Microalgae – a potential fish feed resource?% CL digested Phaeodactylum tricornutum y = -0,1732x2...

19
Microalgae – a potential fish feed resource? Margareth Øverland

Transcript of Microalgae – a potential fish feed resource?% CL digested Phaeodactylum tricornutum y = -0,1732x2...

Page 1: Microalgae – a potential fish feed resource?% CL digested Phaeodactylum tricornutum y = -0,1732x2 - 0,2497x + 98,107 R2 = 1 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70

Microalgae – a potential fish feed resource? Margareth Øverland  

Page 2: Microalgae – a potential fish feed resource?% CL digested Phaeodactylum tricornutum y = -0,1732x2 - 0,2497x + 98,107 R2 = 1 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70

Salmonid  produc.on,  Norwegian  and  global    

0,0  

2,0  

4,0  

6,0  

8,0  

10,0  

12,0  

0,0  

0,5  

1,0  

1,5  

2,0  

2,5  

1989  1990  1991  1992  1993  1994  1995  1996  1997  1998  1999  2000  2001  2002  2003  2004  2005  2006  2007  2008  2009  

Value  (m

ill  US  $)  

Prod

uced

 (mill  to

nnes)  

Produc6on  and  value  of  Atlan6c  salmon  and  rainbow  trout  

Norway   World   Value  (Norway)   Value  (World)  

Page 3: Microalgae – a potential fish feed resource?% CL digested Phaeodactylum tricornutum y = -0,1732x2 - 0,2497x + 98,107 R2 = 1 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70

Advantages  

•  Availability  and  supply  •  Environmental  profile  •  Low  cost  

Disadvantages  

•  Low  nutrient  density  •  Unbalanced  AA  profile  •  Taste  •  An.nutrients  •  No  EPA  or  DHA  

3  

Poten.als  and  challenges  with    plant  ingredients  

Page 4: Microalgae – a potential fish feed resource?% CL digested Phaeodactylum tricornutum y = -0,1732x2 - 0,2497x + 98,107 R2 = 1 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70

Fishmeal-­‐free  diets  for  salmonids  

Design-Expert?SoftwareComponent Coding: ActualFCR

Design Points0.887

0.769

X1 = A: P-MIXX2 = B: C-MIXX3 = C: S-MIX

A: P-MIX1.0

B: C-MIX1.0

C: S-MIX1.0

0.0 0.0

0.0

FCR

0.780

0.788

0.799

0.8170.832

0.832

0.850

0.850

2

22

22

2

2  Feeding a combination of pea, potato and rapeseed protein gave similar growth performance as fishmeal  

Feed  efficiency  

Source:  APC,    Zhang,  2012  

Mixed  model  design  Contour  plot  

Pea  +  potato  

Soya  Rapeseed  +Potato  

Page 5: Microalgae – a potential fish feed resource?% CL digested Phaeodactylum tricornutum y = -0,1732x2 - 0,2497x + 98,107 R2 = 1 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70

Bacteria Methylococcus capsulatus

Microbial ingredients in fish feeds Production

Yeast/Fungus Rhizopus oryzae

Many possible substrates: •  Methane or methanol (e.g. natural gas or methane) •  Co-products from forest industry and agriculture

- Lignocellulosic biomass •  Sunlight + CO2

Microalgae Phaeodactylum, Chlorella,

Page 6: Microalgae – a potential fish feed resource?% CL digested Phaeodactylum tricornutum y = -0,1732x2 - 0,2497x + 98,107 R2 = 1 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70

 Methylococcus  capsulatus  

Bacterial  meal  Value chain from natural gas to high-value feed resources for the production of human food  

Bacterial  meal  (BM)  is  produced  by  aerobe  fermenta.on:  •  Methanothroph  bacteria  and  helper  bacteria  •  Methanol  or  Methane  from  natural  gas    •  Oxygen,  ammonia,  minerals  

Crude protein (10% nucleic acids)

70%

Crude lipids (phospholipids) 10%

Carbohydrates 12%

Ash 7%

(Source: Øverland et al., 2011)

Page 7: Microalgae – a potential fish feed resource?% CL digested Phaeodactylum tricornutum y = -0,1732x2 - 0,2497x + 98,107 R2 = 1 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70

Growth  (%/Day)  and  feed  efficiency  (Gain/Feed)  of  Atlan.c  salmon  fed  increasing  levels  of  bacterial  

meal  

a  

Level  of  bacterial  meal  (%)  

a  

b  

ab  

b  

ab      a  

abc  

c  

bc  

Source:  Aas  et  al.  2006  

Page 8: Microalgae – a potential fish feed resource?% CL digested Phaeodactylum tricornutum y = -0,1732x2 - 0,2497x + 98,107 R2 = 1 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70

Produc.on  of  yeast  from  forest  industry  Lignocellulosic  biomass  

Mechanical  pretreatment  

Thermo-­‐chemical  pretreatment  

Enzyma.c  hydrolyzes  

Fermenta.on  

Cellulose

Page 9: Microalgae – a potential fish feed resource?% CL digested Phaeodactylum tricornutum y = -0,1732x2 - 0,2497x + 98,107 R2 = 1 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70

Growth  (%/day)  and  feed  u.liza.on  (feed:gain)  of  salmon  fed  30%  yeast  

APC, 2012, Øverland et al., unpublished

a

FM Yeast 1 Yeast 2 Yeast 3

Gain,  %/day  Kg  feed  /  kg  gain  

Page 10: Microalgae – a potential fish feed resource?% CL digested Phaeodactylum tricornutum y = -0,1732x2 - 0,2497x + 98,107 R2 = 1 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70

Microalgae  in  fish  feed  Chemical characteristic of microalgae  

Microalgae  is  produced  by:  •  Heterotrophic  or  autotrophic  produc.on  •  Freshwater  or  saltwater    •  Lipid,  protein  and  carbohydrate  composi.on  varies  with  produc.on  

condi.ons  

Crude protein

20 - 40%

Crude lipids 5 - 60%

Carbohydrates

Minerals, vitamins, carotenoids

Microalgae Phaeodactylum, Chlorella

Page 11: Microalgae – a potential fish feed resource?% CL digested Phaeodactylum tricornutum y = -0,1732x2 - 0,2497x + 98,107 R2 = 1 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70

Reseach on Microalgae in APC

1. Evaluation of nutritional value of : Nannochloropsis oceania, produced at UMB Isochtysis galbana from, Reed Mariculture, USA Phaeodactylum tricornutum, Fitoplankton Marino, Spain

Collaboration among APC; UMB, SINTEF, and Nofima

2. Evaluation of functional properties of microalgae 3. Chemical profiling of microalga from heterotrophic production Production of Nannochloropsis

oceania at UMB

Collaboration between APC and Nofima

Page 12: Microalgae – a potential fish feed resource?% CL digested Phaeodactylum tricornutum y = -0,1732x2 - 0,2497x + 98,107 R2 = 1 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70

Source: APC, Skrede et al., unpublished

Chemical  composi.on  of  microalgae,  %

Nannochloropsis    Oceania

Isochrysis  galbana

Phaeodactylum  tricornutum

High-quality fishmeal

Crude protein, % 47.7 20.1 49.0 74.7

Crude fat, % 8.4 16.2 7.4 9.7

EPA, C20:5 2.3 0.08 2.8 1.5-2.0

DHA, C22:6 - 1.6 0.02 0.7-1.3

Amino acids, g/16 g N

Lysine 4.8 3.1 4.2 6.8 Methionine 1.8 2.5 2.0 2.5

Tryptophan 1.7 2.5 1.3 0.7

Threonine 3.6 4.6 3.7 3.5

Valine 4.6 6.1 4.6 4.0

Isoleucine 3.5 5.1 3.8 3.7

Leucine 6.7 9.2 6.2 6.2

Phenylalanine 3.9 5.7 4.2 3.3

Arginine 4.9 4.1 4.4 5.4

Histidine 1.5 1.7 1.2 1.7

Page 13: Microalgae – a potential fish feed resource?% CL digested Phaeodactylum tricornutum y = -0,1732x2 - 0,2497x + 98,107 R2 = 1 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70

Apparent  crude  protein  diges.bility  of  the  algae  products    

Nannochloropsis

y = -0,5233x + 87,844R2 = 0,9966

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100% algae inclusion in feed

% C

P di

gest

ed

Phaeodactylum tricornutum

y = -0,0777x + 87,639R2 = 0,9853

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100% algae inclusion in feed

% C

P di

gest

ed

Isochrysis galbana

y = -0,69x + 87,806R2 = 0,9928

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100% algae inclusion in feed

% C

P di

gest

ed

The protein digestibility of the algae when extrapolating to 100% of protein from algae were: Phaeodactylum tricornutum: 79.9% Nannochloropsis oceania : 35.5% Isochrysis galbana : 18.8%

Page 14: Microalgae – a potential fish feed resource?% CL digested Phaeodactylum tricornutum y = -0,1732x2 - 0,2497x + 98,107 R2 = 1 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70

Apparent  amino  acid  diges.bility  of  LT  fishmeal  and  the  three  algae  products  

N. Oceania

P. Tricornutum

I. galbana

 LT  fishmeal  

Arg 41.2 87.4 56.8 93.6

His 17.2 76.6 37.1 88.9

Ile 30.3 75.9 63.5 92.4

Leu 30.9 81.6 68.6 93.0

Lys 38.1 84.5 12.6 86.8

Met 35.6 83.4 64.8 93.5

Trp 38.3 81.7 69.0 85.6

Phe 31.9 83.2 69.2 90.3

Thr 50.1 83.0 55.0 85.0

Val 31.6 82.2 62.5 91.4

Page 15: Microalgae – a potential fish feed resource?% CL digested Phaeodactylum tricornutum y = -0,1732x2 - 0,2497x + 98,107 R2 = 1 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70

Apparent  crude  fat  diges.bility  of  the  algae  products  

Although the algae products represented a minor proportion of total dietary lipids some indications were observed: All algae products gave a reduction in lipid digestibility with increasing inclusion of algae lipids. Calculation of the digestibility of lipids in the algae products would result in negative digestibility.

Nannochloropsis

y = -0,5587x2 + 0,2459x + 98,032R2 = 0,9998

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100% algae inclusion in feed

% C

L di

gest

ed

Phaeodactylum tricornutum

y = -0,1732x2 - 0,2497x + 98,107R2 = 1

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100% algae inclusion in feed

% C

L di

gest

ed

Isochrysis galbana

y = -0,0746x2 - 0,1763x + 98,186R2 = 0,9988

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100% algae inclusion in feed

% C

L di

gest

ed

Page 16: Microalgae – a potential fish feed resource?% CL digested Phaeodactylum tricornutum y = -0,1732x2 - 0,2497x + 98,107 R2 = 1 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70

 Func.onal  properites  in  microalgae  

.  

Hypotheses: Certain microalgae may have beneficial health effects Soybean meal was used as a model to study gut health Feeding soybean meal results in:  Ø  Enteritis in the distal intestine

Ø  Reduced feed intake, growth, and digestibility

Ø  Reduced enzyme activity and bile salt levels in the intestine

A:  Fiskemel  

B:  Soyamel  

Normal  gut  

Soy-­‐induced  enteri.s  

Foto: T. Landsverk

Page 17: Microalgae – a potential fish feed resource?% CL digested Phaeodactylum tricornutum y = -0,1732x2 - 0,2497x + 98,107 R2 = 1 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70

Microalgae  in  feed  containing  20%  SBM    Degree  of  inflamma.on  in  distal  intes.ne  

0.0

0.5

1.0

1.5

2.0

SBM (Pos. ctrl.) FM (Neg. ctrl.) ALG (SBM + alga)

Deg

ree

of c

hang

es in

dis

tal i

ntes

tine

Diet

Leukocytes in Lamina PropriaEpithelial changesAtrophyOedema

+ + +

+

*

* * *

*

*

**

* = different from SBM at p<0.01+ = different from FM at p<0.01

APC, 2012, unpublished

Feed,  %   FM   SBM   ALG  

Fishmeal   71   51   29.5  

Soybean  meal   0   20   20  

Microalgae   -­‐   -­‐   20  

Page 18: Microalgae – a potential fish feed resource?% CL digested Phaeodactylum tricornutum y = -0,1732x2 - 0,2497x + 98,107 R2 = 1 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70

Conclusion - 1

•  Microbes represent very promising feed ingredients

•  They are sustainable feed resources - they do not require agricultural land, use little water (or recycling) and can be made from non-food raw materials

•  Micro algae have some limitation concerning opening up the cell-walls and low digestibility of nutrients in several species

•  Some microbes (both bacteria, yeast and microalgae) contain many interesting bioactive components that can give positive health effects

•  The positive health effects are very species (and possibly also strain) specific

Page 19: Microalgae – a potential fish feed resource?% CL digested Phaeodactylum tricornutum y = -0,1732x2 - 0,2497x + 98,107 R2 = 1 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70

Conclusion - 2

•  To be successful, microbial ingredients must have a high nutritional value (omega 3)/health benefits and be produced economically

•  Revisions of EU regulations on microbial protein sources (Regulation (EC) No 767/2009) will facilitate further development and use of such products as feed ingredients