintheRVTshouldprovidesafetyenhancementsinlowvisibility.

Flexibility: Flexibilitymaybeincreasedthroughagreaterpossibilitytoextendopeninghourswhenthroughremoteoperations.

Cost: Therearenocurrentoperationalremotetowers,thereforethecost/benefitanalyses(CBAs)arenecessarilybasedonsomeassumptionsdevelopedbysubjectmatterexperts.Costsincurredareassociatedwithprocurementandinstallationofequipmentandadditionalcapitalcostsintermsofnewhardwareandadaptationofbuildings.Newoperatingcostsincludefacilitiesleases,repairsandmaintenanceandcommunicationlinks.Therearethenshorttermtransitioncostssuchasstaffre‐training,re‐deploymentandrelocationcosts.

Againstthis,savingsarederivedfromremotetowerimplementation.Asignificantportionoftheseresultfromsavingsinemploymentcostsduetoreductioninshiftsize.PreviousCBAsindicatedareductioninstaffcostsof10‐35%dependingonthescenario.Othersavingsarisefromreducedcapitalcosts,particularlysavingsfromnothavingtoreplaceandmaintaintowerfacilitiesandequipmentandfromareductionintoweroperatingcosts.

TheCBAconcludedthatremotetowersdoproducepositivefinancialbenefitsforANSPs.FurtherCBAswillbeconductedduring2012and2013usingarangeofimplementationscenarios(single,multiple,contingency).

B1‐RSEQ ImprovedAirportOperationsthroughDeparture,SurfaceandArrivalManagement

Extensionofarrivalmeteringandintegrationofsurfacemanagementwithdeparturesequencingwillimproverunwaymanagementandincreaseairportperformanceandflightefficiency.

Applicability

Runwaysandterminalmanoeuvringareasinmajorhubsandmetropolitanareaswillbemostinneedoftheseimprovements.ComplexityinimplementationofthisModuledependsonseveralfactors.SomelocationsmighthavetoconfrontenvironmentalandoperationalchallengesthatwillincreasethecomplexityofdevelopmentandimplementationoftechnologyandprocedurestorealizethisModule.Performance‐basedNavigation(PBN)routesneedtobeinplace.

Benefits

Capacity: Time‐basedmeteringwilloptimizeusageofterminalairspaceandrunwaycapacity.

Page 70: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-70- Efficiency: Surfacemanagementdecreasesrunwayoccupancytime,introducesmorerobustdepartureratesandenablesdynamicrunwayrebalancingandre‐configuration.Departure/surfaceintegrationenablesdynamicrunwayrebalancingtobetteraccommodatearrivalanddeparturepatterns.Reductioninairbornedelay/holding.Trafficflowsynchronizationbetweenen‐routeandterminaldomain.RNAV/RNPprocedureswilloptimizeaerodrome/terminalresourceutilization.

Environment: Reductioninfuelburnandenvironmentimpact(emissionandnoise).

Safety: Greaterprecisioninsurfacemovementtracking.

Predictability: Decreaseuncertaintiesinaerodrome/terminaldemandprediction.Increasedcompliancewithassigneddeparturetimeandmorepredictableandorderlyflowintometeringpoints.Greatercompliancetocontrolledtimeofarrival(CTA)andmoreaccurateassignedarrivaltimeandgreatercompliance.

Flexibility: Enablesdynamicscheduling.

Cost: Cost‐benefitsmaybereasonablyprojectedformultiplestakeholdersduetoincreasedcapacity,predictabilityandefficiencyofairlineandairportoperations.

PerformanceImprovementArea2:GloballyInteroperableSystemsandData

B1‐FICEIncreasedInteroperability,EfficiencyandCapacitythroughFlightandFlowInformationforaCollaborativeEnvironmentStep‐1(FF‐ICE/1)applicationbeforeDeparture

IntroducesFF‐ICE,Step1providingground‐groundexchangesusingacommonflightinformationreferencemodel(FIXM)andextensiblemarkuplanguage(XML)standardformatsbeforedeparture.

Applicability

ApplicablebetweenATSunitstofacilitateexchangebetweenATMserviceprovider(ASP),airspaceuseroperationsandairportoperations.

Benefits

Capacity: Reducedairtrafficcontroller(ATC)workloadandincreaseddataintegritysupportingreducedseparationstranslatingdirectlytocrosssectororboundarycapacityflowincreases.

Efficiency: Betterknowledgeofaircraftcapabilitiesallowstrajectoriesclosertoairspaceuserpreferredtrajectoriesandbetterplanning.

Safety: Moreaccurateflightinformation.

Interoperability: TheuseofanewmechanismforFPLfilingandinformationsharingwillfacilitateflightdatasharingamongtheactors.

Participation: FF‐ICE,Step1forground‐groundapplicationwillfacilitatecollaborativedecision‐making(CDM),theimplementationorthesystemsinterconnectionforinformationsharing,trajectoryorslotnegotiationbeforedepartureprovidingbetteruseofcapacityandbetterflightefficiency.

Flexibility: TheuseofFF‐ICE,Step1allowsaquickeradaptationofroutechanges.

Page 71: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-71-

Cost: ThenewserviceshavetobebalancedbythecostofsoftwarechangesintheATMserviceprovider(ASP),airlineoperationscenter(AOC)andairportgroundsystems.

B1‐DATM ServiceImprovementthroughIntegrationofallDigitalATMInformation

ImplementstheATMinformationreferencemodel,integratingallATMinformation,usingcommonformats(UML/XMLandWXXM)formeteorologicalinformation,FIXMforflightandflowinformationandinternetprotocols.

Applicability

ApplicableattheStatelevel,withincreasedbenefitsasmoreStatesparticipate.

Benefits

AccessandEquity: Greaterandtimelieraccesstoup‐to‐dateinformationbyawidersetofusers.

Efficiency: Reducedprocessingtimefornewinformation;increasedabilityofthesystemtocreatenewapplicationsthroughtheavailabilityofstandardizeddata.

Safety: Reducedprobabilityofdataerrorsorinconsistencies;reducedpossibilitytointroduceadditionalerrorsthroughmanualinputs.

Interoperability: Essentialforglobalinteroperability.

Cost: Businesscasetobeestablishedinthecourseoftheprojectsdefiningthemodelsandtheirpossibleimplementation.

B1‐SWIM PerformanceImprovementthroughtheApplicationofSystem‐WideInformationManagement(SWIM)

Implementationofsystem‐wideinformationmanagement(SWIM)services(applicationsandinfrastructure)creatingtheaviationintranetbasedonstandarddatamodelsandinternet‐basedprotocolstomaximizeinteroperability.

Applicability

ApplicableatStatelevel,withincreasedbenefitsasmoreStatesparticipate.

Benefits

Efficiency: Usingbetterinformationallowsoperatorsandserviceproviderstoplanandexecutebettertrajectories.

Environment: Furtherreductionofpaperusage,morecost‐efficientflightsasthemostup‐to‐dateinformationisavailabletoallstakeholdersintheATMsystem.

Safety: Accessprotocolsanddataqualitywillbedesignedtoreducecurrentlimitationsintheseareas.

Cost: Furtherreductionofcosts;allinformationcanbemanagedconsistentlyacrossthenetwork,limitingbespokedevelopments,flexibletoadapttostate‐of‐the‐artindustrialproductsandmakinguseofscaleeconomiesfortheexchangedvolumes.

Page 72: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-72- ThebusinesscaseistobeconsideredinthefulllightofotherModulesofthisBlockandthenextone.PureSWIMaspectsunlockATMinformationmanagementissues;operationalbenefitsaremoreindirect.

B1‐AMET EnhancedOperationalDecisionsthroughIntegratedMeteorologicalInformation(PlanningandNear‐termService)

Enablesthereliableidentificationofsolutionswhenforecastorobservedmeteorologicalconditionsimpactaerodromesorairspace.FullATM‐Meteorologyintegrationisneededtoensurethat:meteorologicalinformationisincludedinthelogicofadecisionprocessandtheimpactofthemeteorologicalconditions(theconstraints)areautomaticallycalculatedandtakenintoaccountThedecisiontime‐horizonsrangefromminutes,toseveralhoursordaysaheadoftheATMoperation(thisincludesoptimumflightprofileplanningandtacticalin‐flightavoidanceofhazardousmeteorologicalconditions)totypicallyenablenear‐termandplanning(>20minutes)typeofdecisionmaking.ThisModulealsopromotestheestablishmentofstandardsforglobalexchangeoftheinformation.

Appreciatingthatthenumberofflightsoperatingoncross‐polarandtrans‐polarroutescontinuestosteadilygrowandrecognizingthatspaceweatheraffectingtheearth’ssurfaceoratmosphere(suchassolarradiationstorms)poseahazardtocommunicationsandnavigationsystemsandmayalsoposearadiationrisktoflightcrewmembersandpassengers,thismoduleacknowledgestheneedforspaceweatherinformationservicesinsupportofsafeandefficientinternationalairnavigation.Unliketraditionalmeteorologicaldisturbanceswhichtendtobelocalorsub‐regionalinscale,theeffectsofspaceweatherdisturbancescanbeglobalinnature(althoughtendtobemoreprevalentinthepolarregions),withmuchmorerapidonset

ThisModulebuilds,inparticular,uponModuleB0‐AMET,whichdetailedasub‐setofallavailablemeteorologicalinformationthatcanbeusedtosupportenhancedoperationalefficiencyandsafety.

Applicability

Applicabletotrafficflowplanning,andtoallaircraftoperationsinalldomainsandflightphases,regardlessofthelevelofaircraftequipage.

Benefits

Capacity: Enablesmorepreciseestimatesofexpectedcapacityofagivenairspace.

Efficiency: Reducesthenumberofdeviationsfromuser‐preferredflightprofiles.DecreaseinthevariabilityandnumbersofATMresponsestoagivenmeteorologicalsituation,alongwithreducedcontingencyfuelcarriageforthesamemeteorologicalsituation.

Environment: Lessfuelburn,andreductionofemissionsduetofewergroundhold/delayactions.

Safety: Increasedsituationalawarenessbypilots,AOCsandANSPs,includingenhancedsafetythroughtheavoidanceofhazardousmeteorologicalconditions.Reducedcontingencyfuelcarriageforthesamemeteorologicalcondition.

Predictability: Moreconsistentevaluationsofmeteorologicalconstraints,whichinturnwillallowuserstoplantrajectoriesthataremorelikelytobeacceptablefromthestandpointoftheANSP.Fewerreroutesandlessvariabilityinassociatedtrafficmanagementinitiatives(TMIs)canbeexpected.

Flexibility: Usershavegreaterflexibilityinselectingtrajectoriesthatbestmeettheirneeds,takingintoaccounttheobservedandforecastmeteorologicalconditions.

Cost: ThebusinesscaseforthiselementisstilltobedeterminedaspartofthedevelopmentofthisoverallModule,whichisintheresearchphase.CurrentexperiencewithutilizationofATMdecisionsupporttools,with

Page 73: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-73-

basicmeteorologicalinputparameterstoimproveATMdecisionmakingbystakeholdershasproventobepositiveintermsofproducingconsistentresponsesfromboththeANSPandusercommunity.

PerformanceImprovementArea3:OptimumCapacityandFlexibleFlights

B1‐FRTO ImprovedOperationsthroughOptimizedATSRouting

Provides,throughperformance‐basednavigation(PBN),closerandconsistentroutespacing,curvedapproaches,paralleloffsetsandthereductionofholdingareasize.Thiswillallowthesectorizationofairspacetobeadjustedmoredynamically.Thiswillreducepotentialcongestionontrunkroutesandbusycrossingpointsandreducecontrollerworkload.Themaingoalistoallowflightplanstobefiledwithasignificantpartoftheintendedroutespecifiedbytheuser‐preferredprofile.Maximumfreedomwillbegrantedwithinthelimitsposedbytheothertrafficflows.Theoverallbenefitsarereducedfuelburnandemissions.

Applicability

Regionorsub‐region:thegeographicalextentoftheairspaceofapplicationshouldbelargeenough;significantbenefitsarisewhenthedynamicroutescanapplyacrossflightinformationregion(FIR)boundariesratherthanimposingtraffictocrossboundariesatfixedpredefinedpoints.

Benefits

Capacity: Theavailabilityofagreatersetofroutingpossibilitiesallowsforreductionofpotentialcongestionontrunkroutesandatbusycrossingpoints.Thisinturnallowsforreductionofcontrollerworkloadbyflight.

Freeroutingsnaturallyspreadstrafficintheairspaceandthepotentialinteractionsbetweenflights,butalsoreducesthe“systematization”offlowsandthereforemayhaveanegativecapacityeffectindenseairspaceifitisnotaccompaniedbysuitableassistance.

Reducedroutespacingmeansreducedconsumptionofairspacebytheroutenetworkandagreaterpossibilitytomatchitwithflows.

Efficiency: Trajectoriesclosertotheindividualoptimumbyreducingconstraintsimposedbypermanentdesignand/orbythevarietyofaircraftbehaviours.InparticulartheModulewillreduceflightlengthandrelatedfuelburnandemissions.

ThepotentialsavingsareasignificantproportionoftheATM‐relatedinefficiencies.Wherecapacityisnotanissue,fewersectorsmayberequiredasthespreadingoftrafficorbetterroutingsshouldreducetheriskofconflicts.

Easierdesignofhigh‐leveltemporarysegregatedairspace(TSAs).

Environment: Fuelburnandemissionswillbereduced;however,theareawhereemissionsandcontrailswillbeformedmaybelarger.

Flexibility: Choiceofroutingbytheairspaceuserwouldbemaximized.Airspacedesignerswouldalsobenefitfromgreaterflexibilitytodesignroutesthatfitthenaturaltrafficflows.

Cost: Thebusinesscaseoffreeroutinghasprovedtobepositiveduetothebenefitsthatflightscanobtainintermsofbetterflightefficiency(betterroutesandverticalprofiles;betterandtacticalresolutionofconflicts).

Page 74: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-74-

B1‐NOPS EnhancedFlowPerformancethroughNetworkOperationalPlanning

Introducesenhancedprocessestomanageflowsorgroupsofflightsinordertoimproveoverallflow.Theresultingincreasedcollaborationamongstakeholdersinreal‐time,regardinguserpreferencesandsystemcapabilitieswillresultinbetteruseofairspacewithpositiveeffectsontheoverallcostofATM.

Applicability

Regionorsub‐regionformostapplications;specificairportsincaseofinitialuserdrivenprioritizationprocess(UDPP).ThisModuleismoreparticularlyneededinareaswiththehighesttrafficdensity.However,thetechniquesitcontainswouldalsobeofbenefittoareaswithlessertraffic,subjecttothebusinesscase.

Benefits

Capacity: BetteruseofairspaceandATMnetwork,withpositiveeffectsontheoverallcostefficiencyofATM.OptimizationofDCBmeasuresbyusingassessmentofworkload/complexityasacomplementtocapacity.

Efficiency: Reductionofflightpenaltiessupportedbyairspaceusers.

Environment: SomeminorimprovementisexpectedcomparedtotheModule’sbaseline.

Safety: TheModuleisexpectedtofurtherreducethenumberofsituationswherecapacityoracceptableworkloadwouldbeexceeded.

Predictability: Airspaceusershavegreatervisibilityandsayonthelikelihoodtorespecttheirscheduleandcanmakebetterchoicesbasedontheirpriorities.

Cost: Thebusinesscasewillbearesultofthevalidationworkbeingundertaken.

B1‐ASEP IncreasedCapacityandEfficiencythroughIntervalManagement

Intervalmanagement(IM)improvestheorganizationoftrafficflowsandaircraftspacing.Thiscreatesoperationalbenefitsthroughprecisemanagementofintervalsbetweenaircraftwithcommonormergingtrajectories,thusmaximizingairspacethroughputwhilereducingATCworkloadalongwithmoreefficientaircraftfuelburnreducingenvironmentalimpact.

Applicability

En‐routeandterminalareas.

Benefits

Capacity: Consistent,lowvariancespacingbetweenpairedaircraft(e.g.attheentrytoanarrivalprocedureandonfinalapproach)resultinginreducedfuelburn.

Efficiency: Earlyspeedadvisoriesremovingrequirementforlaterpath‐lengthening.Continuedoptimizedprofiledescents(OPDs)inmediumdensityenvironmentsexpectedtoallowOPDswhendemand<=70%.Resultinginreducedholdingtimesandflighttimes.

Environment: Reducedemissionsduetoreducedspacingsandoptimizedprofiles.

Safety: ReducedATCinstructionsandworkloadwithoutunacceptableincreaseinflightcrewworkload.

Cost: LaboursavingsduetoreducedATCworkload.

Page 75: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-75-

B1‐SNET Ground‐basedSafetyNetsonApproach

Enhancessafetybyreducingtheriskofcontrolledflightintoterrainaccidentsonfinalapproachthroughtheuseofanapproachpathmonitor(APM).APMwarnsthecontrollerofincreasedriskofcontrolledflightintoterrainduringfinalapproaches.Themajorbenefitisasignificantreductionofthenumberofmajorincidents.

Applicability

ThisModulewillincreasesafetybenefitsduringfinalapproachparticularlywhereterrainorobstaclesrepresentsafetyhazards.Benefitsincreaseastrafficdensityandcomplexityincrease.

Benefits

Safety: Significantreductionofthenumberofmajorincidents.

Cost: ThebusinesscaseforthiselementisentirelymadearoundsafetyandtheapplicationofALARP(aslowasreasonablypracticable)inriskmanagement.

PerformanceImprovementArea4:EfficientFlightPaths

B1‐CDOImprovedFlexibilityandEfficiencyinDescentProfiles(CDOs)usingVNAV

Enhancesverticalflightpathprecisionduringdescent,arrival,andenablesaircrafttoflyanarrivalprocedurenotreliantonground‐basedequipmentforverticalguidance.Themainbenefitishigherutilizationofairports,improvedfuelefficiency,increasedsafetythroughimprovedflightpredictabilityandreducedradiotransmission,andbetterutilizationofairspace.

Applicability

Terminalarrivalanddepartureprocedures.

Benefits

Capacity: PBNwithVNAVallowsforaddedaccuracyinacontinuousdescentoperation(CDO).Thiscapabilityallowsforthepotentialtoexpandtheapplicationsofstandardterminalarrivalanddepartureproceduresforimprovedcapacityandthroughput,andimprovetheimplementationofprecisionapproaches.

Efficiency: Enablinganaircrafttomaintainaverticalpathduringdescentallowsfordevelopmentofverticalcorridorsforarrivinganddepartingtrafficthusincreasingtheefficiencyoftheairspace.Additionally,VNAVpromotestheefficientuseofairspacethroughtheabilityforaircrafttoflyamorepreciselyconstraineddescentprofileallowingthepotentialforfurtherreducedseparationandincreasedcapacity.

Environment: Reducedfuelburnsfrommoreaccurateprecisiondescentsresultsinloweremissions.

Safety: Precisealtitudetrackingalongaverticaldescentpathleadstoimprovementsinoverallsystemsafety.

Predictability: VNAVallowsforenhancedpredictabilityofflightpathswhichleadstobetterplanningofflightsandflows.

Cost: VNAVallowsforreducedaircraftlevel‐offs,resultinginfuelandtimesavings.

Page 76: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-76-

B1‐TBOImprovedTrafficSynchronizationandInitialTrajectory‐basedOperation

Improvesthesynchronizationoftrafficflowsaten‐routemergingpointsandtooptimizetheapproachsequencethroughtheuseof4DTRADcapabilityandairportapplications,e.g.D‐TAXI.

Applicability

Requiresgoodsynchronizationofairborneandgrounddeploymenttogeneratesignificantbenefits,inparticulartothoseequipped.Benefitincreaseswithsizeofequippedaircraftpopulationintheareawheretheservicesareprovided.

Benefits

Capacity: Positivelyaffectedbecauseofthereductionofworkloadassociatedtotheestablishmentofthesequenceclosetotheconvergencepointandrelatedtacticalinterventions.Positivelyaffectedbecauseofthereductionofworkloadassociatedtothedeliveryofdepartureandtaxiclearances.

Efficiency: IncreasedbyusingtheaircraftRTAcapabilityfortrafficsynchronizationplanningthroughen‐routeandintoterminalairspace.‘Closedloop’operationsonRNAVproceduresensurecommonairandgroundsystemawarenessoftrafficevolutionandfacilitateitsoptimization.Flightefficiencyisincreasedthroughproactiveplanningoftopofdescent,descentprofileanden‐routedelayactions,andenhancedterminalairspacerouteefficiency.

Environment: Moreeconomicandenvironmentallyfriendlytrajectories,inparticularabsorptionofsomedelays.

Safety: Safetyat/aroundairportsbyareductionofthemisinterpretationsanderrorsintheinterpretationofthecomplexdepartureandtaxiclearances.

Predictability: IncreasedpredictabilityoftheATMsystemforallstakeholdersthroughgreaterstrategicmanagementoftrafficflowbetweenandwithinFIRsen‐routeandterminalairspaceusingtheaircraftRTAcapabilityorspeedcontroltomanageagroundCTA.Predictableandrepeatablesequencingandmetering.“Closedloop”operationsonRNAVproceduresensuringcommonairandgroundsystemawarenessoftrafficevolution.

Cost: Establishmentofthebusinesscaseisunderway.ThebenefitsoftheproposedairportserviceswerealreadydemonstratedintheEUROCONTROLCASCADEProgramme.

B1‐RPAS InitialIntegrationofRemotelyPilotedAircraft(RPA)intoNon‐segregatedAirspace

Implementationofbasicproceduresforoperatingremotelypilotedaircraft(RPA)innon‐segregatedairspace,includingdetectandavoid.

Applicability

AppliestoallRPAoperatinginnon‐segregatedairspaceandataerodromes.Requiresgoodsynchronizationofairborneandgrounddeploymenttogeneratesignificantbenefits,inparticulartothoseabletomeetminimumcertificationandequipmentrequirements.

Benefits

AccessandEquity: Limitedaccesstoairspacebyanewcategoryofusers.

Safety: Increasedsituationalawareness;controlleduseofaircraft.

Page 77: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-77-

Cost: ThebusinesscaseisdirectlyrelatedtotheeconomicvalueoftheaviationapplicationssupportedbyRPAs.

Block2TheModulescomprisingBlock2areintendedtobeavailablein2023andmustsatisfyoneofthefollowingcriteria:

a) RepresentanaturalprogressionfromtheprecedingModuleinBlock1.

b) Supporttherequirementsoftheoperatingenvironmentin2023.

PerformanceImprovementArea1:AirportOperations

B2‐WAKE AdvancedWakeTurbulenceSeparation(Time‐based)

Theapplicationoftime‐basedaircraft‐to‐aircraftwakeseparationminimaandchangestotheprocedurestheANSPusestoapplywakeseparationminima.

Applicability

Mostcomplex–establishmentoftime‐basedseparationcriteriabetweenpairsofaircraftextendstheexistingvariabledistancere‐categorizationofexistingwaketurbulenceintoaconditionsspecifictime‐basedinterval.Thiswilloptimizetheinter‐operationwaittimetotheminimumrequiredforwakedisassociationandrunwayoccupancy.Runwaythroughputisincreasedasaresult.

B2‐SURF OptimizedSurfaceRoutingandSafetyBenefits(A‐SMGCSLevel3‐4andSVS)

Toimproveefficiencyandreducetheenvironmentalimpactofsurfaceoperations,evenduringperiodsoflowvisibility.Queuingfordeparturerunwaysisreducedtotheminimumnecessarytooptimizerunwayuseandtaxitimesarealsoreduced.Operationswillbeimprovedsothatlowvisibilityconditionshaveonlyaminoreffectonsurfacemovement.

Applicability

Mostapplicabletolargeaerodromeswithhighdemand,astheUpgradesaddressissuessurroundingqueuingandmanagementandcomplexaerodromeoperations.

B2‐RSEQ LinkedArrivalManagementandDepartureManagement(AMAN/DNAM)

IntegratedAMAN/DMANtoenabledynamicschedulingandrunwayconfigurationtobetteraccommodatearrival/departurepatternsandintegratearrivalanddeparturemanagement.TheModulealsosummarizesthebenefitsofsuchintegrationandtheelementsthatfacilitateit.

Page 78: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-78- Applicability

Runwaysandterminalmanoeuvringareainmajorhubsandmetropolitanareaswillbemostinneedoftheseimprovements.TheimplementationofthisModuleisleastcomplex.SomelocationsmighthavetoconfrontenvironmentalandoperationalchallengesthatwillincreasethecomplexityofdevelopmentandimplementationtechnologyandprocedurestorealizethisBlock.InfrastructureforRNAP/RNProutesneedtobeinplace.

PerformanceImprovementArea2:GloballyInteroperableSystemsandData

B2‐FICEImprovedCoordinationthroughMulti‐entreGround‐GroundIntegration(FFICE,Step1andFlightObject,SWIM)

FF‐ICEsupportingtrajectory‐basedoperationsthroughexchangeanddistributionofinformationformulti‐centreoperationsusingflightobjectimplementationandinteroperability(IOP)standards.ExtensionofuseofFF‐ICEafterdeparture,supportingtrajectory‐basedoperations.NewsysteminteroperabilitySARPstosupportthesharingofATMservicesinvolvingmorethantwoairtrafficserviceunits(ATSUs).

Applicability

Applicabletoallgroundstakeholders(ATS,airports,airspaceusers)inhomogeneousareas,potentiallyglobal.

B2‐SWIM EnablingAirborneParticipationinCollaborativeATMthroughSWIM

ThisallowstheaircrafttobefullyconnectedasaninformationnodeinSWIM,enablingfullparticipationincollaborativeATMprocesseswithexchangeofdataincludingmeteorology.Thiswillstartwithnon‐safetycriticalexchangessupportedbycommercialdatalinks.

Applicability

Long‐termevolutionpotentiallyapplicabletoallenvironments.

PerformanceImprovementArea3:OptimumCapacityandFlexibleFlights

B2‐NOPS IncreasedUserInvolvementintheDynamicUtilizationoftheNetwork

CDMapplicationssupportedbySWIMthatpermitairspaceuserstomanagecompetitionandprioritizationofcomplexATFMsolutionswhenthenetworkoritsnodes(airports,sector)nolongerprovideenoughcapacitytomeetuserdemands.ThisfurtherdevelopstheCDMapplicationsbywhichATMwillbeabletooffer/delegatetotheuserstheoptimizationofsolutionstoflowproblems.Benefitsincludeanimprovementintheuseofavailablecapacityandoptimizedairlineoperationsindegradedsituations.

Page 79: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-79-

Applicability

Regionorsub‐region.

B2‐ASEP AirborneSeparation(ASEP)

Creationofoperationalbenefitsthroughtemporarydelegationofresponsibilitytotheflightdeckforseparationprovisionwithsuitablyequippeddesignatedaircraft,thusreducingtheneedforconflictresolutionclearanceswhilereducingATCworkloadandenablingmoreefficientflightprofiles.Theflightcrewensuresseparationfromsuitablyequippeddesignatedaircraftascommunicatedinnewclearances,whichrelievethecontrolleroftheresponsibilityforseparationbetweentheseaircraft.However,thecontrollerretainsresponsibilityforseparationfromaircraftthatarenotpartoftheseclearances.

Applicability

Thesafetycaseneedstobecarefullydoneandtheimpactoncapacityisstilltobeassessedincaseofdelegationofseparationforaparticularsituationimplyingnewregulationonairborneequipmentandequipagerolesandresponsibilities(newprocedureandtraining).FirstapplicationsofASEPareenvisagedinOceanicairspaceandinapproachforclosely‐spacedparallelrunways.

B2‐ACAS NewCollisionAvoidanceSystem

Implementationoftheairbornecollisionavoidancesystem(ACAS)adaptedtotrajectory‐basedoperationswithimprovedsurveillancefunctionsupportedbyADS‐Bandadaptivecollisionavoidancelogicaimingatreducingnuisancealertsandminimizingdeviations.

Theimplementationofanewairbornecollisionwarningsystemwillenablemoreefficientoperationsandfutureairspaceprocedureswhilecomplyingwithsafetyregulations.Thenewsystemwillaccuratelydiscriminatebetweennecessaryalertsand“nuisancealerts”.Thisimproveddifferentiationwillleadtoareductionincontrollerworkloadaspersonnelwillspendlesstimetorespondto“nuisancealerts”.Thiswillresultinareductionintheprobabilityofanearmid‐aircollision.

Applicability

Safetyandoperationalbenefitsincreasewiththeproportionofequippedaircraft.Thesafetycaseneedstobecarefullydone.

PerformanceImprovementArea4:EfficientFlightPaths

B2‐CDO ImprovedFlexibilityandEfficiencyinDescentProfiles(CDOs)UsingVNAV,RequiredSpeedandTimeatArrival

Akeyemphasisisontheuseofarrivalproceduresthatallowtheaircrafttoapplylittleornothrottleinareaswheretrafficlevelswouldotherwiseprohibitthisoperation.ThisBlockwillconsiderairspacecomplexity,airtrafficworkload,andproceduredesigntoenableoptimizedarrivalsindenseairspace.

Page 80: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-80- Applicability

Global,highdensityairspace(basedontheUnitedStatesFAAprocedures).

B2‐RPAS RemotelyPilotedAircraft(RPA)IntegrationinTraffic

Continuingtoimprovetheremotelypilotedaircraft(RPA)accesstonon‐segregatedairspace;continuingtoimprovetheremotelypilotedaircraftsystem(RPAS)approval/certificationprocess;continuingtodefineandrefinetheRPASoperationalprocedures;continuingtorefinecommunicationperformancerequirements;standardizingthecommandandcontrol(C2)linkfailureproceduresandagreeingonauniquesquawkcodeforC2linkfailure;andworkingondetectandavoidtechnologies,toincludeautomaticdependentsurveillance–broadcast(ADS‐B)andalgorithmdevelopmenttointegrateRPAintotheairspace.

Applicability

AppliestoallRPAoperatinginnon‐segregatedairspaceandataerodromes.Requiresgoodsynchronizationofairborneandgrounddeploymenttogeneratesignificantbenefits,inparticulartothoseabletomeetminimumcertificationandequipmentrequirements.

Block3TheModulescomprisingBlock3,intendedtobeavailableforimplementationin2028,mustsatisfyatleastoneofthefollowingcriteria:

a) RepresentanaturalprogressionfromtheprecedingModuleinBlock2.

b) Theywillsupporttherequirementsoftheoperatingenvironmentin2028.

c) Representanend‐stateasenvisagedintheGlobalATMOperationalConcept.

PerformanceImprovementArea1:AirportOperations

B3‐RSEQ IntegrationAMAN/DMAN/SMAN

ThisModuleincludesabriefdescriptionofintegratedarrival,en‐route,surface,anddeparturemanagement.

Applicability

Runwaysandterminalmanoeuvringareainmajorhubsandmetropolitanareaswillbemostinneedoftheseimprovements.ComplexityinimplementationofthisBlockdependsonseveralfactors.SomelocationsmighthavetoconfrontenvironmentalandoperationalchallengesthatwillincreasethecomplexityofdevelopmentandimplementationoftechnologyandprocedurestorealizethisBlock.InfrastructureforRNAP/RNProutesneedtobeinplace.

Page 81: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-81-

PerformanceImprovementArea2:GloballyInteroperableSystemsandData

B3‐FICEImprovedOperationalPerformancethroughtheIntroductionofFullFF‐ICE

DataforallrelevantflightssystematicallysharedbetweentheairandgroundsystemsusingSWIMinsupportofcollaborativeATMandtrajectory‐basedoperations.

Applicability

Airandground.

PerformanceImprovementArea3:OptimumCapacityandFlexibleFlights

B3‐AMET EnhancedOperationalDecisionsthroughIntegratedMeteorologicalInformation(Near‐termandImmediateService)

TheaimofthisModuleistoenhanceglobalATMdecisionmakinginthefaceofhazardousmeteorologicalconditionsinthecontextofdecisionsthatshouldhaveanimmediateeffect.ThisModulebuildsupontheinitialinformationintegrationconceptandcapabilitiesdevelopedunderB1‐AMET.Keypointsarea)tacticalavoidanceofhazardousmeteorologicalconditionsinespeciallythe0‐20minutetimeframe;b)greateruseofaircraftbasedcapabilitiestodetectmeteorologicalparameters(e.g.turbulence,winds,andhumidity);andc)displayofmeteorologicalinformationtoenhancesituationalawareness.ThisModulealsopromotesfurthertheestablishmentofstandardsfortheglobalexchangeoftheinformation.

Applicability

Applicabletoairtrafficflowplanning,en‐routeoperations,terminaloperations(arrival/departure)andsurface.AircraftequipageisassumedintheareasofADS‐BIN/CDTI,aircraftbasedmeteorologicalobservations,andmeteorologicalinformationdisplaycapabilities,suchasEFBs.

B3‐NOPS TrafficComplexityManagement

Introductionofcomplexitymanagementtoaddresseventsandphenomenathataffecttrafficflowsduetophysicallimitations,economicreasonsorparticulareventsandconditionsbyexploitingthemoreaccurateandrichinformationenvironmentofSWIM‐basedATM.Benefitswillincludeoptimizedusageandefficiencyofsystemcapacity.

Applicability

Regionalorsub‐regional.Benefitsareonlysignificantoveracertaingeographicalsizeandassumethatitispossibletoknowandcontrol/optimizerelevantparameters.Benefitsmainlyusefulinthehigherdensityairspace.

Page 82: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-82-

PerformanceImprovementArea4:EfficientFlightPaths

B3‐TBO Full4DTrajectory‐basedOperations

Thedevelopmentofadvancedconceptsandtechnologies,supportingfourdimensionaltrajectories(latitude,longitude,altitude,time)andvelocitytoenhanceglobalATMdecisionmaking.Akeyemphasisisonintegratingallflightinformationtoobtainthemostaccuratetrajectorymodelforgroundautomation.

Applicability

Applicabletoairtrafficflowplanning,en‐routeoperations,terminaloperations(approach/departure),andarrivaloperations.Benefitsaccruetobothflowsandindividualaircraft.Aircraftequipageisassumedintheareasof:ADS‐BIN/CDTI;datacommunicationandadvancednavigationcapabilities.Requiresgoodsynchronizationofairborneandgrounddeploymenttogeneratesignificantbenefits,inparticulartothoseequipped.Benefitincreaseswithsizeofequippedaircraftpopulationintheareawheretheserviceareprovided.

B3‐RPAS RemotelyPilotedAircraft(RPA)TransparentManagement

Continuingtoimprovethecertificationprocessforremotelypilotedaircraft(RPA)inallclassesofairspace,workingondevelopingareliablecommandandcontrol(C2)link,developingandcertifyingairbornedetectandavoid(ABDAA)algorithmsforcollisionavoidance,andintegrationofRPAintoaerodromeprocedures.

Applicability

AppliestoallRPAoperatinginnon‐segregatedairspaceandataerodromes.Requiresgoodsynchronizationofairborneandgrounddeploymenttogeneratesignificantbenefits,inparticulartothoseabletomeetminimumcertificationandequipmentrequirements.

Page 83: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-83-

Appendix3:HyperlinkedOnlineSupportDocumentation

The2013–2028GANPcontainsorissupportedbypolicyandtechnicalinformationthatcanbeusedateveryleveloftheaviationcommunity.ThisincludestechnicalprovisionsdescribingtheASBUModulesandthetechnologyroadmaps,trainingandpersonnelconsiderations,cooperativeorganizationalaspects,cost‐benefitanalysesandfinancingconcerns,environmentalprioritiesandinitiatives,andintegratedplanningsupport.

Thesedynamicand‘living’GANPsupportcomponentswillbehyperlinkedasonlinePDFsontheICAOpublicwebsitethroughoutthe2013–2028applicabilityperiod.

UndertheauthorityoftheICAOCouncilandAssembly,theGANP’swideavailability,accuracy,andreview/updateprocessesnowprovideICAOMemberStatesandindustrystakeholderswiththeconfidencethattheplancanandwillbeusedeffectivelytodirectrelevantdevelopmentsandimplementationsasrequiredtoachieveglobalATMinteroperability.

HyperlinkedOnlineTechnicalSupportProvisions

TheGANP’sASBUmethodologyandsupportingtechnologyroadmapsarehyperlinkedtocomprehensivetechnicalmaterialsthatcomprisetheessentialrationalesandcharacteristicsoftheGANP.ThesematerialshavebeendevelopedthroughICAOConferencesandSymposia,inadditiontodedicatedpanelsandworkinggroups,allofwhichhavefeaturedtheactiveandwide‐rangingparticipationofStateandindustryexperts.

ThetechnicalsupportattachmentsoftheGANPcanbeaccessedthroughthemainPDFdocumentasshownbelow:

Page 84: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-84- Fig.11:MappingofthehyperlinkedtechnicalcontentsupportingtheASBUModulesandtechnologyroadmaps.

Page 85: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-85-

LinkagewithThirdEditionGANP

Althoughtheyintroduceanewplanningframeworkwithincreaseddefinitionandbroadtimelines,theGANP’sBlockUpgradesareconsistentwiththeThirdEditionoftheGANP’splanningprocessencompassingnear‐term,mid‐termandlong‐termglobalplaninitiatives(GPIs).ThisconsistencyhasbeenretainedtoensurethesmoothtransitionfromtheformerplanningmethodologytotheBlockUpgradeapproach.

OneofthecleardistinctionsbetweentheThirdEditionGANPandnewFourthEditionGANPisthattheconsensus‐drivenASBUmethodologynowprovidesmoreprecisetimelinesandperformancemetrics.

Thispermitsthealignmentofplanningonconcrete,sharedoperationalimprovementsthatarereferencedtotheGPIsinthethirdeditionoftheGANPinordertopreserveplanningcontinuity.

InadditiontothecomprehensiveonlinetechnicalcontentsupportingtheASBUModulesandtechnologyroadmaps,ICAOhasalsopostedessentialbackgroundguidancematerialsthatwillassistStatesandstakeholderswithmattersofpolicy,planning,implementationandreporting.

AlargeamountofthiscontenthasbeenderivedfromtheappendicesintheThirdEditionoftheGANP,asillustratedinthetablebelow:

Page 86: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-86- Fig.12:OnlineDocumentationSupportingPolicy,Planning,ImplementationandReporting.Thefarrightcolumnindicatescontinuitytie‐inswiththematerialintheAppendicesoftheThirdEditionoftheGANP.

GANP Content Type Policy Planning Implementation Reporting

Hyperlinked Online Supporting Documentation Financing & Investment Ownership & Governance Models Legal Considerations Environmental Benefits Integrated ATM Planning Module Technical Provisions Environmental Benefits Skilled Personnel & Training ICAO SARP/PANS Outlook Air Navigation Report Form PIRG Organizational Structures

Reference from GANP Third Edition Appendixes E,F,G Appendix G Appendix C Appendix H Appendixes A, I GPIs Appendix H Appendix B

Page 87: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-87-

Appendix4:FrequencySpectrumConsiderations

Frequencyspectrumavailabilityhasalwaysbeencriticalforaviationandisexpectedtobecomeevenmorecriticalwiththeimplementationofnewtechnologies.Inadditiontothefivetechnologyroadmapspertainingtocommunication,navigation,surveillance(CNS),informationmanagement(IM)andavionics,aglobalaviationspectrumstrategyforthenear‐,medium‐andlong‐termmustsupportimplementationoftheGANP.

Along‐termstrategyforestablishingandpromotingtheICAOpositionforInternationalTelecommunicationUnionWorldRadiocommunicationConferences(ITUWRCs)wasadoptedbytheICAOCouncilin2001.ThestrategyprescribesthedevelopmentofanICAOpositionontheindividualissuesdetailedintheagendaofanupcomingWRC,developedinconsultationwithallICAOMemberStatesandrelevantinternationalorganizations.ThestrategyalsoincludesadetailedICAOpolicyontheuseofeachandeveryaeronauticalfrequencyband.Thepolicyisapplicabletoallfrequencybandsusedforaeronauticalsafetyapplications.AnoverallpolicyandasetofindividualpolicystatementsforeachaviationfrequencybandcanbefoundinChapter7oftheHandbookonRadioFrequencySpectrumRequirementsforCivilAviation,includingtheStatementofApprovedICAOPolicies(Doc9718).

BoththepositionandthepolicyareupdatedaftereachWRCandapprovedbytheICAOCouncil.ThestrategyfordevelopingthepositionandpolicycanpresentlybefoundinAttachmentEtoDoc9718.

TheICAOpositionandpolicyfortheITUWRChorizonextendsbeyondthe15‐yeartimeframeofthecurrentGANPandanticipatesthedevelopmentofthefutureaviationsystem.However,basedontheoutcomeofWRC12,theASBUModulesandthetechnologyroadmaps,anupdateofthestrategyforfrequencyspectrumwillbemanagedbyICAOtoanticipatechangesanddefinesafemechanismsforredundancybetweenessentialcomponentsofthefutureAirNavigationsystem.

FutureAviationSpectrumAccess

Duetotheconstraintsspecifictofrequencyallocationssuitabletosupportsafety‐of‐lifecriticalservices,littlegrowthisforeseenintheoverallsizeofaeronauticalallocationsinthelongerterm.However,itisvitalthatconditionsremainstableintheexistingfrequencybands,tosupportcontinuedandinterferencefreeaccesstosupportcurrentaeronauticalsafetysystemsforaslongasrequired.

Similarly,itisvitaltomanagethelimitedaviationspectrumresourceinamannerwhicheffectivelysupportstheintroductionofnewtechnologieswhenavailable,inlinewiththeASBUModulesandthetechnologyroadmaps.

Inthelightofeverincreasingpressureonthefrequencyspectrumresourceasawhole,includingaeronauticalfrequencyspectrumallocations,itisimperativethatcivilaviationauthoritiesandotherstakeholdersnotonlycoordinatetheaviationpositionwiththeirState’sradioregulatoryauthorities,butalsoactivelyparticipateintheWRCprocess.

FrequencyspectrumwillremainascarceandessentialresourceforAirNavigationasmanyBlockUpgradeswillrequireincreasedair‐grounddatasharingandenhancednavigationandsurveillancecapabilities.

Page 88: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-88-

Appendix5:TechnologyRoadmaps

TheroadmapsillustratedinthisAppendixhavebeendesignedtodepict:

a) NewandlegacytechnologiesneededtosupporttheblockModules:

1) Modulesthatrequirethetechnologyareshowninblack.

2) Modulesthataresupportedbythetechnologyareshowningrey.

b) ThedatebywhichatechnologyisneededtosupportablockanditsModules.

c) Theavailabilityofatechnology(ifitprecedestheblock).

Foreaseofreference,CNS,IMandavionicsroadmapshavebeendividedonthefollowingbasis:

a) Communication:

1) Air‐grounddatalinkcommunication.

2) Ground‐groundcommunication.

3) Air‐groundvoicecommunication.

b) Surveillance:

1) Surfacesurveillance.

2) Ground‐basedsurveillance.

3) Air‐to‐airsurveillance.

c) Navigation:

1) Dedicatedtechnology.

2) Performance‐basednavigation.

d) InformationManagement.

1) SWIM

2) Other

e) Avionics:

1) Communications.

2) Surveillance.

3) Navigation.

4) Aircraftsafetynets.

5) Onboardsystems.

Page 89: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-89-

Fig.13:ExplanationofTechnologyRoadmapformat.

Communication

Air‐grounddatalinkservicesfallintotwobasiccategories:

• Safety‐relatedATSserviceswhereperformancerequirements,procedures,servicesandsupportingtechnologyarestrictlystandardizedandregulated,

• Information‐relatedserviceswhereperformancerequirements,proceduresandsupportingtechnologyarelesscritical.

Ingeneral,theenablers(linkmediatechnologies)willbedevelopedanddeployedbasedontheneedtosupportsafety‐relatedATSservices.

ToprepareforBlock3,researchanddevelopmentisneededintheBlocks1and2timeframes;therearethreeareasofinvestigationwherestandardsarebeingdeveloped:

• Airports–aground‐basedhighcapacityairportsurfacedatalinksystemiscurrentlyunderdevelopment.TheAeronauticalMobileAirportCommunicationsSystem(AeroMACS)isbasedonIEEE802.16/WiMAXstandard).

• SATCOM–anewsatellitebaseddatalinksystemtargetedatoceanicandremoteregions.Thislinkmayalsobeusedincontinentalregionsasacomplementtoterrestrialsystems.ThiscouldbeadedicatedATSSATCOM(e;g;EuropeanESAIrisinitiative)systemoramulti‐modecommercialsystem(e.g.InmarsatSwiftBroadband,Iridium).

• Terrestrial(terminalanden‐route)–aground‐baseddatalinksystemforcontinentalairspaceiscurrentlyunderinvestigation.ThishasbeentermedtheaeronauticalL‐banddigitalaeronauticalcommunicationssystem(LDACS).

Technology Area Modules Technology Supporting Modules Date of Technology Availability (Earliest possible implementation) Date when Technology Needed for Block

Page 90: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-90- Inaddition,studiesareneededtoa)reviewtheroleofvoicecommunicationsinthelong‐termconcept(primarilydatacentric);andtob)considertheneedtodevelopanewappropriatedigitalvoicecommunicationsystemforcontinentalairspace.

Roadmap1‐intheBlock0timeframe:

Enablers:

• Aviationwillrelyonexistingcommunicationssystems,i.e.VHFACARSandVDLMode2/ATNincontinentalareas.

• VHFACARSwillbetransitionedtowardsVDLMode2AOA(i.e.providinghigherbandwidth)sinceVHFchannelshavebecomeaveryscarceresourceinseveralregionsoftheworld.

• SATCOMACARSwillcontinuetobeusedinOceanicandremoteregions.

Services:

• DatalinkserviceimplementationisunderwayinOceanic,En‐RouteairspaceandatmajorAirports(FANS1/Aand/orICAOATNbased–ATNB1).Today’sdatalinkserviceimplementationstodayarebasedondifferentstandards,technologyandoperationalprocedures,althoughtherearemanysimilarities.ThereisaneedtoconvergequicklytoacommonapproachbaseduponICAOapprovedstandards.Thecommonglobalguidancematerialcontinuestobedeveloped,namelythe“GlobalOperationalDataLinkDocument”‐GOLD.

• Informationservicessuchasairlineoperationalcommunications(AOC)arecarriedbyaircraftforcommunicationwithairlinecompanyhostcomputers.Theair‐groundcommunicationsmedia(suchasVDLMode2)aresharedwiththesafetyrelatedservicesduetocostandavionicslimitations.

Roadmap1‐intheBlocks1and2timeframe:

Enablers:

• ATSserviceswillcontinuetoexploitexistingtechnologytomaximizereturnoninvestment,henceVDLMode2/ATNwillcontinuetobeusedforconvergeddatalinkservicesincontinentalareas.Newserviceprovidersmayenterthemarket(mainlyforserviceinoceanicandremoteareas),providedtheymeettheATSservicerequirements.

• AOCmaybegintomigratetowardsnewtechnologiesatairportsandintheen‐routeenvironment(e.g.AeroMACSatairportsandexistingcommercialtechnologylike4Gelsewhere)astheybecomecommerciallyattractive.Thismayalsoapplytosomeinformation‐basedATS.

• VHFACARSwillbephasedoutgivingwaytoVDLMode‐2.

• HFACARSwillalsobephasedoutanditseemslogicalthattheaeronauticaltelecommunicationnetwork(ATN)willbeadaptedtosupportHFdatalink.

Page 91: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-91-

Services:

• Animportantgoalistoharmonizetheregionaldatalinkimplementationsthroughacommontechnicalandoperationalstandard,applicabletoallflightregionsintheworld.TheRTCASC214andEUROCAEWG78havebeenestablishedtodevelopcommonsafety,performanceandinteroperabilitystandardsforthisnextgenerationofATSdatalinkservices(ATNB2)forbothcontinentalandOceanicandremoteregions.TheseStandards,supportedbyvalidationresults,willbereadybytheendof2013,tobefollowedbyacomprehensivevalidationphaseandwillbeavailableforimplementationinsomeregionsfrom2018.Thesestandardswillformthebasisofdatalinkservicesforthelongtermandwillsupportthemovetowardstrajectorybasedoperations.

• Asavionicsevolve,newhighvolumeinformationservicessuchasweatheradvisories,mapupdatesetc.willbecomepossible.Theseservicescouldtakeadvantageofnewcommunicationtechnologythatcouldbedeployedatsomeairportsandinsomeen‐routeairspace,thismaybeseenasthebeginningofair‐groundSWIM.ThesenewdatalinkservicescouldbeeitherAOCorATS.Inmanycasesthesewillnotneedthesamelevelsofperformanceasstrictlysafety‐relatedATSservicesandcouldthereforemakeuseofcommerciallyavailablemobiledataservices,thusreducingtheloadontheinfrastructuresupportingthesafety‐relatedATSservices.

Roadmap1‐intheBlock3timeframe:

Enablers

• Datalinkwillbecometheprimarymeansofcommunication.Insuchadata‐centricsystem,voicewillbeusedonlyinexceptional/emergencysituations;increaseddatalinkperformance,availabilityandreliability,supportinggreaterlevelsofsafetyandcapacity.

• ForOceanicandremoteregions,itisexpectedthatthemigrationfromHFtoSATCOMwillbecompletedbytheBlock3timeframe.

Services:

• theATMTargetConceptisa‘net‐centric’operationbasedonfull4Dtrajectorymanagementwithdatalink(basedonATNBaseline2)usedastheprimemeansofcommunication,replacingvoiceduetoitsabilitytohandlecomplexdataexchanges.Insuchadata‐centricsystem,voicewillbeusedonlyinexceptional/emergencysituations.

Fullair‐groundSWIMserviceswillbeusedtosupportadvanceddecisionmakingandmitigation.SWIMwillallowaircrafttoparticipateincollaborativeATMprocessesandprovideaccesstorichvoluminousdynamicdataincludingmeteorology.Commercialinformation‐basedservicestocompaniesandpassengersmayalsobeimplementedusingthesametechnology.

Page 92: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-92- Roadmap1:

Domain: Communication

Component(s): Air‐groundDataCommunication

‐Enablers(LinkMediaTechnology)

‐Services

Page 93: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-93-

Roadmap2‐intheBlock0timeframe:

Enablers:

• IPnetworkswillcontinuetobedeployed.ExistingIPV4systemswillbegraduallyreplacedbyIPV6.

• Untilnow,inter‐centrevoiceATMcommunicationsweremainlybasedonanalogue(ATS‐R2)anddigital(ATS‐QSIG)protocols.Amovehasbeguntoreplaceground‐groundvoicecommunicationswithvoiceoverIP(VoIP).

• Air‐GroundVoicecommunicationswillremainon25kHzVHFchannelsincontinentalregions(note:8.33kHzVHFvoicechannelswillcontinuetobedeployedinEurope).MigrationfromHFtoSATCOMinOceanicandremoteregionsisexpectedduringthistime.

Services:

• Twomajorground‐groundcommunicationsserviceswillbeinoperation:

‐ ATSmessagingoperatingoverAFTN/CIDINand/orAMHSinsomeareas.

‐ Airtrafficserviceinter‐facilitydatacommunications(AIDC)forflightco‐ordinationandtransfer.

• ATSmessagingisusedworldwideforthecom‐municationofflightplans,MET,NOTAMSetc.overAFTN/CIDINtechnology.MigrationtowardsAMHS(directory,storeandforwardservices)overIP(orusingATNinsomeregions)willprogressinallregions.

• AIDCisusedtoprovideinter‐centrecoordinationandtransferofaircraftbetweenadjacentairtrafficcontrolunits.Migrationfromlegacydatanetwork(e.g.X25)toIPdatanetworkisprogressinginvariousregions.

• ThebeginningsofSWIMwillstarttoappear.OperationalserviceswillbeofferedbysomeSWIMpioneerimplementationsoverIP,SurveillancedatadistributionandMETdatawillalsobedistributedoverIP.MigrationtoDigitalNOTAMwillstartinEuropeandtheU.S.

Roadmap2‐intheBlocks1and2timeframe:

Enablers:

• Traditionalground‐groundvoicecommunicationswillcontinuetomigratetoVoIP.Themigrationisexpectedtobecompletein2020.

• DigitalNOTAMandMET(usingtheAIXMandWXXMdataexchangeformats)willbewidelyimplementedoverIPnetworks.

• FIXMwillbeintroducedastheglobalstandardforexchangingflightdata.

• Toprepareforthelongterm,researchanddevelopmentisneededinthemediumtermfornewsatelliteandterrestrialbasedsystems.Voicecommunicationswillremainon25kHzVHFchannelsincontinentalregions(note:8.33kHzVHFvoicechannelsdeploymentinEurope).

Page 94: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-94- Services:

• ATSmessagingwillmigratetoAMHSsupportedbydirectoryfacilitiesthatwillincludesecuritymanagement.AIDCserviceswillfullymigratetowardsusingIPnetworks.

• Initial4Dair‐groundserviceswillrequireground‐groundinter‐centretrajectoryandclearanceco‐ordinationviaAIDCextensionsornewflightdataexchangescompatiblewiththeSWIMframework.

• SWIMSOAserviceswillmatureandexpandpublish/subscribeandrequest/replyservicesinparalleltothemoretraditionalmessagingservicesbasedonAMHSbutbothwillusetheIPnetwork.

Roadmap2‐intheBlock3timeframe:

Itisquitelikelythatfuturedigitalsystemswillbeusedtocarryvoice.Wheresatellitecommunicationsareused,itwillmostlikelybeviathesamesystemsusedtosupportair‐grounddatalink.Intheterrestrialenvironment,itisnotclearwhetherLDACSwillbeusedtocarrythistrafficoraseparatevoicesystemwillbeused.ThiswillneedtobethesubjectofR&DeffortsintheBlocks1and2timeframes.

Page 95: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-95-

Roadmap2:

Domain: Communication

Component(s): Ground‐groundcommunication Air‐groundvoicecommunication

‐Enablers ‐Enablers(LinkMediaTechnology)

‐Services

Page 96: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-96- Surveillance

Theimportanttrendsofthenext20yearswillbethat:

a) Differenttechniqueswillbemixedinordertoobtainthebestcostbenefitdependingonlocalconstraints.

b) Cooperativesurveillancewillusetechnologiescurrentlyavailableusing1030/1090MHzRFbands(SSR,Mode‐S,WAMandADS‐B).

c) Whilerefinementstocapabilitiesmaybeidentified,itisexpectedthatthesurveillanceinfrastructurecurrentlyforeseencouldmeetallthedemandsplaceduponit.

d) Theairbornepartofthesurveillancesystemwillbecomemoreimportantandshouldbe“futureproof”andgloballyinteroperableinordertosupportthevarioussurveillancetechniqueswhichwillbeused.

e) Therewillbegrowinguseofdownlinkedaircraftparametersbringingthefollowingadvantages:

1) Clearpresentationofcall‐signandlevel.

2) Improvedsituationalawareness.

3) Useofsomedown‐linkedaircraftparameters(DAPs)and25ftaltitudereportingtoimproveradartrackingalgorithms.

4) Displayofverticalstacklists.

5) Reductioninradiotransmission(controllerandpilot).

6) Improvemanagementofaircraftinstacks.

7) Reductionsinlevelbusts.

f) Functionalitywillmigratefromthegroundtotheair.

Roadmap3‐intheBlock0timeframe:

• Therewillbesignificantdeploymentofcooperativesurveillancesystems:ADS‐B,MLAT,WAM

• Groundprocessingsystemswillbecomeincreasinglysophisticatedastheywillneedtofusedatafromvarioussourcesandmakeincreasinguseofthedataavailablefromaircraft.

• Surveillancedatafromvarioussourcesalongwithaircraftdatawillbeusedtoprovidebasicsafetynetfunctions.

• ThebeginningsofSWIMwillstarttoappear.OperationalserviceswillbeofferedbysomeSWIMpioneerimplementationsoverIP,SurveillancedatadistributionandMETdatawillalsobedistributedoverIP.MigrationtoDigitalNOTAMwillstartinEuropeandtheU.S.

Page 97: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-97-

Roadmap3‐intheBlock1timeframe:

• Deploymentofcooperativesurveillancesystemswillexpand.

• Cooperativesurveillancetechniqueswillenhancesurfaceoperations.

• Additionalsafetynetfunctionsbasedonavailableaircraftdatawillbedeveloped.

• Itisexpectedthatmulti‐staticprimarysurveillanceradar(MPSR)willbeavailableforATSuseanditsdeploymentwillprovidesignificantcostsavings.

• Remoteoperationofaerodromesandcontroltowerswillrequireremotevisualsurveillancetechniques,providingSituationalawareness,thiswillbesupplementedwithgraphicaloverlayssuchastrackinginformation,weatherdata,visualrangevaluesandgroundlightstatusetc.

Roadmap3‐intheBlock2timeframe:

• ThetwindemandsofincreasedtrafficlevelsandreducedseparationwillrequireanimprovedformofADS‐B.

• Primarysurveillanceradarwillbeusedlessandlessasitisreplacedbycooperativesurveillancetechniques.

Roadmap3‐intheBlock3timeframe:

• CooperativesurveillancetechniqueswillbedominantasPSRusewillbelimitedtodemandingorspecializedapplications.

Page 98: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-98- Roadmap3:

Domain: Surveillance

Component(s): Ground‐basedsurveillance Surfacesurveillance

‐Enablers ‐Enablers

‐Capabilities ‐Capabilities

Page 99: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-99-

Roadmap4‐intheBlock0timeframe:

• BasicairbornesituationalawarenessapplicationswillbecomeavailableusingADS‐BIN/OUT(ICAOVersion2)

Roadmap4‐intheBlock1timeframe:

• Advancedsituationalawarenessapplicationswillbecomeavailable,againusingADS‐BIN/OUT(ICAOVersion2).

Roadmap4‐intheBlock2timeframe:

• ADS‐Btechnologywillbegintobeusedforbasicairborne(delegated)separation.

• ThetwindemandsofincreasedtrafficlevelsandreducedseparationwillrequireanimprovedformofADS‐B.

Roadmap4‐intheBlock3timeframe:

• TheADS‐BtechnologywhichsupportedBlock2willbeusedforlimitedself‐separationinremoteandoceanicairspace.

Page 100: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-100- Roadmap4:

Domain: Surveillance

Component(s): Air‐airsurveillance

‐Enablers

‐Capabilities

Page 101: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-101-

Navigation

NavigationconceptssuchasRNAV,RNPandPBNprovidearangeofoptionsfortheuseofnavigationtechnology.Astheseareverymuchdependentonlocalrequirements,thissectionwillprovideanarrativedescriptionoftheconsiderationsfortheuseofnavigationtechnology.

GNSSinfrastructure

GNSSisthecoretechnologythathasledtothedevelopmentofPBN.Itisalsothebasisforfutureimprovementsinnavigationservices.ThecorehistoricalconstellationsGPSandGLONASShavebeeninoperationsforwelloveradecade,andSARPsinsupportofaviationoperationsareinplace.Asaresult,aviationusageofGNSSiscurrentlywidespread.GPSandGLONASSarebeingupgradedtoprovideserviceonmultiplefrequencybands.Othercoreconstellations,namelytheEuropeanGalileoandChina’sBeidouarebeingdeveloped.Multi‐constellation,multi‐frequencyGNSShascleartechnicaladvantagesthatwillsupporttheprovisionofoperationalbenefits.Torealizethesebenefits,ICAO,States,ANSPs,standardsbodies,manufacturersandaircraftoperatorsneedtocoordinateactivitiestoaddressandresolverelatedissues.

SBASbasedonGPSisavailableinNorthAmerica(WAAS),Europe(EGNOS),Japan(MSAS)andwillsoonbeavailableinIndia(GAGAN)andRussia(SDCM).SeveralthousandSBASapproachproceduresarenowimplemented,mostlyinNorthAmerica,whileotherregionshavestartedpublishingSBAS‐basedprocedures.SBAStypicallysupportsAPVoperations,butcanalsosupportprecisionapproach(CategoryI)operations.However,itischallengingforSBAStosupportprecisionapproachoperationsinequatorialregionsusingsingle‐frequencyGPSbecauseofionosphericeffects.

GBASCATIbasedonGPSandGLONASSisavailableinRussiaand,basedonGPS,onsomeairportsinseveralStates.SARPsforGBASCATII/IIIareunderoperationalvalidation.RelatedresearchanddevelopmentactivitiesareongoingindifferentStates.ItisalsochallengingforGBAStosupportahighavailabilityofprecisionapproach,inparticularinequatorialregions.

Conventionalnavigationaids(VOR,DME,NDB,ILS)areinwidespreaduseglobally,andmostaircraftareequippedwiththerelevantavionics.ThevulnerabilityofGNSSsignalstointerferencehasledtotheconclusionthatthereisaneedtoretainsomeconventionalaidsoralternativenavigationservicesolutionasaback‐uptoGNSS.

MitigatingtheoperationalimpactofaGNSSoutagewillrelyprimarilyontheuseofotherconstellationsignalsoremployingpilotand/orATCproceduralmethods,whiletakingadvantageofon‐boardinertialsystemsandspecificconventionalterrestrialaids.InthecaseofageneralGNSSoutageinanarea,reversiontoconventionalsystemsandprocedureswouldresultinlowerservicelevelsandapossibledecreaseincapacity.Inthecaseoflossofsignalsfromaspecificconstellation,thereversiontoanotherconstellationcouldallowmaintainingthesamePBNlevel.

TheimplementationofPBNwillmakeareanavigationoperationsthenorm.DMEisthemostappropriateconventionalaidtosupportareanavigationoperations(i.e.assumingDMEmultilaterationonboardcapability),sinceitiscurrentlyusedinmulti‐sensoravionicsforthispurpose.ThiscouldresultinanincreaseinthenumberofDMEinstallationsinsomeregions.Similarly,ILSremainingwidelyused,willprovide,whereavailable,analternateapproachandlandingcapabilityincaseofGNSSoutage.

Roadmap5depictstheexpectedevolutionofnavigationinfrastructureandavionics.

CurrentNavigationInfrastructure

ThecurrentnavigationinfrastructurecomprisingVOR,DMEandNDBnavigationbeaconswasinitiallydeployedtosupportconventionalnavigationalongroutesalignedbetweenVORandNDBfacilities.Astrafficlevelsincreased,newrouteswereimplementedwhichinmanycasesnecessitatedadditionalnavigationfacilitiestobeinstalled.

Page 102: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-102- Asaresult,navigationaiddeploymenthasbeendrivenbyeconomicfactorsandhasledtoanon‐uniformdistributionofnavigationaidswithsomeregions,notablyNorthAmericaandEurope,havingahighdensityofnavigationaidswithmanyotherregionshavingalowdensity,andsomeareashavingnoterrestrialnavigationinfrastructureatall.

TheintroductionofRNAVinthelastdecadeshasledtosettingupnewregionalroutenetworksthatnolongerreliedontheseconventionalnavaidsinfrastructurethusallowingwiderflexibilitytotailortheroutenetworktothetrafficdemandThisessentialmovehasclearlystoppedthedirectlinkbetweenthegroundbasednavaidsandtheroutenetworkinthebusiestairtrafficregions.

Withthecontinuousevolutionofaircraftnavigationcapabilitythroughperformance‐basednavigation,andthewidespreaduseofGNSSpositioning,regionsofhightrafficdensitynolongerneedahighdensityofnavigationaids.

FutureTerrestrialInfrastructureRequirements

TheICAOGANPhastheobjectiveofafutureharmonizedglobalnavigationcapabilitybasedonareanavigation(RNAV)andperformance‐basednavigation(PBN)supportedbyglobalnavigationsatellitesystem(GNSS).

TheoptimisticplanningthatwasconsideredatthetimeoftheEleventhAirNavigationConferenceforallaircrafttobeequippedwithGNSSCapabilityandforotherGNSSconstellationstobeavailable,togetherwithdualfrequencyandmulti‐constellationavionicscapabilitybeingcarriedbyaircrafthavenotbeenrealized.

ThecurrentsinglefrequencyGNSScapabilityprovidesthemostaccuratesourceofpositioningthatisavailableonaglobalbasis.WithsuitableaugmentationasstandardizedwithinICAOAnnexes,SinglefrequencyGNSShasthecapabilitytosupportallphasesofflight.ThecurrentGNSShasanextremelyhighavailability,althoughitdoesnothaveadequateresiliencetoanumberofvulnerabilities,mostnotablyradiofrequencyinterferenceandsolareventscausingionosphericdisturbances.

UntilmultipleGNSSconstellationsandassociatedavionicsareavailable,itisessentialthatasuitablydimensionedterrestrialnavigationinfrastructureisprovidedwhichiscapableofmaintainingsafetyandcontinuityofaircraftoperations.

TheFANSreportfromApril1985stated:

“Thenumberanddevelopmentofnavigationalaidsshouldbereviewedwiththeaimofprovidingamorerationalandmorecost‐effectivehomogeneousnavigationenvironment.”

ThecurrentstatusofaircraftequipageforPBNoperationssupportedbyGNSSandterrestrialnavigationaids,togetherwiththeavailabilityoftheICAOPBNManualandtheassociateddesigncriteriaprovidethenecessarybaselinetocommencetheevolutiontothehomogeneousnavigationenvironmentenvisagedwithintheFANSReport.

InfrastructureRationalizationPlanning

Ithadinitiallybeenexpectedthattherationalizationofthelegacynavigationinfrastructurewouldhavebeenaconsequenceofa‘topdown’processwheretheimplementationofPBNandGNSSwithinvolumesofairspacewouldresultinnavigationaidsbeingmadetotallyredundantsotheycouldbesimplybeswitchedoff.

AllstakeholdersgenerallyagreethatPBNis‘therightthingtodo’andalthoughPBNoffersthecapabilitytointroducenewrouteswithoutadditionalnavigationaids,itremainsdifficulttojustifythecaseforwholescaleimplementationofPBNwithinavolumeofairspace,unlesstherearecapacityorsafetyissuestobeaddressed.

ManyStateshaveutilizedPBNtoimplementadditionalroutesastheyarerequiredtosecuregainsincapacityandoperationalefficiencies.ThishasresultedinvolumesofairspacewhichcontainacombinationofnewPBNroutesandexistingconventionalroutes.

Page 103: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-103-

Itisnowclearthatfornumerousreasonswhichincludebeingunabletoestablishapositivebusinesscaseforalargescaleairspaceredesign,a‘top‐down’PBNimplementationfollowedbyinfrastructurerationalizationwilltakemanyyearstocomplete,ifever.

Asanalternativestrategy,abottom‐upapproachshouldbeconsideredasattheendofeachnavigationaid’seconomiclife,anopportunityexiststoconsiderifalimitedPBNimplementationtoalleviatetheneedforthereplacementofthefacilityismorecosteffectivethanreplacementofthenavigationaid.

Thereplacementcostopportunityonlypresentsitselfifthenavigationaidisfullydepreciatedandreplacementisconsidered:itthereforearisesona20‐25yearcycle.Inordertorealizeanycostsaving,rationalizationopportunitiesneedtobeidentifiedandthenecessaryroutechangesplannedandimplementedtoenablethefacilitiestobedecommissionedattheendoftheirlifetime.

ThisbottomupapproachtorationalizationalsoprovidesacatalysttostarttheairspacetransitiontoaPBNenvironment,facilitatingfuturechangestooptimizeroutestodelivergainsinefficiencysuchasshorterroutingsandlowerCO2emissions.

Inplanningfortherationalizationofnavigationinfrastructure,itisessentialthatallstakeholders’needsandoperationalusesoftheinfrastructureareconsidered.TheseneedsarelikelytoextendbeyondtheinstrumentflightproceduresandroutespromulgatedintheStateCivilAeronauticalInformationPublicationandmayalsoincludemilitaryinstrumentflightprocedures,aircraftoperationalcontingencyproceduressuchasenginefailureontake‐off,andusedforVOR‐basedseparationsinproceduralairspaceasdetailedinICAODoc4444.

Page 104: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-104- Roadmap5:

Domain: Navigation

Component(s): Enablers Capabilities

‐Conventional ‐PBN

‐Satellite‐based ‐Precisionapproach

Page 105: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-105-

Performance‐basedNavigation

TheroadmapsabovedepictmigrationpathsfortheimplementationofPBNlevelsandprecisionapproachesforthefollowingoperations:enrouteoceanicandremotecontinental,enroutecontinental,TMAarrival/departure,andapproach.ThereisnoattempttoshowdetailedtimelinesbecauseregionsandStateswillhavedifferentrequirements;somemayneedtomovequicklytothemostdemandingPBNspecificationwhileotherswillbeabletosatisfyairspaceusers’requirementswithabasicspecification.ThefiguresdonotimplythatStates/regionhavetoimplementeachstepalongthepathtothemostdemandingspecification.Doc9613‐PerformanceBasedNavigationManual‐providesthebackgroundanddetailedtechnicalinformationrequiredforoperationalimplementationplanning.

ThePBNManualidentifiesalargesetofnavigationapplications.Amongtheseapplications,onesub‐setistheRNPapplications.ItisimportanttorealizethattheimplementationofRNPapplicationswithinanairspacecontributesdefactotoare‐distributionofthesurveillanceandconformancemonitoringfunction.TheRNPconceptintroducesanintegritycheckofthenavigatedpositionataircraftlevelandallowstheautomaticdetectionofnon‐conformancetotheagreedtrajectorywhilethisfunctionistodaythefullresponsibilityofthecontroller.ThereforeRNPimplementationshouldprovideadditionalbenefitstotheATSUthatistraditionallyinchargeoftheconformancemonitoring.

Page 106: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-106- Roadmap6:

Domain: Performance‐basedNavigation(PBN)

Component(s): En‐route,OceanicandremotecontinentalEn‐routecontinentalTerminalairspace:arrivalanddepartureApproach

Page 107: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-107-

InformationManagement

AgoaloftheGlobalATMOperationalConceptisanet‐centricoperationwheretheATMnetworkisconsideredasaseriesofnodes–includingtheaircraft–providingorusinginformation.

Aircraftoperatorswithflight/airlineoperationalcontrolcentrefacilitieswillshareinformationwhiletheindividualuserwillbeabletodothesameviaapplicationsrunningonanysuitablepersonaldevice.ThesupportprovidedbytheATMnetworkwillinallcasesbetailoredtotheneedsoftheuserconcerned.

ThesharingofinformationoftherequiredqualityandtimelinessinasecureenvironmentisanessentialenablerfortheATMTargetConcept.ThescopeextendstoallinformationthatisofpotentialinteresttoATMincludingtrajectories,surveillancedata,aeronauticalinformation,meteorologicaldataetc.

Inparticular,allpartsoftheATMnetworkwillsharetrajectoryinformationinrealtimetotheextentrequired,fromthetrajectorydevelopmentphasethroughoperationsandpost‐operationactivities.ATMplanning,collaborativedecisionmakingprocessesandtacticaloperationswillalwaysbebasedonthelatestandmostaccuratetrajectorydata.TheindividualtrajectorieswillbemanagedthroughtheprovisionofasetofATMservicestailoredtomeettheirspecificneeds,acknowledgingthatnotallaircraftwill(orwillneedto)beabletoattainthesamelevelofcapabilityatthesametime.

System‐wideInformationManagement(SWIM)isanessentialenablerforATMapplications.ItprovidesanappropriateinfrastructureandensurestheavailabilityoftheinformationneededbytheapplicationsrunbythemembersoftheATMcommunity.Therelatedgeo/timeenabled,seamlessandopeninteroperabledataexchangereliesontheuseofcommonmethodologyandtheuseofasuitabletechnologyandcompliantsysteminterfaces.

TheavailabilityofSWIMwillmakepossiblethedeploymentofadvanceend‐userapplicationsasitwillprovideextensiveinformationsharingandthecapabilitytofindtherightinformationwherevertheprovideris.

Roadmap7‐intheBlock0timeframe:

• TheSWIMconceptofoperationswillbedevelopedandrefined.

Roadmap7‐intheBlock1timeframe:

• AninitialSWIMcapabilitysupportingground‐groundcommunicationswillbedeployed.

Roadmap7‐intheBlock2timeframe:

• TheaircraftwillbecomeanodeontheSWIMnetworkwithfullintegrationwiththeaircraftsystems.

Page 108: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-108- Roadmap7:

Domain: InformationManagement

Component(s): Systemwide‐informationmanagement(SWIM)

Page 109: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-109-

Needforacommontimereference

InmovingtowardstheGlobalATMOperationalconcept,andinparticular4DtrajectorymanagementandintensiveexchangesofinformationthroughSWIM,someofthecurrentprovisionsfortimemanagementmightnotbesufficientandcouldbecomeabarriertofutureprogress.

ThetimereferenceforaviationisdefinedtobetheCoordinatedUniversalTime(UTC).RequirementssurroundingaccuracyoftimeinformationdependonthetypeofATMapplicationwhereitisused.ForeachATMapplication,allcontributingsystemsandallcontributingusersmustbesynchronizedtoatimereferencethatsatisfiesthisaccuracyrequirement.

UTCisthecommontimereference,butthepresentrequirementsfortheaccuracywithwhichaviationclocksaresynchronizedtoUTCmaybeinsufficienttocoverfutureneeds.Thisrelatestotheintegrityandtimelinessofinformationortheuseofdependentsurveillanceforcloserseparations,aswellasmoregenerally4Dtrajectoryoperations.Systemrequirementsforsynchronizationusinganexternalreferencemustalsobeconsidered.

Ratherthandefininganewreferencestandard,theperformancerequirementforaccuracyhastobedefinedwithrespecttoUTCforeachsystemintheATMarchitecturethatreliesonacoordinatedtimerequirement.Differentelementsrequiredifferentaccuracyandprecisionrequirementsforspecificapplications.TheincreasedexchangeofdataonSWIMcreatesthenecessityofefficient‘timestamping’forautomatedsystemsthatareincommunicationwitheachother.Thetimeinformationshouldbedefinedatthesourceandincorporatedinthedistributeddata,withtheproperlevelofaccuracymaintainedaspartofthedataintegrity.

Roadmap8‐intheBlock0timeframe:

• SWIMwillstarttoappearinEuropeandtheU.S.

• Operationalserviceswillbesupportedbyserviceorientedarchitecture(SOA)pioneerimplementations.

• MeteorologicaldatawillalsobedistributedoverIP.

• MigrationtodigitalNOTAMwillcommenceandwillbecarriedoverIP.

Roadmap8‐intheBlocks1and2timeframe:

• DigitalNOTAMandMETinformationdistribution(usingtheAIXMandWXXMinformationexchangeformats)willbewidelyimplementedovertheSWIMnetwork.

• Flightobjectswillbeintroduced,improvinginter‐facilityco‐ordinationandprovidingmulti‐facilitycoordinationforthefirsttime.FlightobjectswillbesharedontheSWIMnetworkoveranIPbackboneandupdatedthroughSWIMsynchronizationservices.

• Themoretraditionalpoint‐to‐pointATSinterfacilitydatacommunication(AIDC)messageexchangewillstillcoexistforsometimewithSWIM.

• FlightInformationeXchangeModel(FIXM)willproposeaglobalstandardforexchangingflightinformation.

• MoregenerallyitisexpectedthatSWIMwillsupporttheimplementationofnewconceptssuchasvirtualATSfacilities,whichcontrolairspaceremotely.

Roadmap8‐intheBlock3timeframeandbeyond:

• FullSWIMdeploymentisexpectedallowingallparticipants,includingtheaircraft,tobeabletoaccessawiderangeofinformationandoperationalservicesincludingfull4D‐trajectorysharing.

• FullimplementationofflightobjectswillbeachievedastheFF‐ICEconceptisrealized.

Page 110: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-110- Roadmap8:

Domain: InformationManagement

Component(s): FlightandFlow AIS/AIM MET

‐Capabilities ‐Capabilities ‐Capabilities

‐Enablers ‐Enablers ‐Enablers

Page 111: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-111-

Avionics

Akeythemewiththeavionicsevolutionisthesignificantincreaseincapabilitythatispossiblethroughtheintegrationofvariousonboardsystems/functions.

Roadmap9‐intheBlock0timeframe:

• FANS2/BwillbeintroducedwhichsupportsDLIC,ACM,AMC,andACLservicesoverATN,thusprovidingbettercommunicationperformancethanFANS‐1/A.InthisfirststepwithdatalinkimplementationoverATN,ACLiscommonlyusedbyATCforthenotificationofvoicefrequencieschangestotheaircraft.ThemoreintegratedsolutionsprovideaconnectionbetweentheFANSandtheRadioCommunicationequipment.Thisintegrationenablestheautomatictransmissionandtuningofthesevoicefrequencies.

• TheexistingFANS‐1/Asystemwillcontinuetobeusedasthereisalargebaseofequippedaircraftanditalsosupportsbothcommunicationandnavigationintegration.

• Aircraftwillhaveatrafficcomputerhostingthe‘trafficcollisionavoidancesystem’,andpossiblythenewairtrafficsituationalawarenessfunctionsandairborneseparationassistancesystems.Thiscapabilityisexpectedtoundergosuccessiveimprovementsinordertomeettherequirementoflaterblocks.

Roadmap9‐intheBlock1timeframe:

• FANS3/CwithCNSintegration(viaATNB2)willbeavailableprovidingcommunicationandsurveillanceintegrationthroughaconnectionbetweentheFANSandNAV(FMS)equipment.ThisavionicsintegrationtypicallysupportstheautomaticloadingintheFMSofcomplexATCclearancestransmittedbydatalink.

• Surveillanceintegration(viaATNB2)willprovideanintegratedsurveillancethroughaconnectionbetweentheFANSequipmentandthetrafficcomputer.Thisavionicsintegrationtypicallysupportstheautomaticloading(withinthetrafficcomputer)ofASASmanoeuvrestransmittedbydatalink.

Roadmap9‐intheBlock2timeframe:

• AircraftaccesstoSWIMwillbeprovidedusingthevariousmeansdescribedintheroadmapforair‐grounddatalinkcommunications.

ThetwindemandsofincreasedtrafficlevelsandreducedseparationwillrequireanimprovedformofADS‐B.

Page 112: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-112- Roadmap9:

Domain: Avionics

Component(s): Communications&Surveillance

Page 113: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-113-

Roadmap10‐intheBlock0timeframe:

• FMSsupportingPBNrepresentsaflightmanagementsystemsupportingPBN,i.e.providingmultisensor(GNSS,DME,etc.)navigationandareanavigation,andqualifiedforRNAV‐xandRNP‐xoperations.

• INSwillcontinuetobeusedinconjunctionwithothernavigationsources.Navigationwillbeunderpinnedbythecapabilitytomergeandmanagenavigationdatafromvarioussources.

Roadmap10‐intheBlocks1and2timeframe:

• Airportnavigationintegration(viaATNB2)providesintegrationbetweentheFMSandtheairportnavigationsystemfunctiontoamongotherthingssupporttheautomaticloadingwithinthetrafficcomputerofATCtaxiclearancestransmittedbydatalink.

• Flightmanagementsystemcapabilitywillbeenhancedtosupportinitial4Dcapability.

• GNSS‐basedservicestodayrelyonasingleconstellation,theglobalpositioningsystem(GPS),providingserviceonasinglefrequency.Otherconstellations,i.e;theGLObalNAvigationSatelliteSystem(GLONASS),GalileoandBeiDouwillbedeployed.Allconstellationswilleventuallyoperateinmultiplefrequencybands.GNSSperformanceissensitivetothenumberofsatellitesinview.Multi‐constellationGNSSwillsubstantiallyincreasethatnumber,improvingtheavailabilityandcontinuityofservice.Furthermore,availabilityofmorethanthirtyinteroperablerangingsourceswillsupporttheevolutionofaircraft‐basedaugmentationsystems(ABAS)thatcouldprovideverticallyguidedapproacheswithminimal,orpotentiallynoneedforexternalaugmentationsignals.Theavailabilityofasecondfrequencywillallowavionicstocalculateionosphericdelayinreal‐time,effectivelyeliminatingamajorerrorsource.Theavailabilityofmultipleindependentconstellationswillprovideredundancytomitigatetheriskofservicelossduetoamajorsystemfailurewithinacoreconstellation,andwilladdresstheconcernsofsomeStatesaboutrelianceonasingleGNSSconstellationoutsidetheiroperationalcontrol.

Roadmap10‐intheBlock3timeframeandbeyond:

• Flightmanagementsystemcapabilitywillbeenhancedtosupportthefull4Dcapability.

Page 114: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-114- Roadmap10:

Domain: Avionics

Component(s): Navigation

Page 115: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-115-

Roadmap11‐intheBlock0timeframe:

• ACAS7.1willbethemainairbornesafetynet.ThiswillcontinuethroughtheBlock1timeframe.

• Electronicflightbagswillbecomeincreasinglycommoninthecockpit.Caremustbetakentoensurethattheyhavebeencertifiedforthefunctionssupported.

• AirportmovingmapsandcockpitdisplayoftrafficinformationwillbesupportedwithtechnologiessuchasADS‐B.

Roadmap11‐intheBlock1timeframe:

• Enhancedvisionsystems(EVS)foraerodromeusewillbeavailableinthecockpit.

Roadmap11‐intheBlock2timeframe:

• Syntheticvisionsystems(SVS)foraerodromeusewillbeavailableinthecockpit.

Page 116: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-116- Roadmap11:

Domain: Avionics

Component(s): AirborneSafetyNets

On‐BoardSystems

Page 117: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-117-

Automation

TheTwelfthAirNavigationConferencerequestedICAOtodeveloparoadmapforgroundairtrafficautomationsystems.Thisworkwillbecarriedoutduringthenexttriennium.Thepurposeofthisroadmapwillbeto

i. EnsureinteroperabilitybetweenStates

ii. Sothefunctionandoperationofthesesystemswillresultinconsistentandpredictableairtrafficmanagementsystemacrossstatesandregions.

Appendix6:ModuleDependencies

TheillustrationonthefollowingpagedepictsthevariousdependencieswhichexistbetweenModules.ThesemaycrossPerformanceImprovementAreasandBlocks.

DependenciesbetweenModulesexisteitherbecause:

i.Thereisanessentialdependency.

ii.ThebenefitsofeachModulearemutuallyreinforcing,i.e.implementationofoneModuleenhancesthebenefitachievablewiththeotherModules(s).

ForfurtherinformationthereaderisreferredtothedetailedonlinedescriptionsofeachModule.

Legend: Links from a Module in Block ‘n’ to a Module in Block ‘n+1’ Dependencies across Threads/Performance Areas Links to other Threads/Performance Areas where a Module is dependent on an earlier Module or Modules

Page 118: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-118- Reference

Page 119: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-119-

Appendix7:AcronymGlossary

A

ATFCM–Airtrafficflowandcapacitymanagement

AAR–Airportarrivalrate

ABDAA–Airbornedetectandavoidalgorithms

ACAS–Airbornecollisionavoidancesystem

ACC–Areacontrolcentre

A‐CDM–Airportcollaborativedecision‐making

ACM–ATCcommunicationsmanagement

ADEXP–ATSdataexchangepresentation

ADS‐B–Automaticdependentsurveillance—broadcast

ADS‐C–Automaticdependentsurveillance—contract

AFIS–Aerodromeflightinformationservice

AFISOAerodromeflightinformationserviceofficer

AFTN–Aeronauticalfixedtelecommunicationnetwork

AHMS–AirtrafficmessagehandlingSystem

AICM–Aeronauticalinformationconceptualmodel

AIDC–ATSinter‐facilitydatacommunications

AIP–Aeronauticalinformationpublication

AIRB–Enhancedtrafficsituationalawarenessduringflightoperations

AIRM–ATMinformationreferencemodel

AIS–Aeronauticalinformationservices

AIXM–Aeronauticalinformationexchangemodel

AMA–Airportmovementarea

AMAN/DMAN–Arrival/departuremanagement

AMC–ATCmicrophonecheck

AMS(R)S–Aeronauticalmobilesatellite(route)service

ANM–ATFMnotificationmessage

Page 120: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-120- ANS–Airnavigationservices

ANSP–Airnavigationservicesprovider

AO–Aerodromeoperations/Aircraftoperators

AOC–Aeronauticaloperationalcontrol

AOM–Airspaceorganizationmanagement

APANPIRG–Asia/Pacificairnavigationplanningandimplementationregionalgroup

ARNS–AeronauticalradionavigationService

ARNSS–AeronauticalradionavigationSatelliteService

ARTCCs–Airroutetrafficcontrolcenters

AS–Aircraftsurveillance

ASAS–Airborneseparationassistancesystems

ASDE‐X–Airportsurfacedetectionequipment

ASEP–Airborneseparation

ASEP‐ITF–Airborneseparationintrailfollow

ASEP‐ITM–Airborneseparationintrailmerge

ASEP‐ITP–Airborneseparationintrailprocedure

ASM–Airspacemanagement

A‐SMGCS–Advancedsurfacemovementguidanceandcontrolsystems

ASP–Aeronauticalsurveillanceplan

ASPA–Airbornespacing

ASPIRE–AsiaandSouthPacificinitiativetoreduceemissions

ATC–Airtrafficcontrol

ATCO–Airtrafficcontroller

ATCSCC–Airtrafficcontrolsystemcommandcenter

ATFCM–Airtrafficflowandcapacitymanagement

ATFM–Airtrafficflowmanagement

ATMC–Airtrafficmanagementcontrol

ATMRPP–Airtrafficmanagementrequirementsandperformancepanel

ATN–AeronauticalTelecommunicationNetwork

ATOP–Advancedtechnologiesandoceanicprocedures

ATSA–Airtrafficsituationalawareness

Page 121: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-121-

ATSMHS–Airtrafficservicesmessagehandlingservices

ATSU–ATSunit

AU–Airspaceuser

AUO–Airspaceuseroperations

B

Baro‐VNAV–Barometricverticalnavigation

BCR–Benefit/costratio

B‐RNAV–Basicareanavigation

C

CSPO–Closelyspacedparalleloperations

CPDLC–Controller‐pilotdatalinkcommunications

CDO–Continuousdescentoperations

CBA–Cost‐benefitanalysis

CSPR–Closelyspacedparallelrunways

CM–Conflictmanagement

CDG–Paris‐CharlesdeGaulleairport

CDM–Collaborativedecision‐making

CFMU–Centralflowmanagementunit

CDQM–Collaborativedeparturequeuemanagement

CWP–Controllerworkingpositions

CAD–Computeraideddesign

CTA–Controltimeofarrival

CARATS–Collaborativeactionforrenovationofairtrafficsystems

CFIT–Controlledflightintoterrain

CDTI–Cockpitdisplayoftrafficinformation

CCO–Continuousclimboperations

CAR/SAM–CaribbeanandSouthAmericanregion

Page 122: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-122- COSESNA–CentralAmericancivilaviationagency.

D

DAA–Detectandavoid

DCB–Demandcapacitybalancing

DCL–Departureclearance

DFMDepartureflowmanagement

DFS–DeutscheFlugsicherungGmbH

DLIC–Datalinkcommunicationsinitiationcapability

DMAN–Departuremanagement

DMEAN–DynamicmanagementofEuropeanairspacenetwork

D‐OTIS–Datalink‐operationalterminalinformationservice

DPI–Departureplanninginformation

D‐TAXI–DatalinkTAXI

E

EAD–EuropeanAISdatabase

e‐AIP–ElectronicAIP

EGNOS–EuropeanGNSSnavigationoverlayservice

ETMS–Enhanceairtrafficmanagementsystem

EVS–Enhancedvisionsystems

F

FABECFunctionalAirspaceBlockEuropeCentral

FAF/FAP–Finalapproachfix/finalapproachpoint

FANS–Futureairnavigationsystems

Page 123: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-123-

FDP–Flightdataprocessing

FDPS–Flightdataprocessingsystem

FF‐ICE–Flightandflowinformationforthecollaborativeenvironment

FIR–Flightinformationregion

FIXM–Flightinformationexchangemodel

FMC–Flightmanagementcomputer

FMS–Flightmanagementsystem

FMTP–Flightmessagetransferprotocol

FO–Flightobject

FPL–Filedflightplan

FPS–Flightplanningsystems

FPSM–Grounddelayprogramparametersselectionmodel

FRA–Freerouteairspace

FTS–Fasttimesimulation

FUA–Flexibleuseofairspace

FUM–Flightupdatemessage

G

GANIS–GlobalAirNavigationIndustrySymposium

GANP–Globalairnavigationplan

GAT–Generalairtraffic

GBAS–Ground‐basedaugmentationsystem

GBSAA–Groundbasedsenseandavoid

GEOsatellite–Geostationarysatellite

GLS–GBASlandingsystem

GNSS–Globalnavigationsatellitesystem

GPI–Globalplaninitiatives

GPS–Globalpositioningsystem

GRSS–Globalrunwaysafetysymposium

GUFI–Globallyuniqueflightidentifier

Page 124: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-124-

H

HAT–Heightabovethreshold

HMI–Human‐machineinterface

HUD–Head‐updisplay

I

IDAC–Integrateddeparture‐arrivalcapability

IDC–Interfacilitydatacommunications

IDRP–Integrateddeparturerouteplanner

IFR–Instrumentflightrules

IFSET–ICAOFuelSavingsEstimationTool

ILS–Instrumentlandingsystem

IM–IntervalManagement

IOP–ImplementationandInteroperability

IP–Internetworkingprotocol

IRR–Internalrateofreturn

ISRM–Informationservicereferencemodel

ITP–In‐trail‐procedure

K

KPA–Keyperformanceareas

L

LARA–Localandsub‐regionalairspacemanagementsupportsystem

LIDAR–Aeriallaserscans

LNAV–Lateralnavigation

Page 125: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-125-

LoA–Letterofagreement

LoC–Letterofcoordination

LPV–LateralprecisionwithverticalguidanceORlocalizerperformancewithverticalguidance

LVP–Lowvisibilityprocedures

M

MASPS–Minimumaviationsystemperformancestandards

MILO–Mixedintegerlinearoptimization

MIT–Miles‐in‐trail

MLS–Microwavelandingsystem

MLTF–Multilaterationtaskforce

MTOW–Maximumtake‐offweight

N

NADP–Noiseabatementdepartureprocedure

NAS–Nationalairspacesystem

NAT–NorthAtlantic

NDB–Non‐directionalradiobeacon

NextGen–Nextgenerationairtransportationsystem

NMAC–Nearmid‐aircollision

NOP–Networkoperationsprocedures(plan)

NOTAM–Noticetoairmen

NPV–Netpresentvalue

O

OLDI–On‐linedatainterchange

OPD–Optimizedprofiledescent

OSED–Operationalservice&environmentdefinition

OTW–Outthewindow

Page 126: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-126-

P

P(NMAC)–Probabilityofanearmid‐aircollision

PACOTS–Pacificorganizedtracksystem

PANS‐OPS–Proceduresforairnavigationservices‐aircraftoperations

PBN‐Performance‐basednavigation

PENSPan‐EuropeanNetworkService

PETAL–PreliminaryEUROCONTROLtestofair/grounddatalink

PIA–Performanceimprovementarea

P‐RNAV–Precisionareanavigation

R

RA–Resolutionadvisory

RAIM–Receiverautonomousintegritymonitoring

RAPT–Routeavailabilityplanningtool

RNAVAreanavigation

RNP–Requirednavigationperformance

RPAS–Remotely‐pilotedaircraftsystem

RTC–Remotetowercentre

S

SARPs–Standardsandrecommendedpractices

SASP–Separationandairspacesafetypanel

SATCOM–Satellitecommunication

SBAS–Satellite‐basedaugmentationsystem

SDM–Servicedeliverymanagement

SESAR–SingleEuropeanskyATMresearch

SEVEN–System‐wideenhancementsforversatileelectronicnegotiation

Page 127: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-127-

SFO–SanFranciscointernationalairport

SIDS–Standardinstrumentdepartures

SMAN–Surfacemanagement

SMS–Safetymanagementsystems

SPRs–Specialprogrammeresources

SRMD–Safetyriskmanagementdocument

SSEP–Self‐separation

SSR–Secondarysurveillanceradar

STA–Scheduledtimeofarrival

STARS–Standardterminalarrivals

STBO–Surfacetrajectorybasedoperations

SURF–Enhancedtrafficsituationalawarenessontheairportsurface

SVS–Syntheticvisualisationsystems

SWIM–System‐wideinformationmanagement

T

TBFM–Time‐basedflowmanagement

TBO–Trajectory‐basedoperations

TCAS–Trafficalertandcollisionavoidancesystem

TFM–Trafficflowmanagement

TIS‐B–Trafficinformationservice‐broadcast

TMA–Trajectorymanagementadvisor

TMIs–Trafficmanagementinitiatives

TMUTrafficmanagementunit

TOD–TopofDescent

TRACON–Terminalradarapproachcontrol

TS–Trafficsynchronization

TSA–Temporarysegregatedairspace

TSO–Technicalstandardorder

TWR–Aerodromecontroltower

Page 128: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-128-

U

UA–Unmannedaircraft

UAS–Unmannedaircraftsystem

UAV–Unmannedaerialvehicle

UDPP–Userdrivenprioritisationprocess

V

VFR–Visualflightrules

VLOS–Visualline‐of‐sight

VNAV–Verticalnavigation

VOR–Veryhighfrequency(VHF)omnidirectionalradiorange

VSA–Enhancedvisualseparationonapproach

W

WAAS–Wideareaaugmentationsystem

WAF–Weatheravoidancefield

WGS‐84–Worldgeodeticsystem‐1984

WIDAO–Wakeindependentdepartureandarrivaloperation

WTMA–Waketurbulencemitigationforarrivals

WTMD–Waketurbulencemitigationfordepartures

WXXM–Weatherexchangemodel

Page 129: Microsoft Word - A38.WP.xxx.re GANP.CLEAN.Based on - ICAO

-129-

InternationalCivilAviationOrganization(ICAO)

999UniversityStreet,Montréal,Quebec•Canada•H3C5H7

Tel.:+1514‐954‐8219•Fax:+1514‐954‐6077•E‐mail:[email protected]

wwwicao.int

PublishedinseparateEnglish,Arabic,Chinese,French,RussianandSpanisheditionsbythe

INTERNATIONALCIVILAVIATIONORGANIZATION

Fororderinginformationandforacompletelistingofsalesagentsandbooksellers,pleasegototheICAOwebsiteatwww.icao.int

Doc9750‐AN/963,2013–2028GlobalAirNavigationPlan

OrderNumber:9750‐AN/963

ISBNXXX‐XX‐XXXX‐XXX‐X

©ICAO2013

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystemortransmittedinanyformorbyanymeans,withoutpriorpermissioninwritingfromtheInternationalCivilAviationOrganization.

— — — — — — — —