Microkinetic investigationsof heterogeneouslycatalyzedreactions · 2012. 10. 29. · Methanol...

49
Microkinetic investigations of heterogeneously catalyzed reactions (under industrially relevant conditions) Jennifer Strunk Junior Research Group Leader Ruhr-University Bochum Laboratory of Industrial Chemistry Lecture series, Fritz-Haber-Institut, Berlin, Oct. 19, 2012.

Transcript of Microkinetic investigationsof heterogeneouslycatalyzedreactions · 2012. 10. 29. · Methanol...

  • Microkinetic investigations of

    heterogeneously catalyzed reactions(under industrially relevant conditions)

    Jennifer Strunk

    Junior Research Group Leader

    Ruhr-University Bochum

    Laboratory of Industrial Chemistry

    Lecture series, Fritz-Haber-Institut, Berlin, Oct. 19, 2012.

  • • Microkinetic investigations – what for?

    • Elementary step kinetics

    • Microcalorimetry

    • Temperature-programmed desorption

    • Examples: CO on Cu/ZnO/Al2O3

    Methanol decomposition on ZnO

    This lecture is based on the lecture „Modern Microkinetics“, Prof. Dr. M. Muhler, Industrial Chemistry, Ruhr-University Bochum.

    ScopeScope of of thisthis lecturelecture

  • 1

    2a

    6b

    2b

    6a

    7

    3-5

    outer surface

    inner surface

    boundary layer

    2) Transport of the reactants to the surface

    a) through the boundary layer to the outer

    surface

    b) from the outer surface to the inner surface

    1) Transport of the reactants from the fluid bulk

    to the boundary layer

    7) Transport of the products from the boundary

    layer to the fluid bulk

    6) Transport of the products to the fluid bulk

    a) from the inner surface to the outer surface

    b) from the outer surface through the boundary

    layer

    3) Adsorption (chemisorption) of the reactant

    4) Chemical reaction

    5) Desorption of the product

    Very frequently:

    inner surface >> outer surface

    TheThe sevenseven stepssteps in in heterogeneousheterogeneous gasgas--solid solid catalysiscatalysis

  • k (T, c, p , p ...)1 2

    Global kinetics (macroscopic) 1 Elementary step kinetics (microscopic) 1

    k1 k2k3

    k4

    k7

    k5

    k6

    Mean field approach (mesoscopic)

    ComplexityComplexity of of HeterogeneouslyHeterogeneously CatalyzedCatalyzed ReactionsReactions

    1 O. Hinrichsen, in: Catalysis from A to Z: A Concise Encyclopedia (ed. Herrmann, Cornils, Wong, Schlögl), 2nd edition, Wiley-VCH, Weinheim 2003.

  • O. Hinrichsen, Catal.Today 53 (1999) 177-188.

    Microkineticanalysis

    Steady-stateexperiments

    Transientexperiments

    Characteri-zation

    Spektros-copic

    studies

    Kinetic theories,thermodynamics

    Single crystalsurfaces (UHV)

    Real catalysts(high pressure)

    PressureGap

    MaterialGap

    KnowledgeKnowledge--basebase approachapproach: Microkinetic : Microkinetic analysisanalysis

  • Elementary step kinetics Global kinetics, X

    Optimization of

    Reaction parameters

    (Choice of reactor)

    Optimized Strategy for

    catalyst preparation

    Local approach

    • Mechanistically proven model

    • Physical interpretation of

    kinetic parameters

    Coverages of intermediates

    Changes of the morphology

    Process engineering/

    Design, dimensioning

    WhyWhy areare elementaryelementary stepstep kineticskinetics usefuluseful??

  • ( )

    OHCO

    HCO

    g

    totHCOOHCOa

    PP

    PP

    K

    PPPPPTR

    EAr HCOOHCO

    2

    22

    2

    2

    2

    2

    2

    2

    1

    1exp

    ⋅⋅

    ⋅=

    −⋅⋅⋅⋅⋅⋅

    ⋅−⋅=

    β

    βγαααα

    αi apparent reaction order of component iγ fudge factor correcting the total pressure dependenceKg equilibrium constant for the WGS reaction

    Power-law Model *1)

    C.V. Ovesen, B.S. Clausen, B.S. Hammershøi, G. Steffensen, T. Askgaard, I. Chorkendorff,J.K. Nørskov, P.B. Rasmussen, P. Stoltze, P. Taylor, J. Catal. 158 (1996) 170-180.

    Microkinetic Model *1)

    H2O(g) + * H2O* (1)

    H2O* + * OH* + H* (2)

    2 OH* H2O* + O* (3)

    OH* + * O* + H* (4)

    2 H* H2(g) + 2* (5)

    CO(g) + * CO* (6)

    CO* +O* CO2* + * (7)

    CO2* CO2 (g) + * (8)

    CO2* + H* HCOO* + * (9)

    HCOO* + H* H2COO* + * (10)

    H2COO* + 4 H* CH3OH(g) + H2O(g) + 5* (11)

    ExampleExample 1: Water gas 1: Water gas shiftshift reactionreaction

  • CO + 2 H2 = CH3OH ∆RH = - 92 kJ/mol CO2 + 3 H2 = CH3OH + H2O ∆RH = - 50 kJ/mol CO + H2O = CO2 + H2 (WGSR) ∆RH = - 42 kJ/mol Cu/ZnO/Al2O3 5.0 – 10.0 MPa, 500 K

    dioxomethylene

    OC

    O

    H H

    Cumethoxy

    Cu

    OCH3

    OC

    O

    H

    formate

    Cu

    Steps Surface reactions

    1 H O(g) + * 2 H O* + * 3 2OH* 4 OH* + * 5 2H* 6 CO(g) + * 7 CO* + O* 8 CO * 9 CO * + H*10 HCOO* + H*11 H COO* + H*12 H CO* + H*13 CH OH*14 H COO* + *15 HCHO*16 H COO* + H*

    2

    2

    2

    2

    2

    3

    3

    2

    2

    H O* OH* + H*H O* + O*O* + H*H + 2*CO*CO * + *CO (g) + *

    + * + *

    + O*CH OH* + *CH OH(g) + *HCHO* + O*HCHO(g) + *HCHO* + OH*

    2

    2

    2

    2

    2

    3

    3

    HCOO*H COO*2H CO*3

    * : free surface siteX* : adsorbed molecule or atom X

    WG

    SR

    T.S. Askgaard, J.K. Nørskov, C.V. Ovesen, P. Stoltze, J. Catal. 156 (1995) 229-242.

    WGSR: water gas shift reaction

    ExampleExample 2: 2: BridgingBridging pressure/materialpressure/material gapsgaps forfor methanolmethanol synthesissynthesis

  • adsorption and desorption

    MechanisticMechanistic stepssteps of of methanolmethanol synthesissynthesis on on coppercopper

  • adsorption and desorption

    H2, CO, CO2

    MechanisticMechanistic stepssteps of of methanolmethanol synthesissynthesis on on coppercopper

  • Dissociation and surface reaction

    formate HCO2

    MechanisticMechanistic stepssteps of of methanolmethanol synthesissynthesis on on coppercopper

  • surface reaction: hydrogenation

    dioxomethylene H2CO2

    MechanisticMechanistic stepssteps of of methanolmethanol synthesissynthesis on on coppercopper

  • surface reaction

    methoxy CH3O

    MechanisticMechanistic stepssteps of of methanolmethanol synthesissynthesis on on coppercopper

  • desorption

    methanol CH3OH

    MechanisticMechanistic stepssteps of of methanolmethanol synthesissynthesis on on coppercopperMechanisticMechanistic stepssteps of of methanolmethanol synthesissynthesis on on coppercopper

  • hydroxyl OH, H2O

    surface reaction, desorption

    MechanisticMechanistic stepssteps of of methanolmethanol synthesissynthesis on on coppercopper

  • P.L. Hansen, J.B. Wagner, S. Helvig, J.R. Rostrup-Nielsen, B.S. Clausen, H. Topsøe, Science 295 (2002) 2053-2055.

    In situ TEM images (A, C, and E) of a Cu/ZnO catalyst in various gas environments together with thecorresponding Wulff constructions of the Cu nanocrystals (B, D, and F). (A) The image was recorded at a pressure of 1.5 mbar of H2 at 220 oC. The electron beam is parallel to the [011] zone axis of copper. (C) Obtained in a gas mixture of H2 and H2O, H2: H2O = 3:1 at a total pressure of 1.5 mbar at 220 oC. (E) Obtained in a gas mixture of H2 (95%) and CO (5%) at at total pressure of 5 mbar at 220 oC.

    AtomicAtomic resolutionresolution in in situsitu Transmission Transmission ElectronElectron MicroscopyMicroscopy

  • J.-D. Grunwaldt, A.M. Molenbroek, N.-Y. Topsøe, H. Topsøe, B.S. Clausen, J. Catal. 194 (2000) 452-460.

    a)

    Oxidizedatmosphere

    Reducedatmosphere

    Oxygen vacanciesReduced Zn

    Cu

    Zn

    a) Round-shaped particles under oxidizing syngas co nditions

    a)

    Oxidizedatmo sphere

    Reducedatmosphere

    Cu

    Zn

    b)

    a) Round-shaped particles under oxidizing syngas co nditionsb) Disc-l ike particles under more reducing conditio ns

    Oxygen vacanciesReduced Zn

    a)

    c)

    Oxidizedatmo sphere

    Reducedatmosphere

    Cu

    Zn

    b)

    a) Round-shaped particles under oxidizing syngas co nditionsb) Disc-l ike particles under more reducing conditio nsc) Surface Cu-Zn alloying due to stronger reducing conditions

    Oxygen vacanciesReduced Zn

    a) d)

    c)

    Oxidizedatmosphere

    Reducedatmosphere

    Oxygen vacanciesReduced Zn

    Cu

    Zn

    b)

    a) Round-shaped particles under oxidizing syngas co nditionsb) Disc-like particles under more reducing conditio nsc) Surface Cu-Zn alloying due to stronger reducing conditionsd) brass alloy formation due to severe reducing con ditionsoxidizing

    atmosphere

    reducing

    atmosphere

    DynamicDynamic BehaviorBehavior of of Cu/ZnOCu/ZnO: : AlloyAlloy ModelModel

  • Tentative Surface

    Reaction Mechanism

    crucial kinetic

    parametersTransient

    ExperimentsReactor Model

    Surface Science

    Studies

    TST, collision

    theory

    Ab initio

    calculation

    Analogies

    Comparison of Expe-

    riment and Simulation

    Steady-state

    kinetics

    optimization of the

    not-constrained

    kinetic parameters,

    sensitivity analysis

    Microkinetic Model

    DevelopmentDevelopment of a of a microkineticmicrokinetic modelmodel

  • Microkinetic Modeling

    Arrhenius form for elementary steps

    k = A ·exp (-Eact /(R ·T))

    Microkinetic Microkinetic ModelingModeling

    ⇒ 4 kinetic parameters(2 preexponential factors, 2 activation energies) per reversible elementary step!

  • J.A. Dumesic et al., The Microkinetics of Heterogeneous Catalysis, ACS Professional Ref. Book, Washington, DC 1993.

    KineticKinetic Parameters Parameters basedbased on TSTon TST

  • KineticKinetic Parameters Parameters basedbased on TSTon TST

  • HeatHeat of Adsorptionof Adsorption

  • • Thermal Desorption Spectroscopy

    yields Ea,des

    • Isosteric Heat of Adsorption

    using the Clausius-Clapeyron Equation

    • Calorimetry

    direct measurement of Q

    RoutesRoutes to to thethe HeatHeat of Adsorptionof Adsorption

  • Thermal desorption spectra can be easily analysed by application of the Redhead

    formula. Only valid if no readsorption occurs.

    ( )[ ]3.64/βTlnRTE mm −ν=• E: Activation energy of the desorption

    • Tm: Peak maximum

    • β: Heating rate• ν: Preexponential factor (Arrhenius)

    QMS

    turbo-

    molecular

    pump

    Thermal Thermal DesorptionDesorption SpectroscopySpectroscopy

  • Rads

    θ

    ∆H

    T1lnp =

    ∂∂

    Clausius-Clapeyron equation

    IsostericIsosteric HeatsHeats of Adsorptionof Adsorption

  • The adsorption microcalorimetry set-up is based on the work of B. E. Spiewakand J. A. Dumesic.B. E. Spiewak, J. A. Dumesic, Thermochimica Acta 290 (1996) 43-53

    Small doses of adsorptivegas are expanded into thecalorimeter.The Tian-Calvetcalorimeter measures theresulting heatflow(isothermal mode, 300 K). The amount of adsorbedmolecules is measuredvolumetrically.The complete set-up ismetal-tightened and thermostated.

    PI

    He

    M

    adsorptive gas

    calorimeter

    turbopump

    hotbox

    Microcalorimetry: Experimental Microcalorimetry: Experimental setset--upup

    System originally set up at LTC by Dr. Raoul Naumann d‘Alnoncourt

  • • Pretreatment of the sample (up to 3 days)

    • Sealing of the sample in a pyrex capsule filled with He

    • Transfer of the capsule into the calorimeter

    • Degassing of the complete set-up at 418 K (2 days)

    • Reaching thermal equilibrium at RT (over night)

    • Crushing the capsule and reducing the He pressure

    • Waiting for a stable baseline (2 hours)

    • Starting the automatic dosing sequence (50 cycles, 2 days)

    Microcalorimetry: Microcalorimetry: NecessaryNecessary experimental experimental stepssteps

  • Dosing cycle:

    1. Evacuating the dosing section

    2. Filling the dosing section withadsorptive gas (100 Pa = 1 µmol)

    3. Opening the measuring cell

    4. Heat flow measurement (60 min)

    Microcalorimetry: Microcalorimetry: MeasurementMeasurement procedureprocedure

  • Calorimetric data and pressure data are collected simultaneously during themeasurement.Processing of the calorimetric data (integration of the heat flow for each singlepulse) yields the evolved heat.

    64800 75600 86400

    0.0

    0.1

    dQ/d

    t / m

    W

    t / s

    Microcalorimetry: Data Microcalorimetry: Data processingprocessing

  • 0 20 40 60 800

    20

    40

    60

    80

    0 20 40 60 800

    20

    40

    60

    80

    Q /

    kJ/m

    ol

    Coverage / µmol/gcat

    Pressure / Pa

    Cov

    erag

    e / µ

    mol

    /gca

    t

    Differential Differential heatheat of of adsorptionadsorption and and adsorptionadsorption isothermisotherm: CO on Cu: CO on Cu

    Adsorption of CO on a copper catalyst

  • Why measure TPD?

    • Adsorption kinetics of single molecules are probed:Important for improving catalystsFaster adsorption may increase overall rate

    • Heterogeneous surfaces:Are there multiple adsorption sites for my reactant?

    • 1st vs. 2nd order desorption:Does my reactant molecule dissociate on my catalyst?

    TemperatureTemperature--programmedprogrammed desorptiondesorption

  • Four general steps

    • Catalyst pretreatmente. g. oxidation, reduction, reaction conditions

    • Adsorptionoften small amount of probe molecule in inert gas

    • Purgein inert gas at a fixed temperature

    • Temperature-programmed desorptionin inert gas flow, increase temperature (linearly) with time

    TPD: Experimental TPD: Experimental procedureprocedure

  • Variation of:

    • Heating rate- heating-rate-variation method, e. g. 5 K/min, 2 K/min, 1 K/min

    - At constant initial coverage: usually θ0 = 1

    • Initial coverage- with constant heating rate- different coverages can be

    obtained by a variation of dosing time & temperature

    - non-activated adsorption(CO on Cu):initial coverage variation bypartial desorption

    TPD: Experimental TPD: Experimental procedureprocedure –– advancedadvanced

  • TPD: Experimental TPD: Experimental setset--upup

  • First order:The TPD peaks do not shift as a function of coverage; asymmetric peak shape

    FirstFirst--orderorder desorptiondesorption kineticskinetics

  • Second order:The TPD peaks do shift as a function of coverage; more symmetric peak shape

    SecondSecond--orderorder desorptiondesorption kineticskinetics

  • ExampleExample: : HydrogenHydrogen desorptiondesorption fromfrom Cu(111) Cu(111) singlesingle crystalcrystal (TDS)(TDS)

    Please note: Due to surface reconstruction, much more complicateddesorption traces are obtained in case of Cu(100) and Cu(110).

    G. Anger et al. Surface Science 220 (1989) 1-17.

  • HH22 TPD TPD fromfrom Cu/ZnO/AlCu/ZnO/Al22OO33: Variation of : Variation of thethe HeatingHeating RateRate

    100 200 300 400 500

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    wcat

    = 200 mgQ

    He = 100 Nml/min

    2 K/min, Tmax

    = 288 K

    6 K/min, Tmax

    = 297 K

    E

    fflu

    ent m

    ole

    frac

    tion

    H2

    / %

    Temperature / K

    100 200 300 400 500

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    wcat

    = 200 mgQ

    He = 100 Nml/min

    2 K/min, Tmax

    = 288 K

    6 K/min, Tmax

    = 297 K

    10 K/min, Tmax

    = 303 K

    E

    fflu

    ent m

    ole

    frac

    tion

    H2

    / %

    Temperature / K

    second-order desorption from Cu surface sites

    no readsorption

    100 200 300 400 500

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    wcat

    = 200 mgQ

    He = 100 Nml/min

    2 K/min, Tmax

    = 288 K

    6 K/min, Tmax

    = 297 K

    10 K/min, Tmax

    = 303 K

    15 K/min, Tmax

    = 306 K

    E

    fflu

    ent m

    ole

    frac

    tion

    H2

    / %

    Temperature / K

    Pretreatment

    Methanol Synthesis

    Flushing in He at 493 K

    for 0.5 h

    Cooling in He to 240 K

    Dosing 100% H2 for

    0.5 h at 240 K and at

    p = 15 bar

    Cooling in H2 to 78 K

    Flushing in He at 78 K

    T. Genger, O. Hinrichsen, M. Muhler, Proc. Europacat IV, Rimini 1999, p. 175.

  • 3.25 3.30 3.35 3.40 3.45 3.5012.5

    13.0

    13.5

    14.0

    14.5

    15.0

    15.5

    H2 TPD, β variation

    2lnT

    max

    -lnβ

    1000 K / Tmax

    Cu/ZnO/Al2O

    3Ades = 3·10

    11 s-1

    Edes = 78 kJ mol-1 §

    no readsorption,

    no diffusion limitation

    T. Genger, O. Hinrichsen, M. Muhler, Europacat IV, Rimini 1999.§ T. Genger, O. Hinrichsen, M. Muhler, Catal. Lett. 59 (1999) 137-141.

    2nd Order Plot 2nd Order Plot AccordingAccording to to PolanyiPolanyi--WignerWigner EquationEquation

    11

    2ln ln

    nndes m desm

    m des m

    R A n En

    T E RT

    β − − = Θ −

  • T. Genger, O. Hinrichsen, M. Muhler, Proc. Europacat IV, Rimini 1999.§ T. Genger, O. Hinrichsen, M. Muhler, Catal. Lett. 59 (1999) 137-141.

    Ades = 3·1011 s-1

    Edes = 78 kJ mol-1 §

    HH22 TPD TPD fromfrom Cu/ZnO/AlCu/ZnO/Al22OO33: Variation of : Variation of thethe HeatingHeating RateRate

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    E

    fflue

    nt m

    ole

    frac

    tion

    H2

    / %

    Cu/ZnO/Al2O

    3

    100 200 300 400 500

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.16

    Effl

    uent

    mol

    e fr

    actio

    n H

    2 / %

    Temperature / K

  • Pretreatment

    Methanol Synthesis

    Flushing in H2 and He at

    493 K for 0.5 h

    Cooling in He to 78 K

    H. Wilmer, T. Genger, O. Hinrichsen, J. Catal. 215 (2003) 188-198.

    100 200 300 400 5001.8

    1.9

    2.0

    2.1

    2.2

    2.3

    Tmin

    = 270 K2 K/min

    2.1% H2 in He

    Q = 20 Nml/min

    E

    fflue

    nt m

    ole

    frac

    tion

    H2

    / %

    Temperature / K

    Tmin

    = 299 K15 K/min

    Tmin

    = 291 K10 K/min

    Tmin

    = 283 K6 K/min

    dissociative adsorption on Cu surface sites

    high activation barrier

    TemperatureTemperature--programmedprogrammed adsorptionadsorption of Hof H22 on Cu/ZnO/Alon Cu/ZnO/Al22OO33

  • H. Wilmer, T. Genger, O. Hinrichsen, J. Catal. 215 (2003) 188-198.§ T. Genger, O. Hinrichsen, M. Muhler, Stud. Surf. Sci. Catal. 130 (2000) 3825-3830.

    Aads = 1·103 (Pa s)-1

    Eads = 51 kJ mol-1 §

    100 200 300 400 5001.7

    1.8

    1.9

    2.0

    2.1

    2.2

    2.3

    2.1% H2 in He

    Q = 20 Nml/min

    Effl

    uent

    mol

    e fr

    actio

    n H

    2 / %

    Temperature / K

    1.7

    1.8

    1.9

    2.0

    2.1

    2.2

    2.3

    Effl

    uent

    mol

    e fr

    actio

    n H

    2 / %

    TemperatureTemperature--programmedprogrammed adsorptionadsorption of Hof H22 on Cu/ZnO/Alon Cu/ZnO/Al22OO33

  • TPD

    • transient method• temperature dependence• processing of data yields

    information about adsorption kinetics and thermodynamics

    Microcalorimetry

    • thermodynamic equilibrium• isothermal conditions• processing of data yields

    adsorption heats and isotherms (equilibrium data)

    Combination by microkineticmodelling

    TPD under the influence of readsorption differential heats from microcalorimetry

    CombiningCombining TPD and Microcalorimetry: CO on Cu/ZnO/AlTPD and Microcalorimetry: CO on Cu/ZnO/Al22OO33

  • ** COCO ↔+

    ( )COCOadsfreiCOadsads

    pk

    pkr

    θθ

    −⋅⋅=⋅⋅=1

    COdesdes kr θ⋅=

    adsorption of a single component,

    readsorption occurring freely (non-activated)

    ⇒ rate expression for the

    forward reaction

    ⇒ rate expression for the

    reverse reaction

    with: rate constants expressed by the Arrhenius-equation

    −⋅=RT

    EAk iAii

    ,exp

    Microkinetic Microkinetic ModelingModeling of TPD of CO on Cu/ZnO/Alof TPD of CO on Cu/ZnO/Al22OO33

    with EA,ads = 0 ⇒ EA,des = ∆Hads

  • TPD-experiment: reflected adsorption enthalpy is the mean value of enthalpies of all molecules desorbing in a certain coverage range

    ⇒ Mean values can be calculated from microcalorimetry data in the same coverage intervals

    55,50,000 - 0,167

    58,50,000 - 0,102

    62,10,000 - 0,054

    [kJ mol-1][-]

    ∆HadsCoverage interval

    ⇒ Calculation of Aads from adsorption entropy (Method by Scholten& Konvalinka)

    Microkinetic Microkinetic ModelingModeling of TPD of CO on Cu/ZnO/Alof TPD of CO on Cu/ZnO/Al22OO33

  • 250 300 350 4000.0

    0.1

    0.2

    0.3

    E

    fflue

    nt m

    ole

    fract

    ion

    of C

    O /

    %

    Temperature / K

    dashed lines: exp.

    bold lines: theor.

    CO TPD spectra and adsorption isotherms can be modeled in good agreement using calorimetric data.

    J. Strunk et al., Phys. Chem. Chem. Phys. 8 (2006) 1556-1565.

    0 25 50 75 1000.00

    0.05

    0.10

    0.15

    experimental Temkin model

    Frac

    tiona

    l cov

    erag

    e

    Pressure / Pa

    350 K

    325 K

    300 K

    Microkinetic Microkinetic modelingmodeling of TPD of CO on Cu/ZnO/Alof TPD of CO on Cu/ZnO/Al22OO33

  • Kähler et al., ChemPhysChem. 11 (2010) 2521-2529.

    Methanol Methanol decompositiondecomposition on on ZnOZnO NanoTekNanoTek®

    400 450 500 550 600 650 700

    0.00

    0.02

    0.04

    0.06

    0.08

    CO2

    H2

    H2O

    CO CH

    3OH

    567 K

    517 K

    491 K

    ef

    fluen

    t mol

    e fr

    actio

    n / %

    temperature / K

    -H2

    lattice O

    • Dissociative adsorption of methanol as methoxy species(and OH or bulk H) on ZnO (at least 58 % of the Zn2+

    adsorption sites occupied).• For pure ZnO the mass balance is closed.• At 491 and 517 K two different methoxy species are

    decomposed to form formate and H2.

  • • EA for the conversion of methoxy to formate species are 109 kJ mol-1 and

    127 kJ mol-1.

    • Desorption at higher temperatures is ascribedto the decomposition of formates.

    0.00185 0.00190 0.00195 0.00200 0.00205-15.6-15.4-15.2-15.0-14.8-14.6-14.4-14.2-14.0-13.8

    EA=127 kJ/mole

    EA=109 kJ/mole

    1. decomp. peak 2. decomp. peak

    ln(β

    /Tm

    ax

    2 )

    1/Tmax

    400 450 500 550 600 650 7000.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    515 K 499 K 491 K

    540 K 525 K 517 K

    efflu

    ent m

    ole

    frac

    tion

    / %

    temperature / K

    Methanol Methanol decompositiondecomposition on on ZnOZnO NanoTekNanoTek®

    Kähler et al., ChemPhysChem. 11 (2010) 2521-2529.

    Variation of heating rate Arrhenius plot

  • SummarySummary

    • Knowledge of the elementary steps from model experiments undercontrolled conditions can be used to understand catalytic reactionunder industrially relevant conditions.

    - Example: Cu catalyst in methanol synthesis – Cu(111) in UHV

    • Microcalorimetry can be used to obtain heats of adsorption of reactants on industrial catalysts.

    • TPD is a viable method to probe adsorption/desorption kinetics orthe decomposition of intermediates. For the modeling, single crystal data (e.g. Cu(111)) or heats of adsorption from microcalorimetry can be used (e.g. CO on Cu/ZnO/Al2O3)

    • Microkinetic modeling can bridge pressure and material gaps in studies of heterogeneously catalyzed reactions.