Microsensors for Electronic Noses and Tongues - SRC · 2012. 3. 29. · Chemical Sensor Today...

26
Microsensors for Electronic Noses and Tongues Professor Julian Gardner Microsensors & Bioelectronics Laboratory Warwick University, Coventry, UK www.warwick.ac.uk/go/MBL

Transcript of Microsensors for Electronic Noses and Tongues - SRC · 2012. 3. 29. · Chemical Sensor Today...

  • Microsensors forElectronic Noses and Tongues

    Professor Julian Gardner

    Microsensors & Bioelectronics LaboratoryWarwick University, Coventry, UK

    www.warwick.ac.uk/go/MBL

  • - 2 -

    • 20 years experience in microsensors

    • 450 publications (150 refereed journal)

    • 12 books (4 series editor)

    • 4 spin-out companies

    www.warwick.ac.uk/go/MBL

    Microsensors & Biolectronics Laboratory

  • - 3 -

    Chemical Sensor Today (>$1b)

    Resistive OpticalCalorimetricElectrochemicalMass sensitive

    • Piezoelectric (QCM, SAW)• Cantilever beam

    ABBA Solidanalyte Reaction:

    BR

    Bmf

    BHT ,I

    250 mW

    500 mW

    100 mW

    Low Poweri

    Low Power

  • - 4 -

    Electronic Nose

    • Device to mimic human olfactory system

    • 1-100 million olfactory receptor cells• 350 genes that encode olfactory binding proteins• 1,000s glomeruli nodes• Mitral/tufted cells• 3% genome coding!

    • E-nose concept 1980s• First companies

    created in 1990s• Emerging market

    valued at €10M-1B

  • - 5 -

    E-Nose: Definition & Architecture“An electronic nose is an instrument which comprises an array of electronic chemical sensors with partial specificity and an appropriate pattern recognition system, capable of recognising simple or complex odours”

    Input(Odour)

    Output(Predictor)

    Olfactory epithelium (Receptor cells)

    Mammalian Nose Olfactory bulb

    Brain(Olfactory cortex)

    Electronic Nose Sensor array

    Analogue to Digital Converter

    Computer ( Signal Processor & Pattern Recognition Engine)

    SENSOR 1

    SENSOR 2

    SENSOR 3

    SENSOR n

    ARRAYPROCESSOR

    PARCENGINE

    KNOWLEDGE BASE

    SENSORPROCESSOR

    SENSORPROCESSOR

    SENSORPROCESSOR

    SENSORPROCESSOR

    TRAIN TEST

    ANALOGUE SENSING DIGITAL PROCESSING

    V1j(t)

    V2j(t)

    V3j(t)

    Vnj(t)

    X1j

    X2j

    X3j

    Xnj

    Xj

    Source: Gardner & Bartlett Sens. Actuators 18 (1994) 211

  • - 6 -

    Early Commercial Macro E-nosesFox 2,000Alpha MOS

    E-Nose 4000 EEV Ltd

    Agilent 4440

    Osmetech

    NST

    Smartnose

  • - 7 -

    Warwick Smart Tongue

    • Mimick human sense of taste• Concept in late 1990s• Warwick SAW based design – 60 MHz

    20

    200

    22

    )()/())(()/(

    2 TPr

    TPrrrsK

    vv

    20

    20

    2

    )()/())(/(

    2 TPr

    TPrsK

    k

    Cole et al 2004 IEEE Sensors Journal, 4, 543-550

  • - 8 -

    Applications Space

    • Food• Beverages• Healthcare

    – Bacterial infection– Cancer detection

    • Security• Robotics – molecular communication

  • - 9 -

    E-nose: Eye Infection

    E-coli

    Morax catar

    Pseudo aerug

    Strept pneumo

    Haemop influ

    Staph aureus

    nnkkkk xaxaxaX ...2211

  • - 10 -

    E-Tongue: Milk Freshness

    -1

    -0.5

    0

    0.5

    1

    -3 -2 -1 0 1 2 3 4

    Full Milk Semi-skimmed Skimmed milk

    PC 2

    PC 1

    PC 1

    PC

    2

    -2

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    -3 -2 -1 0 1 2 3 4

    Day 1

    Day 4

    Day 5

    Day 3

    Day 2

    Fat content in Milk Milk freshness/bacterial load?

    Cole et al. 2004 IEEE Sensors Journal, 4, 543-550 SkSkFkFkk aAaaAaX 4321

  • - 11 -

    Problems with Chemical Sensors to address

    • High power consumption (need < 5 mW)• Low sensitivity (need ppb)• Poor selectivity (in real world)• Limited life (need calibration)• Expensive for mass market

  • - 12 -

    Solutions Proposed so Far …

    → Nanomaterials & Nanostructures→ Low Power SOI CMOS technology→ Massive CMOS sensor arrays→ Spatial-temporal microsystems (eMucosa)→ Biology, e.g. ligand receptors→ Advanced neuromorphic signal processing

  • - 13 -

    Gas/Odour Microsensors• Nanomaterials

    – Metal oxides– CNTs– Polymers

    • CMOS gas sensors– Resistive, Calorimetric– SAW delay/R

    • Micro-noses

    • Artificial e-mucosa

    13

  • - 14 -

    What about NWs or sCNTFET?• Single CNT transistor• Low power

    With Cambridge and ETHZ

    • Boundary electron scattering effects• Molecule m.f.p. is ca. 10-100 nm

    Limitations?

  • - 15 -

    Nano Calorimeters?

    Parameter: Scaling factor K: K =1 K =10-3 K =10-6 Supported hotplate: Edge dimension (1 m thick square membrane)

    K 1000 m 1 m 1 nm

    Thermal response time ~ K2 100 ms 0.1 s 0.1 ps DC Power loss at 300C ~ K 100 mW 100 W 100 nW

    Fundamental Limitations

    Linear scaling theory

    • Convection dominates so gas sensitivity constant • Mass transport issue as m.f.p. approached (100nm)• Molecular noise increases

  • - 16 -

    Human Olfactory Mucosa

    • Distributed array of olfactory cells along mucous coated nasal cavity

  • 17 / 18

    E-mucosa for better selectivity?

    From: IEEE Sensors, Atlanta, 2007

  • - 18 -

    Employ large CMOS sensor arrays?5 rows by 14 columns 70 resistive and 70 FET sensors

    Each row is deposited with a different polymer to increase discrimination capability

    10 mm

    5 m

    m

    PVPH

    PEG

    PCLPEVAPSB

  • - 19 -

    25 x 12 Sensor Array Response to Oils

    19

  • - 20 -

    Biosensors to BioMEMS?• Bio-liquid packages• Liquid analytes

    – SAW delay line– SAW Resonators

    • Optical immunoassays

    • Receptors and Cells– Insect

    chemoreception

    20

  • - 21 -

    Cell-based SAW sensor for selectivity?Cell deposition

    SAW device

    Liquid chamber

    20 μm 2.5 μm

    HEK cells on SAW device

    HEK cells on SAW device

  • - 22 -

    Neuromorphic & neural systems• aVLSI implementation

    of olfactory bulb

    • Neuro-morphic models

    • Convolution based models

    • Spatio-temporal signal modelling

    • Neural networks

    dtSSty AB )()()(

    22

  • - 23 -

    Silicon implementation of synapse and somata cell

    10 mm by 5 mm die: 3 RN, 27 synapses and 1 PN per chip Multi-chip configurable

    Ref: Hamilton, ISACS 2006

    Footprint of neuromorphicaVLSI circuit implementationAMS 0.6 um CMOS process

    Neuron circuit

  • - 24 -

    Neuromorphic Model of Insect Antennal Lobe in FPGA

    Open FET 2011

  • - 25 -

    31 13

    22

    E-Glands and E-Noses on Robotshttp://www.youtube.com/watch?v=lBLN3sCbb

    PY

  • Thank You for Listening