MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006...

39
“Ion Traps for Tomorrow’s Applications” COST-IOTA Enrico Fermi Summer School, Varenna 2013 David Lucas University of Oxford, U.K. Ion Trap Quantum Computing group www.physics.ox.ac.uk/users/iontrap Microfabricated Ion Traps

Transcript of MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006...

Page 1: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

“Ion Traps for Tomorrow’s Applications”

COST-IOTAEnrico Fermi Summer School, Varenna 2013

David Lucas

University of Oxford, U.K.

Ion Trap Quantum Computing groupwww.physics.ox.ac.uk/users/iontrap

Microfabricated Ion Traps

Page 2: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

Lecture 2 outline

1. Motivations for microfabricated traps

2. 3D and 2D microtraps

3. Anomalous heating in traps

4. Near-field microwave techniques

Page 3: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

1. Motivations

022

r

eV

m dω =

Ω

1. Tight traps

• easier laser cooling to ground state

• faster quantum logic gates

• easier separation of ions

• interfacing with solid state qubits?

Radial secular frequency:

d: ion-electrode distance scale

Blain et al. 2004

2. Scaling to large arrays of traps

3. Sensing applications

Page 4: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

Quantum computing

quantum register

“accumulator”

segmented electrodes

“quantum CCD” architecture – Wineland et al. (1998)

Page 5: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

Some microfabricated trap milestones

1990s First wafer traps at NIST

2001 NIST dual-zone trap

2005 Michigan chip trap (semiconductor process)

2006 Michigan T-junction trap

2006 Sandia chip trap (MEMS process)

2006 NIST surface-electrode trap

2008 MIT cryogenic surface traps

2012 NPL 3D silicon trap

2012 Oxford surface trap with integrated microwave elements

Page 6: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

ion-electrode distance = 1.2 mmmotional frequencies ~ 1 MHz

UHV < 1x10-11 mbar

10µm

7 mm

10mm

Linear ion trap (“retro” version)

Page 7: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

2D and 3D micro traps

Amini et al. 2008 (in “Atom Chips” ed. Vuletic & Reichel)

Page 8: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

Univ.Ulm (Schmidt-Kaler group)

Material: evaporated gold on laser-machined alumina waferion-electrode distance 250µmRF drive 25MHz, 140Vtrap depth 76meVradial frequency 1.3MHzheating rate 2.1(3) quanta/ms

Example 3D microfab trap: Ulm

Page 9: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

2D (planar) traps

Taken from J Britton’s thesis

Page 10: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

Taken from J Britton’s thesis

2D (planar) traps

Page 11: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

Material: electroplated gold on quartz (Ti and Ag seed layers)ion-surface distance 150µmRF drive 35MHz, 200Vtrap depth 82meVradial,axial frequencies 3.5MHz, 1.0MHz

filter capacitors

Example 2D microfab trap: Oxford

Page 12: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

Trap fabrication process

SEM image of electrode layout

Page 13: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

Vacuum System

Calcium ovenmounted atabove chip. Thermal beamis parallel totrap surface.

Imaging throughlarge viewport(conductively coated) Lasers enter and

exitthrough side ports

25-way D-subfor dc electrodes

Trap inUHV-compatibleplastic socket. Vacuum

pumps

RF feedthroughVacuum system

Page 14: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

389nm

423nm

continuum

Ca4s2

4s4p

Photo-ionization trap loading

• high absolute efficiency • negligible charging effects

Page 15: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

Operating Parameters

RF Amplitude =225 VRF Frequency =25.4 MHZRF Stability Parameter, q = 0.45

Trap Depth = 0.2 eVRadial Secular Frequencies = 4 MHz

-0.24 -3.15 -3.15 -3.15 -0.24

-0.24 -3.15 -3.15 -3.15 -0.24

-1.04

-1.04

rf

rf

0.95 0.95 0.95 0.95 0.95

0

0

rf

rf

1.12 1.12 1.12 1.12 1.12

-0.90

-0.95

rf

rf

5.0 1.9 1.9 1.9 5.0

0.9

rf

rf

-1.03 -1.03 -1.03 -1.03 -1.03

-0.95 -0.95 -0.95 -0.95 -0.95 5.0 1.9 1.9 1.9 5.0

‘Endcap’ Voltagesto produce a500kHz axialsecular frequency

‘Tilt’ voltages to rotate radial normal modes for optimal cooling

x-axis (up-down) micromotioncompensationvoltages (mV per V/m)

y-axis (out of plane) micromotioncompensationvoltages (mV per V/m)

0.9

DC control voltage sets

Page 16: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

Micromotion compensation

866nm laser detuning

Page 17: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

Trap charging by laser light

- this data for Ca+ at 397nm

- no charging for IR beams (866nm)

- could be worse for UV ions? (e.g. Be+, Mg+)

Page 18: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

Junctions

NIST 2008

Michigan 2006

Page 19: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

3. “Anomalous” heating

Page 20: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

Anomalous heating

elec

tric

fiel

d no

ise

WARNING: do not attempt to reproduce these results at home !!!

Page 21: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

Anomalous heating

Page 22: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

In situ cleaning 1: pulsed laser cleaning

Allcock et al. NJP 2011

355nm Nd:YAG5ns pulsed100-200 mJ/cm2

Page 23: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

In situ cleaning 1: pulsed laser cleaning

Allcock et al. NJP 2011

cleaned zone

control zone before and after cleaning

Page 24: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

In situ cleaning 2: Ar+ ion bombardment

Hite et al. PRL 2012

Page 25: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

In situ cleaning 2: Ar+ ion bombardment

Hite et al. PRL 2012

elec

tric

fiel

d no

ise

Page 26: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

Microwave near-field techniques

Page 27: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

Quantum logic with near-field microwaves

C. Ospelkaus et al. Theory: PRL (2008), Experiment: Nature (2011)

static B0

Page 28: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

Microwave trap design

50

xy

z

Page 29: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

HFSS Simulation

Page 30: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

Microwave Testing

Page 31: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

Microwave trap design

500um Sapphire substrate for heat dissipation

HFSS simulation of currents

and B-field in trap region

Ion is 75um

off surface

at B-field null

Page 32: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

43Ca+ Intermediate Field Hyperfine Qubit

43Ca+ S1/2 Ground State at 146 Gauss

3.2GHz

Page 33: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

43Ca+ Intermediate Field Hyperfine Qubit

Use stretch transition

to servo B-field

static B-field (gauss offset from 146G)

Page 34: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

c.f. B. Keitch et al. (2007) T2 = 1.2 sec (single 43Ca+ ion, low-field clock state)

C. Langer et al. (2005) T2 = 15 sec (single Be+ ion, intermediate-field clock state)

J. Bollinger et al. (1992) T2 ~ 600sec (~1000 ions, high-field clock state)

43Ca+ qubit: coherence time measurements

with CPMG

sequence

0.93 at 16sec

T2 = 48(10)sec

Page 35: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

Randomized benchmarking of single-qubit gates

Recipe (Knill et al. 2007):

Apply random Clifford gates (π/2 pulses) from set x=σX,x=σ-X,y=σY,y=σ-Y

x x y y x x y x y x x y x y y x …

Then randomize again by inserting Pauli gates (pi pulses) randomly chosen

from the set +I,-I,+X,-X,+Y,-Y,+Z,-Z:

x Z x I y X y Z x Y x I y Z x Z y Y x Z x X y X x X y Z y I x …

Finish by rotating the qubit into the measurement (Z) basis:

x Z x I y X y Z x Y x I y Z x Z y Y x Z x X y X x X y Z y I x … y [measure]

Similar implementation to K.Brown et al. (2011)

Page 36: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

Randomized benchmarking of single-qubit gates

Prep./readout

error 7x10-4

T 2=50se

c

~160ms

Mean error per gate

= 0.9(3) parts-per-million

gate time (pi/2) = 12µs

Page 37: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode
Page 38: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode

Paul trap evolution

~

Page 39: MicrofabricatedIon Trapsstatic.sif.it/SIF/resources/public/files/va2013/Lucas-2307.pdf · 2006 Michigan T-junction trap 2006 Sandia chip trap (MEMS process) 2006 NIST surface-electrode