Microscale Ionic Wind For Local Cooling Enhancement

40
Nanoscale Transport Research Group Microscale Ionic Wind For Local Microscale Ionic Wind For Local Cooling Enhancement Cooling Enhancement Birck Nanotechnology Seminar Series Birck Nanotechnology Seminar Series David B. Go David B. Go Ph.D. Candidate Ph.D. Candidate October 11 October 11 th th , 2007 , 2007

Transcript of Microscale Ionic Wind For Local Cooling Enhancement

PowerPoint PresentationNanoscale Transport
Research Group
Microscale Ionic Wind For Local Microscale Ionic Wind For Local Cooling EnhancementCooling Enhancement
Birck Nanotechnology Seminar SeriesBirck Nanotechnology Seminar Series
David B. GoDavid B. Go Ph.D. CandidatePh.D. Candidate
October 11October 11thth, 2007, 2007
D. B. Go, 10/11/2007, Slide 2 Nanoscale Transport Research Group
OutlineOutline • Introduction
• Experimental – macroscale – microscale
• Modeling – continuum-scale – sub-continuum
D. B. Go, 10/11/2007, Slide 3 Nanoscale Transport Research Group
1
10
100
1000
10000
1970 1975 1980 1985 1990 1995 2000 2005 2010 Year
Po w
er D
en si
ty (W
/c m
1970 1975 1980 1985 1990 1995 2000 2005 2010 Year
Po w
er D
en si
ty (W
/c m
components/skin/size
R. Cavin (2004)
“Search for radically new methods of heat removal is one of the most critical research
directions” – V. Zhirnov, SRC
D. B. Go, 10/11/2007, Slide 4 Nanoscale Transport Research Group
Present Electronics Cooling TechnologiesPresent Electronics Cooling Technologies natural convection cooled motor drive
Rockwell Automation, http://www.ab.com/drives/160z/
heat pipe, heat sink and fan cooled laptop http://en.wikipedia.org/wiki/Image:AMD_heatsink_and_fan.jpg
http://www.intel.com/support/processors/ mobile/pm/sb/cs-007971.htm
Current Research ActivitiesCurrent Research Activities • Variety of cooling technologies being investigated
– heat spreader/TIM → CNT thermal interfaces [Cola et al. (2007)]
– closed loop liquid cooling → micropumps [Singhal & Garimella (2007)]
– compression refrigeration → vapor compression [Nnanna (2005)]
– solid-state refrigeration → thermoelectrics [Wang & Bar-Cohen (2007)]
– air cooling enhancement → microscale ionic winds
D. B. Go, 10/11/2007, Slide 6 Nanoscale Transport Research Group
What is an Ionic Wind?What is an Ionic Wind? • Air ions pulled by an electric field collide with neutral air
molecules causing motion → ionic wind
• Ionic winds can be generated in a stagnant atmosphere or in the presence of a bulk flow → secondary wind
• Ions are generated through collisions between electrons and neutral molecules → electron impact
www.sharperimage.com
D. B. Go, 10/11/2007, Slide 7 Nanoscale Transport Research Group
Creating an Ionic WindCreating an Ionic Wind • Macroscale ionic wind generated via corona discharge
– large potential between sharp and blunt electrodes – naturally occurring, free electrons accelerated towards sharp
electrode → electron impact ionization – air ions pulled to the blunt electrode
e
e
e
e
e
D. B. Go, 10/11/2007, Slide 8 Nanoscale Transport Research Group
Microscale Ionization Microscale Ionization -- PaschenPaschen’’s Curves Curve
• Analytical prediction of breakdown of air → Paschen’s curve
• Experiments in microgaps deviate from Paschen’s curve → breakdown voltage decreases
• Particle simulations confirmed electron injection → field emission
Advantages of scaling down to the microscale (~10 μm): • lower operating voltages for practical applications (~100 V) • minimal volume impact on thermal solution
Zhang et al. (2004)
D. B. Go, 10/11/2007, Slide 9 Nanoscale Transport Research Group
Ionic Winds Ionic Winds -- HistoryHistory • Seminal Work
– first observed by Hauksbee (1719) and quantified by Chattock (1899) – first rigorous studies by Steutzer (1959) and Robinson (1961)
• External Flow Applications – dc surface corona discharges [Soetomo (1992), Leger et al. (2002), Artan et
al. (2002)] – ac plasma actuators [Roth et al. (1998,2000), Jacob et al. (2004), Huang et
al. (2006)]
• Heat Transfer Applications – enhanced natural convection [Marco & Velkoff (1963), Kibler & Carter
(1974), Owsenek et al. (1995)] – enhanced internal flow [Nelson et al. (1998)], heat exchangers
[Wangnipparnto et al. (2002)], external flow [Velkoff & Godfrey (1979)]
• Miniaturization – ionic wind driven pumps [Schlitz et al. (2003,2004), Jewell-Larsen (2004)] – field emission ionization [Zhang et al. (2004), Peterson et al. (2005)] – microfabricated electrodes [Hsu et al. (2007)]
D. B. Go, 10/11/2007, Slide 10 Nanoscale Transport Research Group
Ionic Winds for Cooling EnhancementIonic Winds for Cooling Enhancement • Ionic winds in the presence of a bulk flow distort the boundary
layer → air cooling can be enhanced at the wall • Ionic wind engines can be integrated on the backside of a chip,
onto a spreader or skin of a notebook → hot spot cooling
emitted electrons
eeee e
ionized air
wind
wind
~10μm
D. B. Go, 10/11/2007, Slide 11 Nanoscale Transport Research Group
OutlineOutline • Introduction
• Experimental – macroscale – microscale
• Modeling – continuum-scale – sub-continuum
D. B. Go, 10/11/2007, Slide 12 Nanoscale Transport Research Group
infrared camera infrared camera
D. B. Go, 10/11/2007, Slide 13 Nanoscale Transport Research Group
Macroscale Experiment Macroscale Experiment –– Corona VisualizationCorona Visualization
co lle
ct in
g el
ec tr
od e
co lle
ct in
g el
ec tr
od e
D. B. Go, 10/11/2007, Slide 14 Nanoscale Transport Research Group
Macroscale Results Macroscale Results –– Principal IR ImagesPrincipal IR Images
30
35
40
45
50
55
bulk flow + corona: i = 15.0 μA; Φ = 4.51 kV
co lle
ct in
g el
ec tro
de co
lle ct
in g
el ec
tro de
Ionic winds produced 5-25°C cooling using < 100 mW power D. B. Go, R. A. Maturana, T. S. Fisher, S. V. Garimella, Int. J. Heat Mass Trans. – in review
D. B. Go, 10/11/2007, Slide 15 Nanoscale Transport Research Group
Macroscale Results Macroscale Results –– Heat Transfer AnalysisHeat Transfer Analysis
• Apply energy balance → heat transfer coefficient (h)
• Analytically determine heat transfer relationship
( )airplate TThAq −=
1 4
ionich i∝
heat transfer coefficient can be used to quantify cooling enhancement
based on kinetic energy added to fluid by ion/neutral collisions
amount of heat removed
D. B. Go, 10/11/2007, Slide 16 Nanoscale Transport Research Group
Macroscale Results Macroscale Results –– Local Local hh
distance from plate leading edge, x (mm)
lo ca
lh ea
tt ra
ns fe
rc oe
ffi ci
en te
nh an
ce m
0
50
100
150
200
250
(b)
(a)
(c)
(d)
(e)
(a) i = 15 μA; 4.51 kV (b) i = 12.5 μA; 4.39 kV (c) i = 9 μA; 4.13 kV (d) i = 6 μA; 3.85 kV (e) i = 3 μA; 3.53 kV
Ionic wind enhances cooling > 200%
D. B. Go, 10/11/2007, Slide 17 Nanoscale Transport Research Group
Macroscale Results Macroscale Results –– Analytical RelationshipAnalytical Relationship
fourth root of current, i1/4 (μA1/4)
io ni
c w
in d
he at
tra ns
fe rc
oe ffi
ci en
10
20
30
40
50
downstream
upstream
1 4
ionich i∝
D. B. Go, 10/11/2007, Slide 18 Nanoscale Transport Research Group
Microwave Source
– desired mechanical properties → electrode robustness
Highly Graphitic Polycrystalline Diamond (HGPD) Maschmann et al. (2006)
Peterson et al. (2005) image courtesy R. A. Maturana
Microwave Plasma CVD
Miniature Wind Tunnel
D. B. Go, 10/11/2007, Slide 19 Nanoscale Transport Research Group
OutlineOutline • Introduction
• Experimental – macroscale – microscale
• Modeling – continuum-scale – sub-continuum
D. B. Go, 10/11/2007, Slide 20 Nanoscale Transport Research Group
Continuum Governing EquationsContinuum Governing Equations
0u∇ ⋅ = r r
( ) 2u u p u fρ ν⋅∇ = −∇ + ∇ + rr rr r r
( ) 2 pc u T k Tρ ⋅∇ = ∇
rr
r r r
Energy Body Force
- Coulombic force ions exert on bulk flow
Navier-Stokes Electrostatic
The governing equations solved sequentially using user- defined functions in FLUENT
D. B. Go, S. V. Garimella, T. S. Fisher, R. K. Mongia, J. Appl. Phys.(2007)
D. B. Go, 10/11/2007, Slide 21 Nanoscale Transport Research Group
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
o f h
ea t t
simulation experiment
Model captures major heat transfer trends
D. B. Go, 10/11/2007, Slide 22 Nanoscale Transport Research Group
Continuum Modeling Continuum Modeling -- InsightInsight
distance from plate leading edge, x (m)
ex te
nt in
to flo
w do
m ai
n, y
0.001
0.002
0.003
0.004
0.005
0.006
0.007 0.26 0.24 0.22 0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00
Figure 8 (a)
ex te
nt in
to flo
w do
m ai
n, y
0.001
0.002
0.003
0.004
0.005
0.006
0.007 0.26 0.24 0.22 0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00
(b)
ex te
nt in
to flo
w do
m ai
n, y
0.002
0.004
0.006
0.008
0.010
(b)
ex te
nt in
to flo
w do
m ai
n, y
0.002
0.004
0.006
0.008
0.010
D. B. Go, 10/11/2007, Slide 23 Nanoscale Transport Research Group
SubSub--Continuum ModelingContinuum Modeling
• Direct Simulation Monte Carlo (DSMC) – particle simulator based on work by Zhang et al. (2004) – provides understanding of the physics of field emission-generated
ionization – local body force resolution based on ion/neutral collisions →
import into continuum model
D. B. Go, 10/11/2007, Slide 24 Nanoscale Transport Research Group
Direct Simulation Monte CarloDirect Simulation Monte Carlo
cathodeanode (1)
(2)
(3)
(4)
(1) electron is emitted from the cathode and is accelerated toward the anode → Fowler-Nordheim equation
(2) electron collides with neutral molecule → statistically generate ions (3) original and newly liberated electron are accelerated toward the anode (4) generated ion is accelerated towards the cathode → ion/neutral
collisions generate body force
dielectric plate
D. B. Go, 10/11/2007, Slide 25 Nanoscale Transport Research Group
DSMC Sample SimulationDSMC Sample Simulation
• animation of 10 ps simulation electron
N2 ion
O2 ion
D. B. Go, 10/11/2007, Slide 26 Nanoscale Transport Research Group
DSMC Sample SimulationDSMC Sample Simulation
• animation of 10 ps simulation electron
N2 ion
O2 ion
D. B. Go, 10/11/2007, Slide 27 Nanoscale Transport Research Group
DSMC Model BenchmarkingDSMC Model Benchmarking • Predict Townsend’s first ionization coefficient → number of ionization
events per unit length • Compared to experimental and simulations literature
0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
80 90 100 110 120 130 140 150 160 170
Present Work
ratio of electric field to pressure, E/P (V cm-1 mmHg-1)
ra tio
present work
D. B. Go, 10/11/2007, Slide 28 Nanoscale Transport Research Group
DSMC Model DSMC Model –– Physical LimitsPhysical Limits
applied potential, Φ (V)
5
10
15
20
25
30
35 0.5 μA 5 μA 10 μA 15 μA 25 μA
0 25 50 75 100 125 0
0.02
0.04
0.06
0.08
0.1
D. B. Go, S. V. Garimella, T. S. Fisher in preparation
DSMC suggests a physical limit to ion initiation
D. B. Go, 10/11/2007, Slide 29 Nanoscale Transport Research Group
electron kinetic energy (eV)
0.5
1
1.5
2
0.25
0.50
0.75
2 2
e X e X (elastic)
e X 2e X (ionize X
)
− −
− − +
− −
+ → +
+ → +
+ → +
Ionization cross-sections suggest ion initiation at 20 V → why the discrepancy?
D. B. Go, 10/11/2007, Slide 30 Nanoscale Transport Research Group
DSMC Model DSMC Model –– Physical Limits (2)Physical Limits (2)
applied potential, Φ (V)
5
10
15
20
25
30
35
excitation
0.2
0.4
0.6
0.8
1
D. B. Go, 10/11/2007, Slide 31 Nanoscale Transport Research Group
OutlineOutline • Introduction
• Experimental – macroscale – microscale
• Modeling – continuum-scale – sub-continuum
D. B. Go, 10/11/2007, Slide 32 Nanoscale Transport Research Group
SummarySummary • Ionic winds for electronics cooling
– experimental results indicate significant cooling possible
• Microscale ionic wind engines – nanoscale features for improved operation and robustness – heat transfer experiments
• Continuum simulations – comparison to results shed insight onto nature of heat transfer
enhancement
• Sub-continuum simulations – provide insight into physical limits and impact of boundary – multi-scale simulation
D. B. Go, 10/11/2007, Slide 33 Nanoscale Transport Research Group
AcknowledgementsAcknowledgements • Advisors
• Undergraduate research fellow – Raul A. Maturana
• Colleagues and fellow graduate students – Dan Schlitz, Ph.D. – Wei Zhang, Ph.D. – Vaibhav Bahadur – Ratnakar Karru – Vishal Mahulkar – NSTRG & CTRC & members of Prof. Peroulis’ group
• Intel Corporation for financial support
D. B. Go, 10/11/2007, Slide 34 Nanoscale Transport Research Group
Question 1Question 1
D. B. Go, 10/11/2007, Slide 35 Nanoscale Transport Research Group
DSMC Model DSMC Model –– Physical Limits (2)Physical Limits (2)
applied potential, Φ (V)
5
10
15
20
25
30
35
excitation
0.2
0.4
0.6
0.8
1
D. B. Go, 10/11/2007, Slide 36 Nanoscale Transport Research Group
Question 2Question 2
D. B. Go, 10/11/2007, Slide 37 Nanoscale Transport Research Group
Question 3Question 3
D. B. Go, 10/11/2007, Slide 38 Nanoscale Transport Research Group
Question 4Question 4
D. B. Go, 10/11/2007, Slide 39 Nanoscale Transport Research Group
Microwave Source
– desired mechanical properties → electrode robustness
Highly Graphitic Polycrystalline Diamond (HGPD) Maschmann et al. (2006)
Peterson et al. (2005) image courtesy R. A. Maturana
Microwave Plasma CVD
Miniature Wind Tunnel
D. B. Go, 10/11/2007, Slide 40 Nanoscale Transport Research Group
Question 5Question 5
Microscale Ionic Wind For Local Cooling EnhancementBirck Nanotechnology Seminar Series
Outline
Creating an Ionic Wind
Ionic Winds - History
Outline
Macroscale Results – Local h
Macroscale Results – Analytical Relationship
Outline
Summary
Acknowledgements
Question 2
Question 3
Question 4